Boundary Control of an Axially Moving Nonlinear Tensioned Elastic String

Sun-Kyu Park, Suk-Jae Lee and Keum-Shik Hong

Key Words: Exponential Stability, Axially Moving String, Boundary Control, Hyperbolic Partial Differential Equation, Lyapunov Method, Nonlinear String

Abstract

In this paper, an active vibration control of a tensioned elastic axially moving string is investigated. The dynamics of the translating string are described by a non-linear partial differential equation coupled with an ordinary differential equation. The time varying control in the form of the right boundary transverse motions is suggested to stabilize the transverse vibration of the translating continuum. A control law based on Lyapunov's second method is derived. Exponential stability of the translating string under boundary control is verified. The effectiveness of the proposed controller is shown through the simulations.

1. 서론

많은 기계기구에서 이용하는 요소로 동력, 재료, 및 정보의 전달수단 혹은 교통수단으로 사용하고 있다. 이와 같이 고정된 양단을 지지점으로 하여 이 양단 사이를 연속체적으로 물결이 이동하는 시스템을 급이방향(축방향) 이동시스템(axially moving system)이라 한다. 급이방향 이동시스템을 응용한 기계의 예로서, 자기기록 테이프, VCR, 대용량 저장장치 등의 기록 저장장치와, 벨트 또는 제인 등의 동력전달장치, 케이블, 스커리프트 등의 교통 및 수송장치, 외야 방전장치 등이 이동시스템의 단일기계가 있다. 이러한 다양한 응용분야에도 불구하고, 운동 중에 발생하는 진동과 소음이 실제 적용에 제한요소가 되고 있으 며, 고정밀도, 경량화, 고속주행이 요구될 때 더욱 그러하다. 또한, 생산성과 제품의 품질향상을 위해서는 고속주행과 고정밀도가 필수적으로 요구되므로, 이동하는 요소의 진동을 감시하기 위한 농동계어방법이 보다 확대되고 있다.

위와 같은 급이방향으로 이동하는 현(string) 및 연속체(continua)에 대한 동역학과 진동해석에 관한 연구는 광범위하게 이루어져왔지만, 농동계어에 대한 연구는 문헌상에서 많이 발견되지 않고 있다. 본 논문에서는 급이방향으로 이동하는 비선형 현의 탄성의 고정밀도 모델링고도 추격 계계에서의 증가율을 통하여 시스템 전체의 진동을 제거적으로 줄이는 농동계어방법(Active boundary controller)의 설계에 관하여 고찰하고자 한다.

본문에개변수시스템(Distributed parameter systems)으로 기술되는 급이방향으로 이동하는 시스템의 동적 해석과 안정성 연구, 농동 및 수동적인 계어방법의 개발에 관한 연구는 세계적으로 활발히 진행되어 왔다. Wickert와 Mote의 감쇠와 강성을 수동적으로 변화시키는 방법을 이용하여 계의 안정화하는 수동계어에 관한 연구를 하였고,
Yang과 Mote\(^{(3)}\)은 주파수 영역에서 전달함수를 사용한 연속체의 전동계 방법을 개발하였는데, 이 방법을 통해서 point 센서와 point 액체에 의거하는 동일위치(collocation)가 아니라 비동일위치(noncollocation)일 때 모두에 대해 스플로버(spillover)를 안정성을 극복할 수 있음을 밝혔다. Lee와 Mote\(^{(4)}\)는 길이방향 이동현계의 연계제어법으로 시변경계에 의한 히드레이션방법을 제안하였으며, 현의 전동 에너지를 소산시키는 과정의 제어 법칙을 유도하였다. Lee와 Mote\(^{(6)}\)는 길이 방향으로 이동하는 단단한 오일러-베르누이(Euler-Bernoulli beam)의 전동동(transverse vibration)을 경계에서의 농동 및 수동 감쇠로 제어하였으며, Ying과 Tan\(^{(7)}\)은 길이방향으로 이동한 현과 보를 작동기를 중심으로 제어하는 부분과 그렇지 않은 부분으로 나누어 제어하는 부분에 균형진전계를 연구하였다. Fard와 Sagatan\(^{(8)}\)는 경계제어를 사용함으로써 전동하는 보를 지속적으로 안정화(exponential stabilization)시킬 수 있음을 보였다. 국내에서도 연구가 진행되고 있는데, 류두연과 박영철\(^{(9)}\)은 길이방향으로 이동하는 현의 평가한 진동을 안정화하기 위하여 속도경계제어를 적용하였고, 이승엽과 박성규\(^{(10)}\)는 현의 길이에 따른 진동특성 및 통작 안정성을 연구하였다.

본 논문은 야연도장판의 제작공정중 연속용융식 야연도장공정에서 발생하는 장선 스트립의 진 동계에 관한 연구이다. Fig. 1은 용융야연도장 공정을 나타낸다. 용융식 야연도장판은 성형성, 용 접성, 도장성, 내식성 등이 품질의 중요한 특성이다. 그 중 내식성이 야연도장판의 기본적이고도 가장 중요한 특성이다. 내식성은 도금이 얼마나 균일하게 되어있는가, 두께가 적절한가 등이 중요하다. 이러한 문제들은 도금공정 중 도금판의 진 동으로 인한 불균일한 도금을 줄임으로 해결할 수 있다. 따라서 진동을 제거하려고 효과적으로 줄이는데 대한 연구가 본 논문의 요지이다.

