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Abstract: This paper addresses the design of an observer-based control system for the 

one-sided Lipschitz (OSL) nonlinear systems under input saturation. A nonlinear matrix 

inequality-based control law for the nonlinear systems under input saturation and 

unavailable states is derived to ensure convergence of the state vector to the origin. A 

decoupling approach is provided for attaining simple design constraints for computing 

the controller and observer gains through a cone complementary linearization algorithm. 

In contrast to the conventional decoupling methods, the proposed approach considers 

OSL nonlinearity and saturation function to demonstrate both the necessity and 

sufficiency of the decoupled design constraints for the nonlinear matrix inequality-based 

main condition. To the best of our knowledge, observer-based stabilization of OSL 

systems under input saturation has been addressed for the first time. Novel results for 

the observer-based control of input-constrained Lipschitz nonlinear systems are 

provided as specific scenarios of the proposed results. Simulation results of the 

proposed control scheme to a flexible-joint robot and a complex nonlinear circuit are 

presented.    

Keywords: Observer-based control; input saturation; one-sided Lipschitz nonlinearity; 

decoupling technique; cone complementary linearization 
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1. Introduction 

Almost all physical systems are subject to the input saturation nonlinearity, which 

degrades the closed-loop performance, causes lag in the output, and induces instability 

in the closed-loop response owing to the so-called windup phenomenon [1]-[7]. Careful 

attentions are required for the control of sensitive, expensive, and critical systems for 

attaining safety from accidents, for preservation from hazards, and to avoid financial 

losses. To attain the desired control performance under input saturation, many control 

methods such as anti-windup compensators [7]-[10] and feedback controllers with 

windup protection ([4]-[6], [10]-[14]), have been exercised in the existing literature.  

Stabilization of linear or nonlinear systems under input saturation by taking 

feedback of the state vector and by employing the windup protection controllers have 

been studied in the literature. A state feedback control approach for the stabilization of 

linear systems under nested input saturation by employing a local generalized sector 

condition has been provided in [6]. Two interesting robust adaptive computationally 

complex tracking control approaches, based on back-stepping, are recently developed 

([4], [11]). An adaptive control law by relaxing the nonsingular input coefficient matrix 

was also studied for the nonlinear systems, as seen in the work [12], for adaptive neural 

controller synthesis. In [13], local robust synchronization and anti-synchronization 

methodologies for the Lipschitz nonlinear systems with saturating actuators that require 

feedback of the full state vector have been worked out. In [14], a simple state feedback 

stabilization methodology for the discrete-time linear systems under input delay and 

saturation is proposed by application of a parametric Lyapunov function. Local state 

feedback stabilization approaches, providing an estimate of the region of stability, for 

linear systems under input and state delays have been explored in [15] and [16] using a 

                  



 

 

 

 

3 

Lyapunov-Krasovskii functional. Regional state feedback stabilization schemes for 

linear systems under quantization effects and bilinear terms have been focused in [17] 

and [18], respectively.  

A main drawback of the stabilization approaches mentioned above is the 

requirement of the exact states for feedback, which cannot be measurable in practical 

scenarios due to the restricted number of sensors. When these states are not available, 

observer-based feedback controllers are employed to simultaneously estimate and 

control the states of linear or nonlinear systems ([19]-[25]). To compute the gains of the 

controller and observer, the main observer-based controller design conditions can be 

decoupled into convex constraints that can be easily solved using numerical algorithms. 

The goal of a decoupling technique is to develop the less conservative design conditions 

that provide at least sufficient and, preferably, both sufficient and necessary conditions 

for the main constraints. However, derivation of an observer-based feedback control law 

for nonlinear systems facing the input constraint is a non-trivial research problem owing 

to the apparent complexities like saturation nonlinearity, state nonlinearity, 

unavailability of exact states, simultaneous computation of the observer and controller 

gains, and the formulation of convex design constraints.  

 Several nonlinear and adaptive nonlinear control approaches have been developed 

for the control of nonlinear systems under input saturation. The work of [26] presented a 

feedback linearization control scheme with dynamic compensation to control the 

linearizable nonlinear systems. In the approach [11], an adaptive control scheme to deal 

with the input-constrained nonlinear systems has been developed. These global 

approaches lack in the attainment of a performance objective, because it is easy to attain 

the specific performance goals for a local region via a regional control approach. 
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Recently, a dynamic nonlinear (computationally complex) compensation approach, 

utilizing the system states for feedback, is provided for global or local stability in [10]. 

In practical scenarios, these methods have limited applicability due to consideration of 

restrictive classes of nonlinear systems and owing to the computational complexity for 

their implementation. 

Control of linear and nonlinear systems has several industrial applications to deal 

with the saturation effects [27]. As far as biomedical application is concerned, a recent 

study demonstrates that the controller design for a prosthetic hand for anthropomorphic 

coordination should be considered by accounting the saturation nonlinearity bound [28]. 

Flexible engineering structures should be attained by accounting the actuator saturation 

for achieving an intelligent control scheme [29]. Boundary adaptive controls for a 

complicated scenario of a flexible riser using the adaptive approach are considered in 

[30, 31], which works have their roots in the practical study [32]. Control of robotic 

manipulators and riser vessel by modeling the external perturbations and disturbances 

have been performed in the exceptional works [33, 34]. Actuator constraints are critical 

issues to develop control strategies for sensitive applications [35, 36] in rigid space 

crafts and surface vessels. Control of an induction motor under nonlinearities, 

developed in [37] to deal with stochastic parameters, suggests the incorporation of an 

actuator limits for an efficient control dilemma. Observers and state estimators are more 

likely to be involved for uncertain systems when states of a plant are not available as 

seen in [38, 39] owing to practical limits of measurement systems. All these recent 

control schemes and applications recommended the consideration of the input constraint 

and observers for attaining a high quality and risk-free operation of industrial systems. 
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It has been observed in several recent studies that one-sided Lipschitz (OSL) 

systems represent a generalized and less conservative class of nonlinear systems (please 

see [40]-[44] and the references therein). For the classical Lipschitz functions, the inner 

product between (i) the difference of a nonlinearity for two points and (ii) the difference 

in same points can be characterized by a two-sided inequality, leading to both lower and 

upper bounds. However, in one-sided Lipschitz function case, the above-said inner 

product is bounded by an upper bound only, leading to a one-sided inequality. This one-

sided Lipschitz condition is therefore more general than the classical Lipschitz property. 

