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Note on Behavior of a Coupled
Nonautonomous Ordinary Differential Equation
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1. Introduction

It is well known that for a linear nonautonomous
system such that x(¢)=A()x(t), x(0)=x; where x
(-)eR”, t=0 , the eigenvalue analvsis is not sufficient
for determining the stabilitv [1][8]. i.e. the fact that the
real parts of all the eigenvalues of A(#) at every time
instant are bounded above by -¢6. 48>0, does not imply
the stability of the time-varying system. A pioneering
example of Markus and Yamabe [10] (see also (8], p.184,
Example 109) actually shows that the solution grows
without bound as ¢ —o even if the spectrums of A(#)
remain at fixed locations in the open left-half plane for
all ¢t = 0. Several recent results for the exponential
stability of linear systems including infinite dimensional
systems can be found in [2]{3].

For a nonlinear system two approaches are usually
taken in determining stability. First one is the
Lyapunov’s direct method which analyzes qualitatively
the behavior of dynamic system by utilizing the
Lyapunov function (resembling total energy in some
sense). And second one is the Lyapunov’'s indirect
method which enables one to draw conclusions about a
nonlinear system by studving the behavior of a linear
system obtained through linearization. Furthermore if the
given system is nonautonomous, the assertion such as
asymptotic stabilitv would be more demanding since it
requires that the derivative of Lyapunov
— W), is (locally) positive definite. However for special
cases like autonomous or periodic system the invariance
principle (LaSalle’s theorem) is known to hold [8, p.126],
therefore it is possible to conclude asymptotic stability
even in cases where — V()
definite.

In this note the asymptotic convergence to zero of a
part of the solutions of a coupled nonautonomous system
isinvestigated. The coupled dynamic system is assumed to
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permit a Lyvapunov function and the time derivative of
the Lyapunov function is negative semidefinite involving
only part of the state. Therefore uniform stability can
only be concluded from the Lyvapunov’s direct method [8,
p.148, Theorem 9]. Note also that the invariance principle
does not hold for general nonautonomous system. In this
note however the asymptotic convergence to zero of the
partiai state of the coupled svstem will be shown with
additional assumptions, which are not restrictive, which
appear in the derivative of the Lyapunov function. The
contribution of the note is to show additionally the
asymptotic convergence to zero of first part of the state
vector of coupled system (1)-(2) below, otherwise only
uniform stability could have been concluded by the
Lyapunov method. An illustrating example for the
obtained results will be given.

Definition: z(# is said to be a solution of the
differential equation

z= At2, 2(r) = z

, ¢t +al —R", f:D=IxB-R"
B= {z2eR™ 12—z <8}, if (t,2(P)eD for tel and
2(t) satisfies the given differential equation for all ¢t 1.

where 2z:/I=[¢ where

[I. Main Results
Theorem: Consider a coupled nonautonomous system as

Atz y), H0) = x4 (1)
g(t,x,y), X0 = y (2)

where xeR", yeR™. The following assumptions are

I

X

y

made.

(i) At0,00=0. g(£0,0)=0.f and g are piecewise
continuous in ¢ and continuous in x and y.
Furthermore f and g are locally Lipschitz in x and y.

(i) TAtxNl<eMlxl +c, V=20
where ¢ is a positive constant and «:R™—R™ is bounded
for finite values of y.

(iii) There exists a functional V:R™xR"*™-R* such
that

Bzl 2kl vl 2Vt x, )<kl x| *+h A 12 (3

where k,, k,, ky, k, are positive constants.



|
(iv) Wtz |
I(l)—(Z)

<-8(1xl) 4)

where A(-) is a continuous monotone increasing
function with 8(0)=0 . Then x({) — 0 as ¢ —o.

Remark: Note that the state vector in the above
theorem consists of two components (x, y). Condition
(1) is basically for the local existance and uniqueness.
Condition (iii) implies that W(# is a positive definite
and decrescent function. The right hand side of equation
(4) involves only a part of state vector x, hence the
— W is (locally)
positive definite function. Therefore the asymptotic
stability can not be concluded. Lastly condition (ii) is
additionally assumed in which y is treated as a
parameter in f.

Proof : Defining z=[x",y"17 with 20)=[ x7(0),»”
(M1 7. (1)-(2) can be rewritten as

2=F(t,z2) , z(0)=[ f;g .
U

equation (4) does not imply that

Since F is piecewise continuous in ¢ and locally Lipschitz
inz due to the condition (1), by the standard local
existence theorem (see [1]) there exists a unique solution
defined on an interval Jr=[ 0,7) for some T>0. Also
the existence of a Lyapunov function V which is positive
definite and decrescent and its derivative along (1)-(2)
being <0 implies that a set E,= {zV<},7eR7} is
positive invarient, ie. lz(HI<y, V=0, where 7 is a
constant not depending on T .