길이방향으로 이동하는 시스템은 제어대상물과 시스템의 특성에 따라 현, 벨트, 보로 모델링할 수가 있다. 본 논문에서는 강철스트립의 두 지점 사이의 거리에 비해 두께는 많고, 너비가 작기 때문에, 이 강철스트립을 현으로 가정하고 전기화 도록 한다. 시스템에 유입 혹은 유출되는 질량이 있고, 제어력이 가해지는 곳의 시변경계(time varying boundary)에서 이동하는 질량에 의해 일어 발생하기 때문에 운동방정식은 질량변화가 있는 시스템에 대한 헤밀턴 원리(Hamilton's principle for system of changing mass)\(^{(10)}\)를 사용하여 유도하도록 한다. 본 논문에서 유도된 운동방정식은 비선형 파미브방정식이다. 또한 Fig. 2의 횡방향으로 이동하는 현의 우측경계에서의 히드레이어는 이동하는 현과연계와 경계에의 발생하는 에너지 플럭스(energy flux)의 개념을 비롯하여 이동현의 전동에너지를 감소시키는 횡방향 진동을 제어하는 방법으로 시변경계에 의한 히드레이어 방법과 작동기를 감쇠를 동시에 설계하도록 한다. 즉, 하나의 센서와 설계된 감쇠기를 이용하여 현의 횡진동을 지속적으로 감소시키는 것을 이용하는 현 시스템에 대한 지연까지의 연구는 현의 탄성을 고려하지 않은 상향방정식에 국한되었고 2개 이상의 센서가 사용되었다. 인접한 장력과 현의 탄성을 고려하여 이를 본 논문에서는 비선형 현장방정식에 대한 경계제어방법을 유도하였으며 유도된 제어방법을 적용하기 위해서는 하나의 센서만이 필요하며 부가적으로 작동기의 감쇠를 설계하도록 되어 있다.

본 논문의 구성은 다음과 같다. 먼저 2절에서는 질량변화가 있는 시스템에 대한 해밀턴 원리를 사용하여 이동하는 비선형 현시스템의 운동방정식을 유도하고, 3절에서는 이 시스템의 횡진동을 안정화 시킬 수 있는 제어 법칙을 유도한다. 4절에서는 이 제어법칙이 적용된 시스템은 현의 횡방향 변화를 지속적으로 0으로 감소시킬 수 있다는 것을 보인다. 5절에서는 유도된 제어법칙을 적용하는 방법에 대해 소개하고, 6절에서 시뮬
2. 급이방향으로 이동하는 비선형 현의 모델링

일정한 간격 \(L \)의 두 지지점을 지나는 현의 운동방정식을 유도하고자 한다. 재질의 밀도가 \(\rho \) 이고, 횡단면의 면적 \(A \)가 균일한 현이, 초기 장력 \(P_0 \)가 결린 상태로 \(v \)의 속도로 일정하게 이동하는 경우를 고려한다. 이 때, 현의 횡방향 변위를 두 지지점 사이의 공간좌표 \(x \)와 시간 \(t \)에 대한 함수 \(w(x,t) \)으로 표현할 수 있으며, 그 계수들을 Fig. 2 에 나타내었다. 스트립을 지지하는 양끝단은 고정되어 있으나, 경계조건을 사용하기 위해 좌측계기는 고정되어 있고, 좌측계기와 작동기 사이의 흐름을 갖는 것이 목적으로 작동기의 위치 \(x = L \)를 우측계기로 고려하며, 이 때 우측계기는 시변계율(time varying boundary)으로 취급된다.

Fig. 2에서 임의의 \(x \) 지점에서의 횡방향 속도는 다음과 같다.

\[
\dot{v}(x,t) = v_i + \left(\frac{dw(x,t)}{dt} \right) .
\]

여기서 (1)는 각각 \(\partial \gamma / \partial x \)과 \(\partial \gamma / \partial t \)을 나타내며 앞으로 이 표시법을 사용하도록 한다.

이동현과 작동기에 대한 운동에너지(kinetic energy)와 위치에너지(potential energy)는 다음과 같이 각각 쓸 수 있다.

\[
T = \frac{1}{2} \int_0^L \rho A \left(\dot{v}^2 + (w_i + v_n w_x)^2 \right) dx + \frac{1}{2} mw_i^2 (L,t),
\]

(2a)

\[
U = \int_0^L \left[P_0 \varepsilon_x + \frac{EA}{2} \varepsilon_x^2 \right] dx .
\]

(2b)

여기서 \(T \)는 운동에너지, \(U \)는 위치에너지로 나타낸다. \(m \)은 작동기의 질량, \(E \)는 현의 탄성 계수, \(\varepsilon_x \)는 \(x \) 방향의 변형률(strain)을 나타낸다. 질량이 \(dx \)를 \(x \)의 미소요소로 정의 \(P_0 \)의 영향으로 질량이 \(ds \)로 변화한 경우, 테일러 급수를 이용하여 근사화하면 \(\varepsilon_x \)를 식 (3)과 같이 구할 수 있다.

\[
\varepsilon_x \approx \frac{1}{2} \left(\frac{\partial w(x,t)}{\partial x} \right)^2 .
\]

(3)

따라서 위치에너지 식 (2b)는 다음과 같이 다시 나타낼 수 있다.

\[
U = \frac{1}{2} \int_0^L \left(P_0 + \frac{EA}{8} w_i^2 \right) w_x^2 dx .
\]