This generalized property leads to a less conservative controller or observer design 

along with inherent difficulties in dealing with the corresponding generalized models. 

For instance, we often need to incorporate the quadratic inner-boundedness condition in 

a design paradigm for attaining feasible results. Although this property introduces 

conservatism in the design method in terms of reduced applicability domain; however, 

the results are still general than the classical techniques for Lipschitz models. 

Several observer-based control approaches are developed for the OSL nonlinear 

plants. For instance, the work of [25] highlights the observer-based controller scheme 

for the OSL nonlinear systems. Further, an observer-based robust stabilization of 

uncertain nonlinear systems in the presence of parametric uncertainties has been 

focused in [40] by considering complex matrix inequality procedures. Moreover, the 

idea of a robust control system design for the general class has been extended for 

discrete-time systems to cope with digital technologies [41]. The ideas have been 

extended for the control of multiple nonlinear agents [42, 43] and for iterative learning 

control [44] to deal with the complex environment and to attain intelligent control 

applications. However, all of these studies in [40-44] do not incorporate the input 
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saturation, which can lead to performance degradation or even instability of the closed-

loop response for a practical system. The effect of input saturation for the OSL 

nonlinear systems has been rarely addressed in the literature. The recent approach of 

[46] considers anti-windup design for controlling the OSL nonlinear systems; however, 

the application of the method is limited due to the requirement of the full state vector of 

the plant. Therefore, further work is needed to device observer-based control strategies, 

not requiring the exact state of the system, for the stabilization of input-saturated OSL 

nonlinear systems. 

This paper addresses an observer-based controller design, based on a Luenberger-

type nonlinear observer and feedback of the estimated state vector, for the OSL 

nonlinear systems under input saturation constraint. A nonlinear matrix inequality-based 

condition for finding the controller and observer gains, simultaneously, is derived by 

application of inequality tools, saturation sector condition, OSL condition, and quadratic 

inner-boundedness approach. Further, a decoupling method is provided to decouple the 

main nonlinear matrix inequality-based design condition into simple and numerically 

tractable design constraints for straightforward computation of the observer-based 

controller gains. It is demonstrated that the proposed decoupled constraints are 

necessary and sufficient for obtaining a solution for the main design approach, which 

reflects the less conservativeness of the proposed approach.  

Compared with the existing decoupling methodologies, the proposed decoupling 

approach can be applied to a wide range of nonlinear systems under input saturation and 

state nonlinearity. This paper considers two types of nonlinearities, namely, the 

nonlinearity in the system dynamics and the actuator saturation nonlinearity, to design 

an observer-based control strategy in contrast to the conventional techniques [40-44]. In 
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contrast to [46], the requirement of full state vector for the generalized nonlinear 

systems has been overcome in our study. It is notable that a novel observer-based 

control scheme by considering the input saturation for the Lipschitz nonlinear systems is 

derived as a specific case of the proposed method. Numerical simulation results for the 

control of a robotic arm and a complex circuit are pursued to demonstrate the 

application of the proposed control methodology. The main contributions of the present 

study are as follows:  

i)    To the best of authors’ knowledge, an observer-based stabilization method, 

not requiring the full state information, for the input-saturated one-sided 

Lipschitz nonlinear systems has been provided for the first time.  Further, a 

methodology for the straightforward computation of the observer-based 

control parameters is attained by using the cone complementary 

linearization approach and knowledge of sign of OSL and quadratic inner-

boundedness condition parameters. 

ii)    A guaranteed region of stability for the control of input-saturated nonlinear 

systems in terms of states and state estimation error by utilizing the local 

sector condition and Lyapunov redesign is ensured.  

iii)    Simple design conditions are also formulated by a novel decoupling scheme 

to ensure the necessity and sufficiency of the decoupled conditions for the 

primary design approach.  

Standard notation is used throughout this paper. Given a matrix Z , ( )mZ  represents 

the mth row of Z . Euclidian norm of a vector x  is represented by x  and 

1 2{ , ,..., }mdiag s s s  stands for a diagonal matrix with entry 
is  at ith-diagonal element. For 

an input signal mRu , the input saturation nonlinearity is defined as 
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 ( ) ( ) ( ) ( ) ( )( ) sgn( )min ,i i i i iu u u u  , where 0)( iu  refers to the ith bound on the saturation 

function.  The notation ,a b  has been employed to denote the dot product of vectors a  

and b . 

 

2.  System description 

 Consider a nonlinear system, given by 

  
( ) ( , ) ( ),

( ) ( ),

x Ax t f t x B u

y t Cx t

  


 (1) 

where nx , py  and mu  are the state, output and input vectors, respectively, 

( , ) nf t x   represents the nonlinearity associated with the state vector, and A , B  and 

C  are matrices representing the linear components of the system. The function ( )u  is 

used to represent the input saturation nonlinearity. 

Assumption 1: The function ( , )f t x  with OSL constant   satisfies ( ,0) 0f t   and 

     
2

, , ,f t x f t x x x x x    . (2) 

Assumption 2:  For  ,f t x , the following condition for ,    and , nx x   is 

valid: 

 
         

   
2

, , , ,

           , , , .

T

f t x f t x f t x f t x

x x x x f t x f t x 

 

    
 (3) 

 It is worth mentioning that the conditions in (2)-(3) are a generalization of the 

conventional Lipschitz condition. It is also notable that the OSL constant   has smaller 

or at most equal value to the Lipschitz constant, which fact can be used for a less 

conservative control system design. Moreover,    can have any positive, zero or even 
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negative value, while the Lipschitz constant is always positive. The proposed controller 

takes the form as 

  ˆ( ) ( )u t Fx t , (4) 

where m nF   and ˆ( ) nx t   represent the controller gain matrix and the estimated 

state vector. Using (1) and (4) and, further, substituting ( ) ( )u u u   , we obtain 

  
( ) ( , ) ( ),

( ) (

)

.

