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This paper investigates the chaotic behavior and synchronization of two different coupled chaotic FitzHugh-Nagumo (FHN)
neurons with unknown parameters under external electrical stimulation (EES). The coupled FHN neurons of different parameters
admit unidirectional and bidirectional gap junctions in the medium between them. Dynamical properties, such as the increase
in synchronization error as a consequence of the deviation of neuronal parameters for unlike neurons, the effect of difference in
coupling strengths caused by the unidirectional gap junctions, and the impact of large time-delay due to separation of neurons,
are studied in exploring the behavior of the coupled system. A novel integral-based nonlinear adaptive control scheme, to cope
with the infeasibility of the recovery variable, for synchronization of two coupled delayed chaotic FHN neurons of different and
unknown parameters under uncertain EES is derived. Further, to guarantee robust synchronization of different neurons against
disturbances, the proposed control methodology is modified to achieve the uniformly ultimately bounded synchronization. The
parametric estimation errors can be reduced by selecting suitable control parameters. The effectiveness of the proposed control
scheme is illustrated via numerical simulations.

1. Introduction

In recent decades, behavior investigation of chaotic neurons
including synchronization, particularly under external elec-
trical stimulation (EES; e.g., deep brain stimulation), has
become an important area of research in the study of clinical
treatmentmechanisms for neurodegenerative disorders [1, 2].
The many published reports of fascinating outcomes have,
since the beginnings, attracted and inspired many additional
researchers to find effectual ways of improving external
therapies for patients suffering from cognitive diseases [3–6].
The famous FitzHugh-Nagumo (FHN) neuronal model has

been given extensive consideration for its utility in symboliz-
ing the dynamical behavior of neurons and complex neuronal
networks under EES [7].

The subject of FHN-neuronal synchronization as a poten-
tial application in cognitive engineering has been intensively
examined in the literature [8–20]. Integration of the gap junc-
tion strength in FHN neurons renders the synchronization
dilemma nontrivial. And the synchronization problem
becomes still more complex, once the delay terms owing to
distant communication are entertained in the coupledmodels
[21–24]. To synchronize various chaotic FHN systems, res-
earchers have utilized different control strategies including
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backstepping [25], active control [26], nonlinear control [8, 9,
27], and adaptive control [20, 28, 29]. Synchronization of two
identical FHNneurons of known or unknown parameters, by
means of nonlinear adaptive control schemes based on fuzzy
logic, neural networks, uncertainty estimator, and feedback
linearization, has been investigated [8, 9, 12, 13, 20]. Recently,
robust adaptive control schemes for synchronization of two
or three FHN neurons of unknown model parameters have
been developed as well. Synchronization of two identical neu-
rons of unknown parameters, under uncertain stimulation
currents caused by medium losses and phase shifts, has been
explored by application of an adaptive control scheme [14].
Another recent work has combined the ideas of parametric
adaptation and 𝐿

2
gain reduction for synchronization ofmul-

tiple but slightly different neurons with respect to multiple
communication pathways and unknown parameters and dis-
turbances [15]. A simple methodology for synchronization of
two different coupled neurons of known parameters by
application of a reference-signal-based control approach has
been evaluated as well [20].

The conventional techniques for synchronization of FHN
neurons are based on either designed control laws for identi-
cal neurons of known or unknown parameters or developed
control strategies for different neurons of known parameters.
However, two coupled neurons cannot be completely identi-
cal, and the model parameters cannot be totally known, due
to biological restrictions. Furthermore, whereas the tradi-
tional techniques assume bidirectional gap junctions for the
interneuronal medium, they can in fact be unidirectional,
resulting in different coupling strengths for each neuron [30–
32].The effects of unidirectional gap junctions in the presence
of time-delay (due to neuronal separation) cannot be ignored.
All in all, the development of control strategies for synchro-
nization of two coupled delayed chaotic neurons of different
and unknown parameters, particularly under disturbances, is
very challenging.