(4)
다음과 같다.
\[
\int_{h}^{t_{2}} \left(\delta T - \delta U + \delta W_{w,c} + \delta W_{r,b} \right) dt
= \int_{h}^{t_{2}} \frac{1}{2} \rho Av_{w} \delta w_{i} dx dt
+ \int_{h}^{t_{2}} \frac{1}{2} \left(P_{0} - \rho Av^{2} + \frac{3EA}{2} w_{x}^{2} \right) \delta w_{x} dx dt
+ \int_{h}^{t_{2}} \left[mw_{i}(L,t) \delta w_{i}(L,t) \delta w(L,t) \right] dt
+ \int_{h}^{t_{2}} \left[F_{c}(t) - d_{a} w_{i}(L,t) \right] \delta w(L,t) dt
- \int_{h}^{t_{2}} \rho A v \left(w_{i}(L,t) + w_{x}(L,t) \right) \delta w(L,t) dt = 0. \tag{8}
\]

또한, 식 (8)에 대해 부분적분을 취하여 정리하면 다음과 같다.
\[
\left[\frac{1}{2} \rho Av_{w} + \rho Av_{wx} \right] \delta w dx \bigg|_{h}^{t_{2}}
- \int_{h}^{t_{2}} \frac{1}{2} \rho Av_{w} \delta w dx dt
+ \int_{h}^{t_{2}} \left(\rho Av_{w} + \rho Av^{2} w_{x} \right) \delta w dt
+ \int_{h}^{t_{2}} \left(- P_{0} w_{x} - \frac{EA}{2} w_{x}^{2} \right) \delta w dt
- \int_{h}^{t_{2}} \left(- P_{0} w_{xx} - \frac{3EA}{2} w_{xx}^{2} \right) \delta wdxdt
+ \left[mw_{i}(L,t) \delta w(L,t) \right]_{h}^{t_{2}}
- \int_{h}^{t_{2}} \left(mw_{i}(L,t) - F_{c}(t) + d_{a} w_{i}(L,t) \right) \delta w(L,t) dt
- \int_{h}^{t_{2}} \left(\rho Av_{w} + \rho Av^{2} w_{x}(L,t) \right) \delta w(L,t) dt = 0. \tag{9}
\]

이제, 식 (10)를 만족하는 길이방향 이동현의 횡진동에 관한 지배방정식 (governing equation)은 아래와 같이 구할 수 있다.
\[
\rho Av_{r} + 2\rho Av_{wx}\\
- \left(P_{0} - \rho Av^{2} + \frac{3EA}{2} w_{x}^{2} \right) w_{xx} = 0. \tag{11a}
\]
\[
w(0,t) = 0, \quad w_{x}(0,t) = 0, \quad \text{그리고}
F_{c}(t) = mw_{i}(L,t) + d_{a} w_{i}(L,t)
+ \left(P_{0} + \frac{EA}{2} w_{x}^{2}(L,t) \right) w_{x}(L,t). \tag{11b}
\]

여기서 \(w_{r}\) 는 현을 구성하는 요소의 횡방향으로의 국부가속도(local acceleration)이고, \(w_{xx}\) 는 코리올리가속도(Coriolis acceleration)이며, \(v^{2}w_{xx}\) 는 구심가속도(centripetal acceleration)이다.

길이방향으로 이동하는 현의 고유진동수는 주행속도가 증가함에 따라 감소하며, 현의 좌측 속도와 일치하게 될 때 시스템이 기계적 공전을 일으키며 발생하게 된다. 이 때의 속도를 임계 속도(critical speed)라 하며, 임계속도는 현이 안정하게 이동할 수 있는 한계속도를 의미한다. 따라서 현의 이동속도는 임계속도 이내의 값을 가져야 한다. 즉,
\[
0 < v < v_{cr} = \sqrt{\frac{P_{0}}{\rho}} \tag{12}
\]
의 관계를 만족하여야 한다.

따라서 본 논문에서는 현의 모델에서 이동속도 도를 임계속도 이내, 즉, \(v < \sqrt{P_{0}/\rho}\) 로 가정한다. 또한 Table 1을 이용하면 \(v_{cr} = \sqrt{P_{0}/\rho} = 35.33 \, m/s\) 를 얻을 수 있다.

3. 비선형 현의 경계제어법칙의 유도

본 연구의 목적인 길이방향으로 이동하는 비선형 현의 횡방향 진동을 억제할 수 있는 능동제어기를 설계하는데 있다. 진동을 억제하는 방법으로는 시스템의 영역내에서 제어력을 작용시키는 방법과 시스템의 경계를 변화시키는 시스템 전체의 에너지를 흡수, 소멸하도록 하는 방법을 고려할 수 있다. 시스템의 영역내에서 제어력을 작용시키는 방법은 이론적 가능성을 확보할 수 있으나, 제어기의 설치 및 작용이 대상체 자체의 동봉성을 크게 변화시키지 않고 현실적인 면에서 다루기 어렵다. 시스템의 경계를 변화시켜 시스템
전체의 에너지를 흡수, 소멸하도록 하는 방법은 경계의 진동을 규제할 변화시킬 수 barren의 진동에너지 컨트롤 개념으로 본 논문에서는 시변경계를 이용하여 현의 진동을 제어하는 방법을 사용한다. 따라서, \(x = L \) 이에 시변경계 조건을 사용하여 전체 진동을 지수적으로 안정화시킨 제어법칙을 유도하고자 한다.