(

)

ˆFx
dx

Ax t f t x B B u
dt

y t Cx

t

t

   



 (5) 

For state vector estimation, we consider the following observer:  

  
 

ˆ
ˆ ˆ ˆ( ) ( , ) ( ) ( ) ( ) ,

ˆ ˆ( ) ( ),

dx
Ax t f t x B u L y t y t

dt

y t Cx t

    



 (6) 

where n pL   is the observer gain. The proposed observer in (6) provides an 

estimated state ˆ( )x t , which will be employed through the feedback controller (4). Let us 

define the state estimation error as ˆe x x  . Using (5), (6), ( ) ( )u u u   , and 

ˆe x x  , an augmented system is obtained as  

    ˆ( ) ( ) ( , , ) ( )z t A G z t g t x x B u    , (7) 

  ( ) ( ) ( )
T

T Tz t x t e t    ,  (8) 

   ˆ ˆ( , , ) ( , ) ( , ) ( , )
T

TTg t x x f t x f t x f t x 
 

, (9) 

  
0

0
A

A

A 
  
 

, 
0

BF BF

LC
G

 
  

 
, 

0

B
B

 
  
 

. (10)  

 For a diagonal matrix W, the local sector condition  

  
 ( ) ( ) 0,  0T u W w u W   

 
(11)

  

remains valid, if the region 
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    ( ) ;  mu w u u w u      
  

(12)
 

exists for an auxiliary defined vector 
mw , where u  is a vector containing the 

saturation bounds (see [6] and [7]).  It can be observed that the overall closed-loop 

system dynamics has been transformed into (7), which contains the dead-zone 

nonlinearity ( )u , rather than the original input constraint ( )u . This variation can be 

interesting due to two reasons: First, the resultant matrix  A G  has term A BF , 

which can be used to ensure stability of the closed-loop system. Second, it is more 

convenient to apply the sector condition (11), which can be more complicated if the 

original saturation function is employed for the design in the present scenario. 

 The present study explores simultaneous controller (4) and observer (6) design for 

the stabilization of the nonlinear system (1) under the input saturation constraint by 

considering the conditions in Assumptions 1-2 and by incorporating the saturation 

properties of (11)-(12). 

 

3. Main results 

 In this section, we develop conditions for determining the observer and controller 

gains L  and F  for stabilization of (1) under input saturation. A nonlinear matrix 

inequality-based design condition for observer (6) and controller (4) is derived herein.  

 Theorem 1: Consider the input-constrained nonlinear system (1) satisfying 

Assumptions 1-2. There exist a controller (4) and an observer (6) ensuring the 

asymptotic convergence of the augmented system’s state vector ( )z t  to the origin for 

initial condition validating (0) (0) 1Tz Pz  , if for matrices 2 2n nP  , m nF   , 

                  



 

 

 

 

11 

n pL   and m nJ  , a diagonal matrix
 

n nW  , and scalars 
1 2, ,  3  and 4 , the 

matrix inequalities  

  0,TP P  0,W   1 0,  2 0, 
3 0,  4 0,    (13)  

  
( ) ( )

2

( )

0
*  

T T T T

i i

i

P F J

u

  
 

  

, 1,..., ,i m   (14) 

  

1 1 2

2* 0 0,

* * 2

T TX P PB J W

X

W

     
 

 
  

 

(15)

 
are satisfied, where 

   

 

 

   

   

1

2 2 4

1 1 3 2 4

2 1 3 2 4

,

,

, ,

, , ,

1 1
, , .

2 2

T T

I I

X A P PA G P PG

X diag I I

diag I I diag I I

diag I I diag I I



 

    

    

 

   

 

 

  

 
(16) 

 Proof: Consider a Lyapunov function as 

  ( , ) ( ) ( )TV t z z t Pz t . (17) 

The time-derivative of (17) along (7) becomes 

  
  ˆ( , ) ( , , )

ˆ( , , ) ( ) ( ) .

T T T T

T T T T

V t z z A P PA G P PG z z Pg t x x

g t x x Pz z PB u u B Pz 

    

  
 (18) 

From Assumption 1, under  ,0 0f t  , we have 

   ,T Tx f t x x x .  

By taking ˆx x  in (2), we obtain 

            ˆ ˆ ˆ ˆ, ,
T T

x x f t x f t x x x x x     .  
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Multiplying the above conditions with positive scalars 1  and 3 , combining them, 

applying ˆe x x  , and using (8)-(9), we have  

             1 3 1 3
ˆ, , , , 0.T Tz t diag I I z t z t diag I I g t x x      (19)  

Taking 0x   in Assumption 2 and multiplying the resultant with scalar 2 0   lead to 

       2 2 2, , , .T T Tf t x f t x x x x f t x        

For the case when ˆx x  (under 
4 0  ), the inequality (3) implies   

 
         

          

4

4 4

ˆ ˆ, , , ,

ˆ ˆ ˆ ˆ           , , .

T

T T

f t x f t x f t x f t x

x x x x x x f t x f t x



   

 

     
 

Combining the above two inequalities along with the formulations ˆe x x   and (8)-(9), 

it produces 

  
           

     

2 4 2 4

2 4

ˆ ˆ, , , , , ,

ˆ, , , 0.

T T

T

z t diag I I z t g t x x diag I I g t x x

z t diag I I g t x x

   

 



 
  (20) 

Combining the conditions (18)-(20) entails 

  

 

   

   

  

 

1 3 2 4

1 3 2 4

2 4

1 3

( , )

1 1
ˆ, , ( , , )

2 2

1 1
ˆ( , , ) , ,

2 2

ˆ ˆ( ) ( ) ( , , ) , ( , , )

,

T T T

T

T

T T T T

T

V t z z A P PA G P PG z

z P diag I I diag I I g t x x

g t x x P diag I I diag I I z

z PB u u B Pz g t x x diag I I g t x x

z diag I I diag

   

   

   

  

   

 
   

 

 
   

 

  

    2 4, .I I z 

 (21) 

Using (8), (16), and ˆe x x   and, further, setting ˆw Jx , the constraints in (11)-(12) 

are rewritten as 

   ( ) ( ) 0,T u W J z u     (22)  

    ( ) ;  ( ) .mu w u F J z u         (23) 
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Incorporating (22) into (21), it produces 

  

 

   

   

  

 

1 3 2 4

1 3 2 4

2 4

1 3

( , )

1 1
ˆ, , ( , , )

2 2

1 1
ˆ( , , ) , ,

2 2

ˆ ˆ( ) ( ) ( , , ) , ( , , )

,

T T T

T

T

T T T T

T

V t z z A P PA G P PG z

z P diag I I diag I I g t x x

g t x x P diag I I diag I I z

z PB u u B Pz g t x x diag I I g t x x

z diag I I diag

   

   

   

  

   

 
   

 

 
   

 

  

    

   

2 4,

( ) ( ) ( ) ( ).
TT

I I z

u W J z u J z u W u

 

        

 (24) 

The inequality (24) further implies that ( , ) TV t z Z Z  , by employing the S-procedure, 

where 

  

 

 

 

 