Let the unique solution of (1) at time ¢ starting with

initial state x(s) at initial ime s be of the form
AD=x(9+ [ Az.x(0). o DNdr @)

and denote the solution as () =x(t.x(s),s) . Then we
can define a two parameter family of map S(¢,s) on R”
as

S(t, $)x(s) = x(t, x(5),s5), 0<s<t oo . (6)
Then. by the uniqueness and continuous dependence of
the solutions x(f)=x(f,x(s),s) on the triple (¢ x(s),s),
the mapping S(¢,s) on R” becomes an evolution process
such that [9, p.12]

(1)8(-,9x(s):R™ —R" is continuous (right
continuous at t=s )
(1) S(¢, - )+ )R~
(iii} S(s, )x(s) = x(s)
(iv) S(t, $)x(s) = S(¢t, NS r, )x(s). for all x(s)eR”
and 0<s<r<#(oo,

We further note that the condition (4) in the theorem
implies that

"—R" is continuous

f

J B S0 e = [T a0 ar

< - l[:’ V(t, x, y)dt (D

=V(0)— V() <0

HNoi- KiSs - ANAEiEst =2 M1 H M1 Z 1959

where x(8) = S(¢,0)x,.

Indeed, the conclusion of the theorem can be proven
by contradiction. Suppose S(¢,0)x, ~0 an #>oo, then
there exists an €>0 and an infinite sequence #—o° such

that
II'S( t,'.O)xo Il =€
Now however small the € is, there exist constants
M>0 and ¢; >0 such that

‘M2a=sup a(A§),

yeE,
and
£ _C
o M250>0. (8)
Note that if ¢=0 then (8) i1s always satisfied.

Therefore taking norms on both sides of (3)
Fx(H1 < x(s) ! +fsl(a(y( N x( )il +de
<KD + [ (st (AN x(0) | +0)de
<9+ [ MO (2)) +E)dv

Applying the Bellman-Gronwall's inequality yields
x() 1 <(hx(s) ] +fl-)em'_5) 9
for all t=s=0.

Now without loss of generality we can assume that
:j+1“t,‘>1/.M If we set d,=[ tj—'%. [,'] , then
m(4 )= LM >0 (m=Lebesgue measure) and the
intervals 4; do not overlap. For t €4;

e < | S(¢,00x 0
=1 S(¢, DS(4,0)x. |
= || S(¢;, Dx(2) |

<(ihx(HY +WC4.)€M/,U

t £
(Dl +95)e
where the second inequality above is obtained from (9).
Therefore we have
£ _C
i«r( t)‘ = M M
= &y

for all red; =[ t,—1/M, t] . Hence
[ a1 S 0 1t = 2 [ 1S 0 1 e
=5 [ sepa

=Be) T 4)

=00

contradicting (7). Thus we must have x(§) — 0 as

t — o, n
Example: Consider a model reference adaptive control

of a scalar differential equation. This example is well

documented in adaptive control literature, for example [5,

p.99] or {7, p.99]. Let the plant and reference model be

x,(0)= ax,() +hk,u(H)
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ol D= @ (D) +hp (D)
where subscripts p and m denote plant and model,
respectively, a, and k, are unknowm parameters of the
plant, «(#) is the control input, ¢,<0, 7# is a bounded
reference inpuf. The control objective is to design a
bounded control input «(¢#) which enables the plant
output x,# to follow the signal x,.(# generated from

the reference model. The whole closed loop adaptive
system results in the following equations (see the
references cited above) as

K ={an+y (D) + kx  (Dy (D +k,(Dys(8)  (9)

()=~ sgnlke)x(Hx() +x,(D) (10

yo(§) == sgn(k)x()r(1) - an
where x(H=x,(H)—x,(8), y,( and y,(¢) are adjustable
parameters in the controller, and ##H and (9 are
treated to be bounded exogenous signals. Obtaining (10)
and, (11), a Lyapunov function V:R*—R™ as

Vix 1,39 = 5 P+ RICn®+ 322 (12)

has been considered. The differentiation of V with
respect to ¢ along the equations (9)-(11) yields

iz, 3,5) = a,x (<0 . (13)
Note that equations (9), (10)-(11), (12) and (13)
correspond to the equations (1), (2), (3) and (4),
respectively, in the theorem and satisfy all the
assumptions. Therefore by applying the theorem

grl}x( #)=0 can be shown.

Remark: The convergence of x($ to 0 as ¢— < in
adaptive control literature (see [5, p.99] or [7, p.99)) has
been shown by applying Barbalat's Lemma [11, p.211].

M. Conclusions
In this note asymptotic convergence to zero of the
partial state of a coupled nonautonomous nonlinear
system with uniform stability has been shown. Con-
sidering that the invanance principle does not hold for
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general nonautonomous system and that it is sometimes
difficult to obtain — W(#) to be positive definite, the
obtained results could be wuseful in analysis of
nonautonomous system since it can .assert at least partial
convergence of the state.
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