이동하는 현의 진동을 제어하기 위한 시변우축적 분지점의 제어법칙을 구하기 위하여 전체 기계적 에너지를 리아프노프 함수후보(Lyapunov functional candidate)로 선정하고 이 함수의 시간에 대한 전미분이 음이 되게 하는 제어법칙을 유도한다.\(^{(11)}\) 각동기를 제외한 이 시스템의 기계적 에너지(mechanical energy)는 다음과 같다.

\[
V_S(t) = \frac{1}{2} \frac{L}{0} \rho A (w_x + v w_x)^2 dx + \frac{1}{2} \frac{L}{0} \rho A (w_x + v w_x)^2 dx.
\]

정리 1: 다음의 \(\tilde{V}(t) \)는 기계적 에너지 \(V_S(t) \)와 동가(equivalent)이다.

\[
\tilde{V}(t) = V_S(t) + V_B(t).
\]

여기서

\[
V_B(t) = \beta \rho A \frac{L}{0} xw_x (w_x + v w_x) dx
\]

이므로, \(\beta \)는 임의의 양수이다.

즉, 다음의 식이 성립한다.

\[
(1 - C_1) V_S(t) \leq \tilde{V}(t) \leq (1 + C_1) V_S(t).
\]

여기서 \(C_1 > 0 \)이다.

증명: 식 (14)의 마지막 항은 다음의 부등식을 만족한다.

\[
V_B(t) = \frac{\rho A \beta}{2} \frac{L}{0} xw_x^2 dx + \frac{\rho A \beta}{2} \frac{L}{0} (w_t + v w_x)^2 dx
\]

이러한 식 (19)의 \(C_1 \)은 다음과 양수로 정의한다.

\[
C_1 = \frac{\rho A \beta L}{\min(P_0, \rho A, E A)}
\]

이러한 식 (17)은 식 (14)에 대입하면,

\[
\tilde{V}(t) \leq V_S(t) + C_1 V_S(t) = (1 + C_1) V_S(t)
\]

이 얻어진다. 같은 방법으로 하면 식 (16)의 꼭대 부등호도 증명되고 또한 \(V_S(t) \)와 \(\tilde{V}(t) \)가 동가이기 위해서는 \(1 - C_1 > 0 \)이어야 하므로 식 (18)으로부터 다음의 부등식을 얻는다.

\[
0 < \beta < \frac{\min(P_0, \rho A, E A)}{\rho A L}.
\]

따라서 정리 1이 증명된다. \(\blacksquare \)

정리 1을 이용하여 리아프노프 함수후보를 다음과 같이 정의한다.

\[
V_{total}(t) = \tilde{V}(t) + V_A(t).
\]

여기서

\[
V_A(t) = \frac{m}{2} \{ w_x (L, t) + (v + \beta L) w_x (L, t) \}^2
\]

이서, \(A \) 는 연속체의 이동하는 현의 경우, 경계 사이의 현을 구성을 하는 요소들의 점합체는 시간에 따라 변화한다. 따라서, 리아프노프 함수의 시간에 대한 변화를 하면, 에너지의 시간에 대한 변화율을 구하는 데 있어서, 계체의 질량에 대해서는 일정한 경계적 영역 내부의 연속체에 대해서 에너지의 시간변화율을 표현할 수 있다. 즉, 어떠한 공간에 어떤 시간체적(control volume)을 정의하여 어떠한 시스템의 물성치의 변화율이 는 김제적 에너지를 의미한다. 이것은 점체적 내에서 TESTING의 그것의 공간 누적율과, 점체적의 경계를 통한 공간 유출률과 유입률의 차이를 표현한다. 여기서, 필자는 점체적을 통한 총 유출률이다. 이것은 고정된 점체적에 대한 Reynolds의 1차원 수송정리(one-dimensional Reynolds transport theorem)라고 한다.\(^{(12)}\)

리아프노프 함수의 시간변화율을 구하기 위해 Fig. 3에 나타낸 바와 같이 고정된 점체적들을 설정하여 사용하기로 한다. A 체적 II는 일정의 시간 \(t \) 에 점체적 내부를 차지하는 현이고,
시간이 \(t + dt \)로 변하는 동안에 검사 체적에서의 유출량을 \(V(t) \)로 표시하고, 유입량을 \(I \)로 표시 한다. 따라서 검사체적 내에서의 동가 기계적 에너지의 변화율을 구하기 위해 수송 정리를 이용하면 다음의 식과 같이 나타낼 수 있다.

\[
\frac{d}{dt} V(t) = V_I + V_{x|0}. \tag{23}
\]

우변의 첫 번째 항은 검사체적 내에서의 에너지의 시간변화율을 의미하며, 둘째 항은 검사면을 통과하는 \(\dot{v} \)의 유출/입을 의미한다.

 앞서 언급한 리아르노프 방법을 이용하여 제어 법칙을 구하기 위해, 식 (21)의 함수들의 시간에 대한 변화율을 구하도록 한다. 먼저 \(V_S \)의 변화율을 구하면서 다음과 같다.

\[
V_S(t) = \int_0^t \rho A (w_t + w_x)x w_{tx} + w_{xx} \, dx
+ \int_0^t \left(P_0 + \frac{EA}{2} w_x^2 \right) w_x w_{tx} \, dx
- \int_0^t \rho A w_x(w_t + w_x) \, dx + \int_0^t P_0 w_x w_{tx} \, dx
+ \int_0^t \frac{3EA}{2} w_x^2 (w_t + w_x) \, dx
+ \int_0^t \frac{EA}{2} w_x^3 \, dx
= \left(P_0 - \rho A v^2 \right) \int_0^t w_t w_x \, dx
+ \int_0^t \frac{v}{2} \left(P_0 - \rho A v^2 \right) \left[\frac{w_x^2}{b} \right] \, dx
+ \frac{EA}{2} \int_0^t \frac{w_x^2}{b} \, dx
- \frac{3EA}{8} \int_0^t \frac{w_x^4}{b} \, dx. \tag{24a}
\]

\[
\dot{V}_S(t)|_0 = v_0 \int_0^t \rho A (w_t + w_x)(w_t + w_x) \, dx
+ \int_0^t \left(P_0 + \frac{EA}{2} w_x^2 \right) w_x w_{tx} \, dx
= \frac{\rho A v^2}{2} \left[(w_t + w_x)^2 \right] \, dx
+ \frac{v_0}{2} \left[w_x^2 \right] \, dx
+ \frac{EA}{8} \left[\frac{w_x^4}{b} \right]. \tag{24b}
\]