1 3
1 1 3

2 4
2 4

2

1
,, 2

1,
,

2

* 0

* * 2

T T

P diag I IX diag I I
PB J W

diag I I
diag I I

X

W

  


 
 

  
   

   
          
 
 
  

, (25) 

  ˆ( , , ) ( )
T

T T TZ z g t x x u    . (26) 

 Note that 0   ensures ( , ) 0V t z  , which further renders (15). As ( , ) 0V t z  , the  

augmented state ( ) ( ) ( )
T

T Tz t x t e t     will converge to the origin. It leads to the 

stability of the system’s state ( )x t  and state estimation error ( )e t . However, this 

stability will be guaranteed for a local region of initial conditions in the neighborhood of 

the origin due to the presence of the input saturation nonlinearity ( )u . To investigate 

this region, note that ( , ) 0V t z   implies ( , ) (0, )V t z V z  (for time 0t  ). By using (17), 

we obtain ( ) ( ) (0) (0)T Tz t Pz t z Pz , which by application of the given initial conditions  

(0) (0) 1Tz Pz   produces ( ) ( ) 1Tz t Pz t  . We require to include the region ( ) ( ) 1Tz t Pz t   
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into  ( )u  for validating the region  ( )u , required to satisfy the sector condition (22) 

for saturation function. By including the ellipsoidal region ( ) ( ) 1Tz t Pz t   into the region

 ( )u  given in (23) and further employing ˆw Jx  and ˆ( ) ( )u t Fx t , we obtain 

    2

( ) ( ) ( ) ( ) ( ) 0T T T T

i i i i iP u F J F J       . (27) 

It further produces (14) by application of the Schur complement, which completes the 

proof of Theorem 1.       □ 

 Remark 1: Several studies concerning control or observer-based control of the 

OSL nonlinear systems are available in the literature [25], [40]-[44]. These approaches 

ignore the presence of saturation nonlinearity at the control input due to bounded-input 

restriction of physical systems. In contrast to these traditional methods [25] and [40]-

[44], the proposed methodology in Theorem 1 develops a control approach for the OSL 

nonlinear plants by regarding the input saturation constraint. This input saturation 

cannot be ignored in physical systems due to bounded-input limitation of actuators and 

can cause undesirable performance degradation. It should be noted that observer-based 

stabilization of the more generic OSL nonlinear plants under input saturation constraint 

has been lacking in the previous studies. 

 Remark 2: Recently, a new robust control approach for the OSL systems along 

with applications by considering the actuator saturation is developed in [46]. 

Nevertheless, this conventional control scheme cannot be practically used, for instance, 

when states of a system are not available for feedback. The anti-windup compensation 

scheme, applied in the study, relies on the feedback of states of nonlinear systems for 

the protection of the closed-loop response against saturation. Contrastingly, the present 

study employs an estimated state vector, rather than the actual states, to stabilize the 

nonlinear systems. In addition, if an observer is added to the approach of [46], the 
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resultant scheme becomes quite complex. This complexity issue can cause extra 

computations and additional hardware for implementation of the schema over digital 

and analog technologies, respectively. It is worth mentioning that the proposed 

approach uses output feedback (rather than the state feedback) for controlling the OSL 

plants. To the best of our knowledge, such a control scheme for stabilization of the 

generalized form of nonlinear systems under input saturation and using output feedback 

has been revealed for the first time.  

 Remark 3: The conventional methods like ([4], [6], [11]-[18]) investigated the 

control schemes for linear or nonlinear systems under input saturation by using state 

feedback to ensure convergence of states of systems. These conventional methods 

cannot be implemented, if all states of a plant are not available for feedback. However, 

measurement of all states of a plant requires extra sensors and extra hardware for 

amplification and calibration, which limits the applicability of the scheme in practical 

scenarios. The present work employs estimated states rather than the actual states for the 

control purpose, which is more practical approach.  

 Remark 4: Analysis of the region of stability in the classical control methods [4], 

[6], [11]-[18] is a relatively less complicated task due to simplification in the control 

structure by avoiding the state estimates. In the present case, a region of stability is 

needed for the augmented state ( ) ( ) ( )
T

T Tz t x t e t    . Consequently, an estimate of the 

region for stability is obtained for the augmented vector ( )z t , containing both the state 

and the estimation error. Obtainment of a region of stability for the proposed observer-

based stabilization scenario is a non-trivial research problem in contrast to the 

conventional methods due to consideration of both actual and estimated states for 

determining the region of stability. In addition, the proposed approach provides a new 
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direction for controlling systems under input saturation and employs a novel treatment 

of the local sector condition (11)-(12) for the observer-based control.  

 Corollary 1: Consider the input-constrained Lipschitz nonlinear system (1) 

satisfying Assumption 2 with 0   and 2   . There exist a controller (4) and an 

observer (6) ensuring the asymptotic convergence of the augmented system’s state 

vector ( )z t  to the origin for all initial condition (0) (0) 1Tz Pz  , if for matrices 

2 2n nP  , m nF   , n pL  , and m nJ  , a diagonal matrix n nW  , and 

scalars 2  and 4 , the matrix inequality (14) and the following constraints are 

satisfied:  

  0,TP P  0,W   2 0, 
4 0,    (28)  

  

1 3

2* 0 0

* * 2

T TX P PB J W

X

W

   
 

 
  

, (29) 

    2 2

3 2 4, .diag I I    
 

(30) 

 

 Remark 5: The proposed observer-based control methodology for the OSL 

nonlinear systems in Theorem 1 has been reduced to provide a specific (but novel) 

result for the Lipschitz nonlinear systems in Corollary 1. The condition in Assumption 2 

for 0   and 2    reduces to the conventional Lipschitz condition. By applying 

these substitutions along with 1 0   and 3 0  , the approach of Theorem 1 produces 

the result in Corollary 1. This novel result highlights the flexibility of the proposed 

controller design in Theorem 1 for application to a less conservative and more general 

class of nonlinear systems under input saturation. It is notable that the observer-based 
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control of Lipschitz nonlinear systems for dealing with the input saturation has been 

remained rare in the existing works, which further validates the novelty of the proposed 

results in Theorem 1.  

 It is hard to compute the controller and observer gain matrices using Theorem 1 (or 

Corollary 1). Therefore, we provide a necessary and sufficient condition for the 

existence of the solution to Theorem 1 by application of a decoupling approach.   