This paper analyzes the behavior and synchronization of
two different coupled distant FHN neurons under unidirec-
tional gap junctions. The strengths of the gap junctions are
assumed to be different for each neuron, owing to the pres-
ence of both unidirectional and bidirectional gap junctions
in the interneuronal medium. Various dynamical aspects of
coupled FHN neurons, such as the effects of parametric
differences, time-delays, and unidirectional gap junctions on
neuronal synchronization, are investigated. The design of
robust adaptive control laws for synchronization of coupled
chaotic distant FHN neurons under unidirectional gap junc-
tions is also addressed. The resultant control approach repre-
sents a novelmeans for synchronizing different FHNneurons
of unknown parameters subject to uncertain stimulation. By
utilizing integral-based control and adaptation laws to deal
with the unavailable neuronal state (i.e., the recovery vari-
able), a new adaptive control scheme is developed for syn-
chronization of different coupled chaotic FHN neurons of
unknown parameters. Motivated by experimental results
[33], the proposed control scheme, unlike the traditional
synchronization approaches, ensures partial synchronization
of neurons in terms of their activation potentials (or mem-
brane voltages). By utilizing the ideas of the standard

Lyapunov theorem [13, 34], the proposed adaptive control
scheme is modified to ensure uniformly ultimately bounded
synchronization and parametric estimation errors for robust
synchronization of neurons against disturbances. The results
of the proposed robust adaptive control scheme for chaos
synchronization of FHN neurons of different and unknown
parameters are verified through numerical simulation. The
main contributions of this paper can be summarized as
follows.

(i) A model of coupled FHN neurons under both uni-
directional and bidirectional gap junctions is investi-
gated.

(ii) The complex behavior of two different coupled neu-
rons in a medium containing gap junctions is stud-
ied through bifurcation analysis and Lyapunov-
exponential investigation.

(iii) The idea that, by increasing the time-delay or the
difference between the gap junction strengths for two
neurons, the synchronization error can increase,
which, further, can lead to nonsynchronous neuronal
behavior, is explored.

(iv) Based on the experimental results, a biologically
understandable synchronization tool ensuring con-
vergence of the activation potential error to zero is
offered, in contrast to the conventional approaches
that consider unnecessary synchronization of the
recovery variable [9–20].

(v) The proposed synchronization control methodology
fills the research gap on robust adaptive synchro-
nization of FHN neurons of different and unknown
parameters subject to disturbances.

The rest of this paper is organized as follows. Section 2
presents the model of two coupled chaotic FHN neurons for
different and unknown parameters. Section 3 analyzes the
behavior of the coupled FHN neurons. Section 4 presents
the design of nonlinear adaptive and robust adaptive con-
trol schemes for synchronization of coupled chaotic FHN
neurons of different and unknown parameters. Section 5
provides the relevant numerical simulation results. Section 6
draws conclusions. Standard notation is used throughout the
paper. The notation ‖ ⋅ ‖ symbolizes the Euclidian norm of a
vector.

2. Model Description

Consider two coupled chaotic delayed FHNneurons (see also
[7, 14]) of different and unknownparameters under uncertain
EES, given by
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(1)
where 𝑥

1
and 𝑦

1
are the states of the master FHN neuron in

terms of the activation potential and the recovery variable,
respectively, and 𝑥

2
and 𝑦
2
are the corresponding states of the

slave FHN neuron. The FHN model parameters (𝑟
1
, 𝑟
2
) and

(𝑏
1
, 𝑏
2
) are linked with the neurons’ nonlinear part and recov-

ery variable, respectively. The parameters 𝑎
1
and 𝑎

2
denote

the amplitude of the external stimulation current for the
master and the slave neurons, respectively, while 𝜙

1
and 𝜙

2

represent their phase shifts. Time and the angular frequency
of the stimulation current are indicated by 𝑡 and 𝜔 = 2𝜋𝑓,
respectively, where 𝑓 denotes frequency. The strength of the
gap junctions for communication from the master neuron to
the slave neuron is represented by 𝑔

1
. Correspondingly, 𝑔

2

represents the strength of the gap junctions for transmission
of an electrochemical signal from the slave neuron to the
master neuron. The time-delay between the master and slave
neurons is represented by 𝜏. Disturbances at the master and
slave neurons are denoted by 𝜁

1
and 𝜁
2
.

In the present work, all of the physical quantities of FHN
models (1) are assumed to be dimensionless. In modeling
most of biological processes, we often know only the nominal
parametric values, not the true ones, owing to the biological
restrictions. The amplitudes and phases associated with the
stimulation current are taken to be different due to the
medium losses and different path lengths occurring during
the current flow from an electrode to both of the coupled
neurons. The strengths of the gap junctions differ owing to
the fact that some of the communication channels are
unidirectional while others are bidirectional.