식 (24)에 의해 \(\frac{d}{dt} V_S(t) \)는 아래와 같이 표현된다.

\[
\frac{d}{dt} V_S(t) = \left(P_0 - \rho A v^2 \right) \int_0^t w_t w_x \, dx
+ \frac{v_0}{2} \left[w_x^2 \right] \, dx
+ \frac{EA}{2} \int_0^t \frac{w_x^2}{b} \, dx
- \frac{3EA}{8} \int_0^t \frac{w_x^4}{b} \, dx.
\]

\[
V_B(t) = \rho A \beta \int_0^t w_x x w_{tx} \, dx
+ \rho A \beta \int_0^t w_x x w_{xx} \, dx
+ \frac{EA}{8} \int_0^t \frac{w_x^4}{b} \, dx
= P_0 w_x(w_t + w_x) \, dx
+ \frac{EA}{2} \int_0^t w_x^2 \, dx
+ \frac{EA}{8} \int_0^t \frac{w_x^4}{b} \, dx. \tag{25}
\]

\[
V_B(t) = \rho A \beta \int_0^t w_x x w_{tx} \, dx
+ \rho A \beta \int_0^t w_x x w_{xx} \, dx
+ \frac{EA}{8} \int_0^t \frac{w_x^4}{b} \, dx. \tag{26a}
\]

\[
v V_B(t) = \rho A \beta \int_0^t w_x x w_{tx} \, dx
+ \rho A \beta \int_0^t w_x x w_{xx} \, dx
+ \frac{EA}{8} \int_0^t \frac{w_x^4}{b} \, dx. \tag{26b}
\]

여기서 각각 다음의 부분적분 식을 이용할 수 있다.

\[
\int_0^t \left(xw_{tx} + xw_{xx} + w_x w_t \right) \, dx
= \left[xw_{tx} \right]_0^t = L w_x (L, t) w_t(L, t), \tag{28a}
\]

\[
\int_0^t x w_{tx} \, dx = \frac{L}{2} \int_0^t x w_x^2 \, dx
+ \frac{1}{2} \int_0^t w_x^2 \, dx. \tag{28b}
\]

\[
\int_0^t x w_{tx} \, dx = \frac{L}{2} \int_0^t x w_x^2 \, dx
- \frac{1}{2} \int_0^t w_x^2 \, dx. \tag{28c}
\]

또한, 운동방정식인 식 (11a)를 이용하면 다음의 등식도 성립한다.

\[
\beta \int_0^t \frac{w_x^2}{b} \, dx = \beta \int_0^t \frac{w_x^2}{b} \, dx
= \frac{\beta}{2} \int_0^t \frac{w_x^2}{b} \, dx. \tag{29}
\]

따라서 식 (28)과 식 (29)로부터 식 (27)은 다음과 같이 다시 쓸 수 있다.

\[
\frac{d}{dt} V_B(t) = \beta \rho A \Lambda w_x (L, t) w_t(L, t)
\]
\[\begin{aligned}
+ \frac{\rho A v^2}{2} \beta L \int_0^L w_x^2(L, t) - \frac{\rho A v^2}{2} \beta \int_0^L w_x^2 \, dx \\
+ \frac{\beta P_0}{2} \int_0^L w_x^2(L, t) - \frac{\beta P_0}{2} \int_0^L w_x^2 \, dx \\
+ \frac{3 \beta E A L}{8} \int_0^L w_x^3(L, t) - \frac{3 \beta E A L}{8} \int_0^L w_x^3 \, dx \\
+ \frac{\rho A P L}{2} \int_0^L w_x^2(L, t) - \frac{\rho A P L}{2} \int_0^L w_x^2 \, dx \\
+ \rho A v^2 \beta \int_0^L w_x^2 \, dx.
\end{aligned} \]
(30)

식 (22)의 시간에 대한 변화율은
\[\frac{d}{dt} W_4(t) = m \{ w_t(L, t) + (v + \beta L) w_x(L, t) \} \times \{ w_x(L, t) + (v + \beta L) w_{xt}(L, t) \} \]
(31)

이다.