 Theorem 2: A solution to the conditions in Theorem 1 exists, if and only if there 

exist matrices 
1

n nP  ,
2

n nP  , m nZ  , 
m nS  , and 

n pM  , a diagonal 

matrix
 

n nU  , and scalars 
1 2, ,  3  and 4  such that the matrix inequalities  

  
1 1 0TP P  , 

2 2 0TP P  , 0U  ,  1 0,  2 0, 
3 0,  4 0,   (31) 

  
1 ( ) ( )

2

( )

0
*

T T

i i

i

P Z S

u

 
 

  

, 1,..., ,i m   (32) 

  .
1 2 1 ( ) ( )

2

( )

0
*

T T

i i

i

PP P Z S

u

  
 

  

, 1,..., ,i m   (33) 

1 1 1 2
1 1 1 1 1 1 2 1

2

2 2

* 0 0,

* * 2

T T T TP I P I
P A AP BZ Z B P P P P I BU S

I

U

 
 



 
         

 
  

 
 
   

(34)

 

  

3 4
2 2 4 3 2

4

0,2 2

*

T T T I I
A P P A MC C M I I P

I

 
 



 
        

 
 

 (35) 

are satisfied. Various gains for the proposed observer-based control approach can be 

computed via 1

1F ZP , 1

1J SP
 
and 1

2L P M .  

 Proof: Sufficiency: To prove sufficiency, we combine (32)-(33) and (34)-(35) to 

obtain (14) and (15), respectively. Applying the congruence transformation to (34) 
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through  1, ,diag P I W , choosing 1

1 1P P
 
and 

1W U  , and using 1

1FP Z   and 

1

1JP S  , we obtain 

1 2
1 1 1 1 1 2 1 1

11 2

2 2

* 0 0.

* * 2

T T T TI I
A P P A PBF F B P I I P PB J W

I

W

 
 



 
         

 
    

 
 
 

    (36) 

Using 
2P L M  in (35), we have  

  

3 4
2 2 2 2 4 3 2

22

4

02 2

*

T T T I I
A P P A P LC C L P I I P

I

 
 



 
         

 
 

. (37) 

By application of the congruence transformation through  1,diag P I  and using 

1F ZP  and 
1J SP
 
, the sets of inequalities in (32)-(33) are rewritten as 

  
1 ( ) ( )

2

( )

0
*

T T

i i

i

P F J

u

 
 

  

, 1,..., ,i m   (38) 

  
2 ( ) ( )

2

( )

0
*

T T

i i

i

P F J

u

  
 

  

, 1,..., .i m   (39) 

Applying the Schur complement to (39) implies 

    2

2 ( ) ( ) ( ) ( ) ( ) 0T T

i i i i iP u F J F J    , 1,..., .i m   (40) 

11 0  , 22 0  , (38) and (40) imply that there exists a sufficiently large positive 

scalar   such that the inequalities 

  11 12

12 22

0
T



  
 

  
, (41) 
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   

1 ( ) ( )

2

( ) ( ) ( )

2

2 ( ) ( ) ( ) ( ) ( )

0

* 0

* *

T T

i i

i i i

T T

i i i i i

P F J

u F J

P u F J F J 

 


 
   
 

    
 

 (42) 

are satisfied, for all 1,...,i m  and for any 0 , where 

  

12

0 0 0

0 0 0 0

0 0 0 0

TJ W 
 

   
 
 

. (43) 

Under 11 0   and 22 0  , a positive scalar   can always be taken arbitrarily large to 

ensure (41). Similarly, the condition (42) can be ensured for a large positive number  . 

Selecting  

  
  2

( ) ( ) ( ) ( ) ( )

T T

i i i i iu F J F J   
 

(44)  

and, further, exchanging the rows and columns of (41) and (42), we obtain (14) and 

(15). The substitutions 1 1  , 2 2   3 3   , 4 4   , and 
1 2( , )P diag P P  

have been employed for the derivation. 

 Necessity: To demonstrate the necessity, we consider the constraints (14) and (15) 

to deduce (32)-(35). Suppose there exists a matrix P
 
satisfying (14)-(15), partitioning 

P  as 

  

1

*

P
P

 
  

 
, (45) 

where   represents an entry which will not be employed in the sequel. Substituting 

(45) into (14)-(15), it yields

 

  

1 ( ) ( )

2

( )

* 0

* *

T T

i i

i

P F J

u

  
 

   
 
 

, 1,..., ,i m   (46) 
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1 1 1 1 1 2
1 1

1 2

2

2 2

*

0.* * 0

* * *

* * * * 2

* * * * *

T T T

TA P P A PBF F B P I I
P PB J W

I I

I

W

 

 



    
        

   
     
 

   
 

   
  
 

 

 (47)

 

Pre- and post-multiplication of  

  

1

1 0 0

0 0

P

I

 
 
 

  

and its transpose to (46) along with substitutions 1

1 1P P , 1

1F ZP , and 1

1J SP   

verifies the constraint (32). Pre- and post-multiplication of 

  

1

1

1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

P

I

W





 
 
 
 
 

 

and its transpose to inequality (47) and using transformations 1

1 1P P , 1

1F ZP , 

1

1J SP , 1U W   and i i   (for 1,2i  ), we obtain (34). Hence, the conditions (32) 

and (34) are necessary for the constraints in Theorem 1. Now, applying the partition 

 

  2*
P

P

  
  
 

 (48) 

 to inequality (14), it produces 

  
2 ( ) ( )

2

( )

* 0

* *

T T

i i

i

P F J

u

   
 

  
 
 

, 1,..., .i m   (49) 

Substituting (48) into (15) implies  
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2 2 2 2 3 4
2

4 3

4

*
2 2

0.* *

* * *

* * * *

* * * * *

T T TA P P A P LC C L P I I
P

I I

I

 

 



      
 

             
    

 
   

  
 

 

 (50) 

Similarly, pre- and post-multiplication of 

  

1

10 0

0 0

P

I

 
 
 

 

and its transpose to (49) and applying the transformations 1

1 1P P , 
2 2P P , 1

1F ZP , 

and 1

1J SP  imply (33). In the same line, pre- and post-multiplication of 

  

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

I

I

 
 
 
  