Remark 1. It should be noted that all of the FHN model
parameters associated with the master and slave neurons in
(1) are fairly different and unknownowing to the physical lim-
itations and the biological restrictions. Furthermore, usually,
themajority of gap junctions allow bidirectional communica-
tion between two neurons. However, some permit only uni-
directional transmission of a signal [30–32], responsible for
different strengths of gap junctions. To capture this property,
the strengths of gap junctions are taken as 𝑔

1
and 𝑔

2
. This

direction-dependent selection of gap junction strength, in
contrast to the schemes available in the literature [9–24],
enables a more realistic model and, as such, is a superior
synchronization-study tool for coupled FHN neurons.

In the next section, we examine the behavior of coupled
FHN neurons (1) in exploring the effects of neuronal-
parameter difference, gap junction strength variation, and
time-delay deviation on synchronization.

3. Behavior of Coupled FHN Neurons

Whereas, traditionally, studies have detailed the dynamical
behavior of single FHN neurons, focusing on that, the

dynamics of a coupled system of neurons is more significant
to understanding the neuronal synchronization. Bifurcation
analysis and studies on the largest Lyapunov exponent have
been productive for biomedical systems such asmagnetic res-
onance imaging of myocardial perfusion and snore classifica-
tion [35, 36]. The bifurcation diagrams show the qualitative
change in the dynamical behavior of neurons by changing
amplitude of stimulation current over a range of 0 < 𝑎 < 2,
while the maximum Lyapunov exponent informs about how
much and for which range of stimulation amplitude the neu-
ronal behaviors are chaotic. The method of Lyapunov expo-
nent analysis is specifically used to avoid the ambiguity that
the complicated behavior is occurring either due to a strange
or a chaotic attractor. Furthermore, the degree of synchro-
nization of neurons can be quantified by utilizing bifurcation
diagrams. To this end, we first select the model parameters
𝑟
1
= 𝑟
2
= 10.5, 𝑏

1
= 𝑏
2
= 1.06, 𝜙

1
= 𝜙
2
= 𝜋/3, 𝑔

1
= 𝑔
2
= 0.2,

𝑓 = 0.135, and 𝜏 = 40under disturbances 𝜁
1
= 0.1 sin 12𝑡 and

𝜁
2
= 0.1 sin 20𝑡 and identical stimulation amplitudes 𝑎

1
=

𝑎
2
= 𝑎, in order to study the behavior of two identical FHN

neurons. Figure 1 shows bifurcation diagrams and largest
Lyapunov exponent plots for both neurons under stimulation
amplitude 𝑎. Figures 1(a) and 1(b) indicate that both neurons
exhibit oscillatory behavior for almost all values of the stimu-
lation amplitude. Figures 1(c) and 1(d) show that the neurons
exhibit chaotic behavior when the largest Lyapunov exponent
becomes greater than 0. Specifically, the first FHN neuron
shows chaotic behavior in the regions 0.04 < 𝑎 < 0.13 and
0.74 < 𝑎 < 0.92, whereas the second FHN neuron shows
chaotic behavior in the region 0.12 < 𝑎 < 1. Figure 1(e)
depicts amore interesting phenomenon, that is, synchroniza-
tion of FHN neurons by means of a rare bifurcation diagram
treatment of synchronization error 𝑒 = 𝑥

1
− 𝑥
2
. It is evident

that the identical neurons possess synchronous behavior,
except in the regions 0.05 < 𝑎 < 0.74 and 0.9 < 𝑎 < 1.1.
This means that both of the neurons can be synchronized by
selecting a proper stimulation amplitude, either in the region
0.74 < 𝑎 < 0.9 or 𝑎 > 1.1, without utilizing any control signal.

Next, the dynamics of different coupled FHN neurons are
analyzed by changing the parameters of the first neuron to
𝑟
1
= 10, 𝑏

1
= 1, 𝜙

1
= 𝜋, and 𝑔

1
= 0.1. The amplitudes of

stimulation are taken to be different, and the difference is
fixed to 𝑎

2
−𝑎
1
= 0.04. Figure 2 plots the bifurcation diagrams

and largest Lyapunov exponents for the system of different
coupled FHN neurons. Similarly, to the identical neurons
case, both neurons exhibit oscillatory behavior formost of the
amplitude values, as shown in Figures 2(a) and 2(b).The first
neuron shows chaotic behavior in the regions 0.03 < 𝑎

1
<

0.37 and 0.69 < 𝑎
1
< 0.95, as depicted in Figure 2(c),

while the second neuron shows chaotic behavior in the
regions 0.12 < 𝑎

2
< 0.72 and 1.33 < 𝑎

2
< 1.77, as

indicated in Figure 2(d). The bifurcation diagram of syn-
chronization error 𝑒 = 𝑥

1
− 𝑥
2
is shown in Figure 2(e).