우측계 제어입력 \(F_c(t) \) 와 작동기의 감쇠계수 \(d_a \) 를 다음과 같이 정의한다.
\[F_c(t) = -K w_{xt}(L, t), \quad d_a = \frac{\nu \rho A P L}{v + \beta L} = \frac{\rho A P L}{1 + \beta L / v}. \]
(32)

여기서 \(K = m(v + \beta L) \) 이고, 제어입력을 나타낸다.
따라서 식 (11a)와 식 (32)에 의해 식 (31)은 다음과 같이 표현할 수 있다.
\[\frac{d}{dt} W_4(t) = \left\{ w_t(L, t) + (v + \beta L) w_x(L, t) \right\} \times \left\{ -d_a w_t(L, t) - P_0 w_x(L, t) - \frac{E A}{2} \int_0^L w_x^2 \, dx \right\}. \]
(33)

식 (25), 식 (30)와 식 (31)에 의해서 전체 계계의 에너지 식 (21)의 시간에 대한 변화율은 다음과 같이 나타낼 수 있다.
\[\frac{d}{dt} W_{total}(t) = \frac{\beta L}{2} \left(P_0 - \rho A v^2 \right) w_x^2(L, t) - \frac{\beta E A L}{8} w_x^4(L, t) \\
- \frac{\beta P_0}{2} \int_0^L w_x^2 \, dx - \frac{\beta P_0}{2} \int_0^L w_x^2 \, dx \\
- \frac{3 \beta E A L}{8} \int_0^L w_x^4 \, dx - \left(d_a - \frac{\beta P A L}{2} \right) w_t^2(L, t) \\
+ \beta P A L v - d_a (v + \beta L) w_x(L, t) w_t(L, t). \]
(34)

식 (12)를 만족하는 \(v \) 는 \(P_0 > \rho A v^2 \) 을 만족하므로 식 (34)의 마지막 두 항을 제외하고는 모두 음이다. 따라서 다음 두 식을 만족하면 식 (34)의 모든 항은 항상 음이 된다.
\[d_a - \frac{\beta P A L}{2} > 0 \Leftrightarrow d_a > \frac{\beta P A L}{2} = 23.55, \]
(35)

\[\beta P A L v - d_a (v + \beta L) = 0 \]
\[\Leftrightarrow d_a = \frac{\beta P A L v}{v + \beta L} = \frac{\beta P A L v}{v + \beta L} = 33.643. \]
(36)

여기서 식 (35)와 식 (36)을 모두 만족하기 위해서는
\[0 < \frac{\beta L}{v} < 1 \]
(37)

을 만족해야 하고, \(\beta \) 는 또한 식 (20)를 만족해야 하므로
\[0 < \beta < \min \left\{ \frac{v}{L}, \frac{P_0}{\rho A L}, \frac{1}{L} \right\} = 0.05 \]
(38)

이다.

3. 안정성 해석

이 절에서는 제어입력 \(F_c(t) \) 와 작동기의 감쇠계수 \(d_a \) 가 적용된 길이방향으로 이동하는 비선형 현시스템 식 (11a)는 지수적으로 안정한 (exponential stability)을 보이지 않다. 리프트소프 함수법 보다 이론에 대한 변화율 식 (34)는 다음과 같이 표현할 수 있다.
\[\frac{d}{dt} W_{total}(t) = -\frac{\beta L}{2} \left(P_0 - \rho A v^2 \right) w_x^2(L, t) - \frac{\beta E A L}{8} w_x^4(L, t) \\
- \frac{\beta P_0}{2} \int_0^L w_x^2 \, dx - \frac{\beta P_0}{2} \int_0^L w_x^2 \, dx \\
- \frac{3 \beta E A L}{8} \int_0^L w_x^4 \, dx - \beta P A L \left(\frac{v}{v + \beta L} - \frac{1}{2} \right) w_t^2(L, t). \]
(39)

여기서 \(\frac{v}{v + \beta L} > \frac{1}{2} \) 이다. 그리고 식 (39)은 다음과 같이 전개된다.
\[\frac{d}{dt} W_{total}(t) = -\frac{\beta L}{2} \left(P_0 - \rho A v^2 \right) w_x^2(L, t) - \frac{\beta E A L}{8} w_x^4(L, t) \\
- \frac{\beta P_0}{2} \int_0^L w_x^2 \, dx - \frac{\beta P_0}{2} \int_0^L w_x^2 \, dx \\
- \frac{3 \beta E A L}{8} \int_0^L w_x^4 \, dx - \beta P A L \left(\frac{v}{v + \beta L} - \frac{1}{2} \right) w_t^2(L, t) \\
\leq -\frac{\beta L}{2} \left(P_0 - \rho A v^2 \right) w_x^2(L, t) - \frac{\beta E A L}{8} w_x^4(L, t) \]
\[-\min \left[\frac{\beta P_0}{2}, \frac{\beta (P_0 - \rho Av^2)}{4v^2} \right] \int_0^t w_x^2 dx + \int_0^t (v v_x)^2 dx \]
\[-\frac{3BEA}{8} \int_0^t w_x^4 dx - \beta P_0 L \left(\frac{v}{(v + \beta L)} - \frac{1}{2} \right) w_x^2 (L, t) \]
\[-\frac{\beta (P_0 - \rho Av^2)}{4} \int_0^t w_x^2 dx \]. \quad (40)