 

and its transpose to (50) and further applying transformations 
2 2P P , 

2M P L
 
and 

i i   (for 3,4i  ), it results into (35).  Hence, (33) and (35) are necessary conditions 

for (14) and (15). This completes the proof.      □ 

 Remark 6: By application of a rigorous decoupling approach, an equivalent form 

of Theorem 1 has been developed in the proposed scheme of Theorem 2. Mainly, the 

bulky conditions of (14)-(15) in Theorem 1 are degenerated into relatively simple 

conditions (32)-(35) in Theorem 2 without loss of generality. Compared to Theorem 1, 

this new approach of Theorem 2 can be quite easy to resolve for computation of the 

proposed observer (6) and controller (4) gains through matrix inequality procedures. It 

is also noted that the technique in Theorem 2 is less conservative because it provides 

both necessity and sufficiency for solving the main design constraints in Theorem 1.   
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 Remark 7: The decoupling approach used in the present work comparably differs 

from [19]-[22], [23] and [25]. The presented decoupling approach in Theorem 2 is a 

sophisticated extension of [19]-[22] and [25] to the one-side Lipschitz nonlinear 

systems under the input saturation constraint. Note that the scenario of input saturation 

has been relatively less considered for the observer-based control synthesis. Such a 

decoupling condition is important as it establishes that observer and controller can be 

designed using separate conditions and their gains can be determined straightforwardly 

using convex routines. An extension for Lipchitz nonlinear time-delay systems without 

input saturation was developed in [23]; however, only a sufficient condition was 

provided. In contrast, the proposed scheme exhibits control result for a generic class of 

nonlinear systems by considering the saturation nonlinearity at the input signal. 

 The constraints of Theorem 2 are relatively simple than Theorem 1; however, these 

constraints contain nonlinear terms. The following theorem addresses the management 

of nonlinear term 1 1 1 1 2 1P P P P   without loss of generality (by introducing any 

conservatism). 

 Theorem 3: A solution to the conditions in Theorem 1 exists, if and only if there 

exist matrices 
1

n nP  ,
2

n nP  , m nZ  , 
m nS  , and 

n pM  , a diagonal 

matrix
 

n nU  , and scalars 
1 2, ,  3  and 4  such that the matrix inequalities in (31), 

(32), (33), (35), and either of the following conditions hold true: 

(i) If 1 2 0   , then 

 

1 1 1 2
1 1 1 2 1

2

2 2

* 0 0 0.

* * 2 0

* * *

T T T TP I P I
P A AP BZ Z B I BU S P

I

U

I

 
 



 
        

 
  

 
 

  

(51) 
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(ii) If  1 2 0   , then 

  

1 1 1 2
1 1

2

2 2

* 0 0.

* * 2

T T T TP I P I
P A AP BZ Z B I BU S

I

U

 



 
       

 
  

 
 
 

 (52) 

(iii) If  1 2 0   , then 

  

1 1 1 2
1 1 1

2

2 2

* 0 0.

* * 2

T T T TP I P I
P A AP BZ Z B T I BU S

I

U

 



 
        

 
  

 
 
 

 (53) 

Here  1 1 1 2 1.T P I I P     Various gains for the proposed observer-based control 

approach can be computed via 1

1F ZP , 1

1J SP
 
and 1

2L P M . 

 Proof. For the case  1 2 0,    the constraints (34) and (51) are equivalent by 

employing the Shur complement. The inequality in (34) renders (52) by assigning

 1 2 0.    Finally, for the case  1 2 0,    we select 

 1 1 1 2 1T P I I P    , which provides (53). Hence, it is observed that the matrix 

inequalities (51), (52) and (53) are equivalent to (34) for 1 2 0,    1 2 0    

and 1 2 0,    respectively, which completes the proof of Theorem 3. Solution of 

constraints provided in Theorem 3 can be obtained in similar manner as in [25].    □ 

 Remark 8: In comparison to [25], Theorem 3 highlights the necessary and 

sufficient condition for the existence of a solution to the nonlinear constraints for the 

OSL systems under input saturation. This approach can be used to provide a solution of 

nonlinear constraints in various scenarios of 1 2 ,     so that   may comprehend 
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any positive, negative or zero value. It is worth noting that the condition in Theorem 3 

for different cases of   can deal with the nonlinear term  1 1 2 1P I I P  . The first 

two cases in Theorem 3 are based on linear matrix inequalities for given values of 1  

and 2  . The condition in Theorem 3 for 1 2 0    is computationally complex and 

can be resolved by application of the cone complementary linearization algorithm. 

 By taking 1 0  , 3 0  , 0  , and 2   , a novel condition can be obtained as 

a specific scenario of Theorem 3 for the observer-based control of Lipschitz systems 

under input saturation. The following corollary provides a straightforward observer-

based controller design condition, compared to Corollary 1, for the Lipschitz nonlinear 

systems. 

 Corollary 2: There exists a solution to the condition in Corollary 1 if and only if 

there exist matrices 
1

n nP  ,
2

n nP  , m nZ  , 
m nS  , and 

n pM  , a 

diagonal matrix
 

n nU  , and scalars   and   such that the matrix inequalities (32), 

(33),  

  
1 1 0TP P  , 

2 2 0TP P  , 0U  , 2 0, 
4 0,   (54) 

  

1 1 2 1

2* 0 0
0,

* * 2 0

* * *

T T T TP A AP BZ Z B I BU S P

I

U

I





      
 

  
 
 

  

 (55) 

  

2

2 2 4 2

4

0,
*

T T TA P P A MC C M I P

I





     
 

 
 (56) 

are satisfied. Various gains for the proposed observer-based control approach can be 

computed via 1

1F ZP , 1

1J SP
 
and 1

2L P M . 
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 The inequalities in Theorem 3 can be solved as linear matrix inequalities by 

application of the cone complementary linearization algorithm ([20, 25, 46, 47, 48]). 

For this purpose, we can employ the minimization of objective function
 

1 1 1 1 1 1 1 2 1( 0.5 0.5 )trace PP TT P PT YY PP PY     subject to 
1 1 0TP P  ,

2 2 0TP P  , 

1 1 0TP P  , 
1 1 0,TT T   

1 1 0,TT T    0TY Y  , 0TY Y  , 0U  ,  

  
1 1

1 1

0, 0
* *

T I P

T T

   
    

   
,  (57)  

  0
*

Y I

Y

 
 

 
, 2 1 0

*

P P

Y

 
 

 
,

  

(58) 

  
( ) ( )

2

( )

0
*

T T

i i

i

Y Z S

u

  
 

  

, 
1

1

0
*

P I

P

 
 

 
, (59) 

1,..., ,i m   and constraints in Theorem 3, where  1 1 1 1 2  and  .T P P I I        

It can be noted that the relation between matrices and their inverses are ensured via 

minimization of the objective function and by considering the constraints like (57)-(59). 