이기피 부등식
\[-\int_0^t w_x^2 dx - \int_0^t (v v_x)^2 dx \leq -\frac{1}{2} \int_0^t (w_t + v w_x)^2 dx \]
을 이용하면 식 (40)는 다음과 같이 전개된다.
\[
\frac{d}{dt} V_{total} (t) \leq -\frac{BL}{2} \left(P_0 - \rho Av^2 \right) w_x^2 (L, t) - \frac{BEA}{8} w_x^4 (L, t) \]
\[-\min \left[\frac{\beta P_0}{2}, \frac{\beta (P_0 - \rho Av^2)}{4v^2} \right] \int_0^t (w_t + v w_x)^2 dx \]
\[-\frac{3BEA}{8} \int_0^t w_x^4 dx - \beta P_0 L \left(\frac{v}{(v + \beta L)} - \frac{1}{2} \right) w_x^2 (L, t) \]
\[-\frac{\beta (P_0 - \rho Av^2)}{4} \int_0^t w_x^2 dx \]
\[-\min \left[3\beta, \frac{\beta (P_0 - \rho Av^2)}{2P_0}, \frac{\beta (P_0 - \rho Av^2)}{4\rho Av^2} \right] \]
\[\times \left[\frac{P_0}{2} \int_0^t w_x^2 dx + \frac{EA}{8} \int_0^t w_x^4 dx + \frac{\rho A}{2} \int_0^t (w_t + v w_x)^2 dx \right] \]
\[-\min \left[\frac{BL (P_0 - \rho Av^2)}{2m(v + \beta L)^2}, \frac{\beta P_0 L \left(\frac{v}{(v + \beta L)} - \frac{1}{2} \right)}{m} \right] V_A (t) \]
\[-\min \left[3\beta, \frac{\beta (P_0 - \rho Av^2)}{2P_0}, \frac{\beta (P_0 - \rho Av^2)}{4\rho Av^2} \right] \]
\[\frac{BL (P_0 - \rho Av^2)}{2m(v + \beta L)^2}, \frac{\beta P_0 L \left(\frac{v}{(v + \beta L)} - \frac{1}{2} \right)}{m} \]
\[
\times \left[\frac{P_0}{2} \int_0^t w_x^2 dx + \frac{EA}{8} \int_0^t w_x^4 dx + \frac{\rho A}{2} \int_0^t (w_t + v w_x)^2 dx \right] \]
\[-\min \left[\frac{BL (P_0 - \rho Av^2)}{2m(v + \beta L)^2}, \frac{\beta P_0 L \left(\frac{v}{(v + \beta L)} - \frac{1}{2} \right)}{m} \right] V_A (t) \]
\[-\min \left[3\beta, \frac{\beta (P_0 - \rho Av^2)}{2P_0}, \frac{\beta (P_0 - \rho Av^2)}{4\rho Av^2} \right] \]
\[\frac{BL (P_0 - \rho Av^2)}{2m(v + \beta L)^2}, \frac{\beta P_0 L \left(\frac{v}{(v + \beta L)} - \frac{1}{2} \right)}{m} \]
\[\times \left(\frac{\beta}{2} + \frac{\beta (P_0 - \rho Av^2)}{4v^2} \right) \left[\int_0^t w_x^2 dx + \int_0^t (v v_x)^2 dx \right] \]
\[\leq -\lambda V(t). \quad (42)\]

식 (42)는 다음과 의미한다.
\[
V_{total} (t) \leq V_0 e^{-\lambda t}
\]
여기서 \(V_0 = V(0) \)이고
\[
\lambda = \min \left[\frac{3\beta, \frac{\beta (P_0 - \rho Av^2)}{2P_0}, \frac{\beta (P_0 - \rho Av^2)}{4\rho Av^2}}{2m(v + \beta L)^2}, \frac{\beta P_0 L \left(\frac{v}{(v + \beta L)} - \frac{1}{2} \right)}{m} \right] > 0
\]
이다. 따라서 시스템의 전체 기계적 에너지 식 (21)에서 표현된 시스템의 모든 상태 변수들은 시간이 지남에 따라 지수적으로 영으로 수렴함을 알 수 있다.

4. 우측 경계제어 범위의 적용

식 (32)에서 제어력은 적용이 가능하지만, 작동 기의 감쇠계수는 범위가 아닌 값으로 설정되었기 때문에 실제 적용에는 제한이 따른다. 따라서 이번 절에서는 제어법적 적용하는 방법에 대해서 설명한다.

식 (32)에서 설계된 감쇠계수는 다음과 같다.
\[
d_a = \frac{vpd \beta L}{v + \beta L} \quad (43)
\]
여기서 \(\beta \)는 식 (38)을 만족해야 한다. 식 (43)은 \(\beta > 0 \)인 구역에서 증가함수(increasing function)이므로 \(\beta \)가 식 (38)의 범위를 가질 때 감쇠계수 \(d_a \)의 범위는 다음과 같다.
\[
0 < d_a = \frac{Mp Av}{v + \beta L} \quad (44)
\]
여기서 \(M = \min \left[\frac{v}{L}, \frac{P_0}{\rho Av^2} \right] \)이다. 식 (44)의

우측정은 모두 알고 있는 값들이다. 따라서 감쇠계수의 범위는 식 (44)의 범위를 갖도록 설계를 해야 하므로 감쇠의 값이 적절하면 \(\beta \)는 식 (38)의 범위에서 정할 수 있으므로 제어기의 개인값 \(K \)가 정해진다. 식 (32)에서 각 변화율 \(w_x (L, t) \)는 시간 간격마다 측정된 \(w_x (L, t) \)의 값을 후방차분(backwards differencing)을 함으로써 \(w_x (L, t) \)의 값을 계산해 낼다.

5. 시뮬레이션

본 절에서는 이동하는 현의 우측경계제어를
Fig. 4 The transverse displacement with control gain \(K = 42\), and damping coefficient \(d_a = 100\), \(w(L/2, t) \) where \(L = 20m\).

Fig. 5 The transverse displacement with control gain \(K = 42\), and damping coefficient \(d_a = 100\), \(w(L, t) \) where \(L = 20m\).