For instance, the second constraint in (59) leads to 
1

1 1 0P P  , which further can be 

written as 1 1PP I . To attain results (closer to 1 1PP I ), we can minimize the trace of 

1 1PP  for attaining the matrix inverse relation. The computational complications in 

Theorem 1 are further addressed in Theorem 3 owing to the proposed decoupling 

method and the cone complementary linearization approach for solving the constraints. 

The controller and observer gains are computed off-line; therefore, the computational 

issues due to the size of input vector and the cone complementary linearization 

algorithm do not affect the real-time implementation of the proposed control strategy. 

 

                  



 

 

 

 

26 

4. Simulation results  

 To explore features of the proposed methodologies and to provide comparison with 

the existing approaches, two practical nonlinear systems, namely, a single-link flexible-

joint robot and a complex Chua’s circuit are considered in our study. 

 

4.1 Application to flexible-joint robot 

 Consider the model of a single-link flexible-joint robot [49], given as  

  

,

( ) ( ),
2

,

( ) sin ,

m m

m l m m

m m m

l l

l m l l

l l

kk L
u

J J J

k mgh

J J



 

    

 

   



   



  

  (60) 

where m  and l  denote the angles of rotations of the motor and the link, respectively, 

and m  and l  describe the angular velocities of the motor and the link, respectively. 

The description of other physical quantities has been elaborated in Table I. The motor 

can be operated through a DC power supply ranging between -15 V and 15 V. The 

values of various constants employed in the present study and the saturation bound are 

also provided in Table I. By using the values provided in Table I into (60) and by 

incorporating the nonlinear model (1), we can select the system matrices and 

nonlinearity as follows: 

  

0 1 0 0

48.6 1.25 48.6 0

0 0 0 1

19.5 0 19.5 0

A

 
 
 
 
 
 

 

,  (61) 
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0

21.6

0

0

B

 
 
 
 
 
 

,
 

3

0

0
( , ) ,

0

3.33sin

f t x

x

 
 
 
 
 
   

(62) 

  
1 0 0 0

0 1 0 0
C

 
  
 

. (63) 

Note that    1 2 3 4

T T

m m l lx x x x x       and  1 2 3 4
ˆ ˆ ˆ ˆ ˆ

T
x x x x x . The 

state estimation error vector is given by the relation  

   1 2 3 4

T
x e e e e  1 1 2 2 3 3 4 4

ˆ ˆ ˆ ˆ
T

x x x x x x x x     . (64) 

For designing controller (4) and observer (6) by using Theorem 3, we consider the cone 

complementary linearization approach for the minimization of the objective function 

given as
 1 1 1 2 1( )trace PP I I YY PP PY      by using the methods of [20], [46] and 

[47]. By solving the constraints in Theorem 3 for six iterations of the cone 

complementary linearization algorithm, we obtain the following results. 

  1

1.26 1.456 0.445 3.691

1.456 43.96 1.261 7.014

0.445 1.261 0.652 2.410

3.691 7.014 2.410 17.228

P

  
 

 
 
 
  

,  (65) 

  2

3.474 0.317 0.937 0.669

0.317 0.0875 0.391 0.086

0.937 0.391 4.358 0.197

0.669 0.086 0.197 0.389

P

 
 


 
   
 

 

, (66) 

   0.4914   4.5212   0.3889    0.3442 .Z      (67) 

By employing 1

1F ZP
 
and 1

2L P M , the proposed observer-based control gains for 

the single-link flexible-joint robot are determined as 

  

 3.106 0.320 1.506 0.986F      , (68)
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1.579 45.412 7.470 1.656

22.201 416.034 31.145 37.487

TL
 

  
  

. (69) 

The initial condition for the robotic system is taken to be 

  

 (0) 13  11  12  13Tx    . (70) 

 The parameter   can be selected for different simulation studies. Figs. 1 and 2 

show the closed-loop response of the flexible-joint robot and the state estimation errors, 

respectively, for 1  . By application of the proposed observer-based control scheme 

in (4) and (6), all states and state estimation errors are converging to the origin. The 

corresponding control signal is also plotted in Fig. 3. It is notable in Fig. 3 that even for 

a large initial condition, the control signal does not saturate and remains between the 

lower and upper saturation limits. Hence, the proposed design has a capability to 

stabilize the nonlinear systems under saturation of the control signal.  

 Now, the proposed observer-based control scheme is tested under the effect of a 

large initial condition. We take 2   to test the proposed control strategy with

 (0) 26  22  24  26Tx    . The closed-loop response, estimation error, and the 

saturated control input are provided in Figs. 4, 5, and 6, respectively, for 2  . Fig. 4 

shows that the response of the closed-loop system is stable and the robot states are 

converging to the origin. The estimation error behavior in this case, shown in Fig. 5, is 

almost similar to the case of 1  . The estimation errors are also converging to the 

origin. The saturated control signal plotted in Fig. 6 undergoes saturation due to the 

larger initial conditions for 2  . However, the control signal for the proposed method 

has capability to recover from the saturation. It is observed from the plot that the control 

signal recovers from the saturation in a short period of time. This property demonstrates 
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the ability of the proposed controller to deal with the windup effect due to saturation 

nonlinearity.  

 A similar behavior is observed for the case of 5  , when initial conditions are 

taken five times larger than the first case (that is,  (0) 5 13  11  12  13Tx     ). The 

resultant closed-loop trajectories and the saturated control signal are provided in Figs. 7 

and 8, respectively, for this initial condition. It is notable that the state trajectories of 

Fig. 7, even in the worst case of initial condition, are converging to the origin. While, 

the control signal of Fig. 8 recovers from the saturation in 2.5 seconds for the control of 

the robotic system. Hence, the proposed observer-based control methodology has 

capacity to deal with the saturation effects and windup consequences for the nonlinear 

systems either by avoiding the saturation or by ensuring recovery from the saturation, 

without employing the exact states for feedback. 

 

4.2 Application to Chua’s circuit 

 Let us consider the following chaotic Chua’s circuit (please refer to [10] and the 

references therein): 

  

























02.140

111

01.9548.2

A , 



















0

0

1

B ,  (71) 

   001C ,  0D ,  (72) 

  

1 19.11 1 9.11 1

( , ) 0

0

x x

f t x

    
 

  
 
 

. (73) 

 The saturation limit is accounted as 2u  . The nonlinearity ( , )f t x  is considered 

as a complex function with respect to the theory of circuits and systems due to two 
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reasons: First, this function represents a nonlinear negative resistance characteristics, 

which is always difficult to handle in electrical and electronic circuits. Second, this 

nonlinear negative resistance can cause complex chaotic oscillations in the Chua’s 

circuit, which behavior is very sensitive to the initial conditions and parametric 

variations. The control of such complex nonlinear systems is an interesting and a 

challenging research issue. 

 In the present study, we compare the present approach with the existing methods, 

considering the nonlinear compensation and state feedback methods. The response of 

only first state (output) is considered for the comparison purpose. By applying Theorem 

3, the proposed observer-based control parameters have been computed as 

  

 1.121 8.495 1F     , (74)

 

  

 0.879 2.067 2.335TL   . (75) 

We choose the initial condition as 

  

 (0) 1  0.2  1
T

x   . (76) 

 A comparison of various approaches has been provided in the present study for the 

output stabilization. The closed-loop responses using nonlinear proportional integral 

(PI) control (ignoring saturation) of [10] and [45], linear compensation with nonlinear 

control of [26], and nonlinear compensation using states for feedback (see in [10] and 

[45])  along with the response using the proposed method for the observer-based control 

are shown in Fig. 9. The corresponding control signal for the proposed observer-based 

control scheme is demonstrated in Fig. 10, which reflects an ability of the constrained 

input signal to recover from saturation nonlinearity. The responses in Fig. 9 using the 

nonlinear PI and linear compensation are unable to stabilize the complex behavior of the 

Chua’s circuit. Oscillations of increasing amplitude are observed using these 
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approaches. The closed-loop response of the nonlinear compensation using states is fast; 

however, it has an overshoot and, further, it employs exact states for the saturation 

compensation. The proposed methodology response, in contrast, is not as fast as the 

nonlinear compensation; however, it eliminates the undesirable overshoot without 

employing the exact states of the system. The slower response of the proposed method 

is due to the estimation of states, required to deal with the practical situations, when 

additional sensors for state measurement are not feasible. While the nonlinear 

compensation uses the exact states of the plant for feedback, which may not be possible 

in the practical control systems.  

 An analysis has been carried out for determining the maximum allowable value of 

Lipschitz constant   for the proposed control method. It was observed that feasible 

results were obtained for 5.72   in the robotic manipulator case. For chaotic Chua’s 

circuit, the solution of the proposed observer-based control strategy was attained for 

11.14  . Although, the proposed results are based on a generalized local approach; 

however, the developed control strategy still can be improved for higher values of 

Lipschitz constants, which can be addressed in future by means of linear parameter 

varying formulations of nonlinear functions.  

 The implementation of the proposed control signal is a non-trivial research task. 

Our method can be implemented similar to the classical observer-based control 

schemes. The observer in (6) will receive the output ( )y t  and will employ it to estimate 

the state plant state ( )x t . The estimated state ˆ( )x t  will be used to control the plant (1). 

For implementation using a digital technology, discretization of (4) and (6) can be 

considered because digital technology is preferred over analog circuits due to its 

cheaper price and re-configurable nature. Hence, the proposed methodology is better or 
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more practical than the existing nonlinear techniques due to its reasonable performance, 

simplicity in implementation, and applicability to the practical control systems, 

whenever states are not available. It should be noted that we have considered practical 

case studies in the simulation results for the electro-mechanical robotic system and the 

electronic chaotic circuit to demonstrate applicability of proposed methods. In future, 

experimental studies of the proposed control can be considered over digital technologies 

by considering the practical implementation aspects.        

 

5. Conclusions 

This paper studied an observer-based control of the OSL nonlinear systems under 

input saturation under the condition of an unknown state vector. An observer was 

employed to estimate the system states and the estimated states were employed for the 

feedback purpose. A closed-loop system was obtained in terms of the closed-loop 

system’s state dynamics and estimation error dynamics. A condition using matrix 

inequalities ensuring the asymptotic convergence of the closed-loop state and the state 

estimation error for the given values of the observer and controller gains, under input 

saturation, was derived. A decoupling approach to degenerate the main condition into 

computationally less complicated constraints was developed for computing the 

controller and observer gains through the convex routines. The proposed decoupled 

conditions for nonlinear systems with input saturation and a generalized nonlinearity 

can be solved by employing the cone complementary linearization algorithm. Novel 

results of the proposed methodology for the Lipschitz case were also provided and 

several features of the resultant approaches for the Lipschitz nonlinear systems were 

discussed. In contrast to the conventional methods, the proposed observer-based control 
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approach can be applied to design observer-based controllers, without using the actual 

states for feedback, for the OSL nonlinear systems in the presence of the input 

saturation constraint. A numerical example on stabilization of a single-link flexible-joint 

robot and a chaotic Chua’s circuit were detailed. The simulation results demonstrate that 

the proposed approach can be employed to the nonlinear electro-mechanical plants and 

electrical circuits, when the system states are not available and the control signal is 

subjected to the saturation nonlinearity. In future, the proposed method can be 

considered for faster and finite-time convergence, robustness against disturbances and 

parametric uncertainties, and measurement and input delays. In addition to theoretical 

contributions, the developed scheme can experimentally tested for nonlinear practical 

control systems under unmeasurable states and input saturation.  
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Table I: Parameters of the robot model 

 

 

Model parameters Values 

mJ  (inertia of motor) 3 23.7 10  kg m  

lJ  (inertia of link) 3 29.3 10  kg m  

k  (torsional spring constant) 1 -11.8 10  Nm rad  

L  (length of link) 13.1 10  m  

k  (amplifier gain) 2 18 10  Nm V   

m  (point mass) 12.1 10  kg  

g  (gravity constant) 29.8 m/s  

h  (center of gravity height) 21.5 10  m  

u  (input saturation limit) 15 V  

 

 

 

 

Fig. 1. Closed-loop response under input saturation for 1   
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Fig. 2. Convergence of the state estimation errors to the origin for 1   

 

 
Fig. 3. Control signal under input saturation for 1   
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Fig. 4. Closed-loop response under input saturation for 2   

 

 

 
Fig. 5. Convergence of the state estimation errors to the origin for 2   
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Fig. 6. Control signal under input saturation for 2   

 

 
 

Fig. 7. Closed-loop response under input saturation for 5   
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Fig. 8. Control signal under input saturation for 5   

 

 
Fig. 9. Comparison of the existing control schemes with the proposed method for 

stabilization of Chua’s circuit  
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Fig. 10. Saturated control input signal using the proposed method for stabilization of 

Chua’s circuit  

 

                  