유한차분법을 이용한 시뮬레이션을 수행하여, 경계제어 방식의 타당성을 검토하고자 한다. 중앙-후방차분법(central and backward difference approximations)을 사용하여 운동방정식을 아래와 같은 유한차분식으로 나타낼 수 있다.

\[
\begin{align*}
\dot{w}_i &= \frac{w_{i+1} - 2w_i + w_{i-1}}{\Delta t^2}, \\
\ddot{w}_i &= \frac{3w_{i+1} - 4w_{i+1} + w_{i-1}}{\Delta t^2}, \\
\dddot{w}_i &= \frac{w_{i+1} - 2w_{i+1} + w_{i-1}}{\Delta t^2}, \\
\dddot{w}_d &= \frac{3w_{i+1} - 4w_{i+1} + w_{i-1}}{2\Delta x \Delta t}, \\
\dddot{w}_d &= \frac{w_{i+1} - 2w_{i+1} + w_{i-1}}{\Delta t^2}.
\end{align*}
\]

여기서 \(n \) 은 시간스텝(index of time)이고, \(i \) 는 갱자점(index of spatial variable, \(x \))을 나타낸다. \(N \)개의 갱자로 나눈 모델에 대한 유한차 분식을 사용한다. 운동방정식 식 (11a)에 식 (45)의 중앙차분법을 사용하여 정리하면 다음과 같다.

\[
[b + c_i]w_{i+1} + (a - 2c_i)w_i + (c_i - b)w_{i-1}]^{n+1}
= 2aw_i^n + [bw_{i+1} - aw_i - bw_{i-1}]^{n+1}.
\]

여기서

\[
\begin{align*}
a &= \frac{\rho A}{\Delta t^2}, \\
b &= \frac{2\rho A v}{4\Delta x \Delta t}.
\end{align*}
\]
\[c_i = \frac{\left(P_0 - \rho A v^2 + \frac{3E_4 w^2}{2w_{\infty}} \right)}{\Delta x^2}, \] (47c)

이다. 또한 \(c_i \)에서 \(w_{\infty}^2 \)는 각 격자에서 이전의 시간에서 계산하여 경신해주도록 해야만 한다. 실제로는 \(w_{\infty}^2 \) 함이 1시간 스텝단위의 오차가 발생하지만 이는 시간스텝을 작게 해주므로 오차를 줄일 수 있다. 식 (47)을 바탕으로 경계 내에서 격자점의 위치를 계산할 수 있다.

우측계에서 중앙차분법을 사용하게 되면 격자 점이 \(N \)을 넘어서기 위해서 여기서는 후방차분법을 사용한다.

\[
\begin{bmatrix}
 a-2c_2 & c_2+b & \cdots & 0 \\
 c_2-b & a-2c_3 & \cdots & 0 \\
 \vdots & \vdots & \ddots & \vdots \\
 0 & \cdots & c_{N-1}-b & a-2c_{N-1} & c_{N-1}+b \\
 0 & c_N & b+4c_N & -4b-5c_N & a+3b+2c_N \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
 w_2 \\
w_3 \\
\vdots \\
w_{N-1} \\
w_N \\
\end{bmatrix} =
\begin{bmatrix}
 2a & 0 & \cdots & 0 \\
 0 & 2a & \cdots & 0 \\
 \vdots & \vdots & \ddots & \vdots \\
 0 & \cdots & 2a & 0 \\
 0 & 0 & \cdots & 2a \\
\end{bmatrix}
\begin{bmatrix}
 w_2 \\
w_3 \\
\vdots \\
w_{N-1} \\
w_N \\
\end{bmatrix} \] (48)

\[w(x,0) = 2\sin(3\pi)cm, \quad w(x,0) = 0 \text{ m/s} \]

을 주었다.

시뮬레이션 결과 우측계계의 변화율 제어를 하거나 하지 않거나 진행이 점근적으로 감소함을 알 수 있으나, 제어를 하지 않고 단순히 감쇠하기만 있는 경우에 비해 동작에 의한 결과가 아주 빠른 시간 안에 진동이 소실됨을 보이고 있다. Fig. 4, 5는 \(x = L/2 \), \(L \) 일 때 시간에 따른 횡방향 변위의 변화를 제어하는 경우와 그렇지 아니한 경우를 비교하여 보여주고 있으며, 본 논문에서 설계한 제어기는 3초안에 횡방향 진동을 소멸시켰음을 보여주고 있다. Fig. 6은 \(x = L \)에서 작동기의 경계에서의 제어 입력의 변화를 나타낸다. Fig. 7는 시간에 따른 시스템의 에너지의 변화율을 나타내었으며 시간이 지남에 따라 에너지는 지속적으로 감소함을 알 수 있다.

6. 결론

긴이방향으로 이동하는 현의 진동을 줄이기 위해 현의 횡진동을 해석하고, 효과적으로 제어할 수 있는 동작계체의 개발과 이를 실제로 구현할 수 있는 방법을 연구하였다.

지금까지의 연구 논문들은 대부분 작동기의 동역학을 고려하지 않았거나 단순히 선형 현방정식으로 간주하고 연구가 이루어졌으나, 본 논문에서는 이동하는 현과 작동기의 동역학을 비선형 편미분방정식 (nonlinear partial differential equation)으로 해석하고, 횡진동을 제어하기 위해 라이프니츠 노드 방법에 의한 시변 우측계계가 시스템을 계산하였다. 이 경계제어기로 시스템 전체 에너지를 지속적으로 소산시킬 수 있음을 증명하였다.

그리고 시뮬레이션 결과는 본 논문에서 설계한 제어방식의 효율성을 증명한다.

후기

본 연구는 과학기술부의 국가기초연구실사업 (과제번호: MI-0302-00-0039-03-J00-00-023-10)의 지원에 의하여 수행되었으며, 이에 관계자 여러분께 감사 드립니다.

참고문헌