Surprisingly, neither of the neurons are at all synchronous for
any stimulation amplitude within the entire region 0 < 𝑎

1
<

2 (and 0.4 < 𝑎
2
< 2.4), due to the different parameters as

compared with the case of identical neurons. We can con-
clude that the two different FHN neurons can be nonsyn-
chronous, owing to variations in model parameters and,
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Figure 1: Behavior of identical FHN neurons under EES: (a) bifurcation diagram of the first neuron; (b) bifurcation diagram of the second
neuron; (c) largest Lyapunov exponent for the first neuron; (d) largest Lyapunov exponent for the second neuron; (e) bifurcation diagram of
the synchronization error between the coupled neurons.

additionally, that a suitable value of stimulation amplitude
in the set 𝑎

1
∈ [0 2] (correspondingly 𝑎

2
∈ [0.4 2.4]),

for synchronization of these different neurons, might not
exist. For further elaboration, phase portraits of the two
different neurons, under the initial conditions 𝑥

1
(0) = 0.5,

𝑥
2
(0) = −0.5, 𝑦

1
(0) = 0, and 𝑦

2
(0) = 0, are shown in

Figure 3 for 𝑎
1
= 0.1 and 𝑎

2
= 0.14. It is evident that

both neurons, possessing the chaotic behavior shown in
Figures 3(a) and 3(b), are not synchronous, as indicated in
Figure 3(c).

We now examine the effects of the strengths of gap junc-
tions and of time-delays between two identical neurons. The
model parameters are selected as 𝑟

1
= 𝑟
2
= 10.5, 𝑏

1
= 𝑏
2
=

1.06, 𝜙
1
= 𝜙
2
= 𝜋/3, 𝑓 = 0.135, 𝜁

1
= 0.1 sin 12𝑡, and
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Figure 2: Behavior of different FHN neurons under EES: (a) bifurcation diagram of the first neuron; (b) bifurcation diagram of the second
neuron; (c) largest Lyapunov exponent for the first neuron; (d) largest Lyapunov exponent for the second neuron; (e) bifurcation diagram of
the synchronization error between the coupled neurons.

𝜁
2
= 0.1 sin 20𝑡, with identical stimulation amplitudes; that

is, 𝑎
1
= 𝑎
2
= 𝑎. Figure 4 shows bifurcation diagrams of the

synchronization error for different values of time-delay 𝜏
under fixed (but different) values of gap junction strengths
𝑔
1
= 0.8 and 𝑔

2
= 0.9. For the small value of 𝜏 = 0.001, the

FHN neurons are synchronous, as Figure 4(a) illustrates. As
we increase the time-delay to 𝜏 = 15, the synchronization
error, as shown in Figure 4(b), increases.The neurons exhibit

nonsynchronous behavior for 𝜏 = 15 in the three regions
0 < 𝑎 < 0.2, 0.5 < 𝑎 < 0.7, and 0.95 < 𝑎 < 1.05. The overall
region of nonsynchronous behavior further increases for
time-delay 𝜏 = 30 and becomes the largest for 𝜏 = 40, as
shown in Figures 4(c) and 4(d), respectively. Figure 5 pro-
vides bifurcation diagrams of the synchronization error
under different values of 𝑔

2
for the constant parameters 𝑔

1
=

1 and 𝜏 = 1. At 𝑔
2
= 1, the neurons behave like identical
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Figure 3: Nonsynchronous behavior of the two different FHN neurons under EES: (a) phase portrait of the first neuron; (b) phase portrait
of the second neuron; (c) phase portrait of the activation potentials for nonsynchronous behavior.

oscillators with a small synchronization error, as depicted
in Figure 5(a). As we decrease the value of 𝑔

2
to 0.8 and,

further, to 0.5, the synchronization error increases, as shown
in Figures 5(b) and 5(c), respectively. At 𝑔

2
= 0.01, the FHN

neurons’ degree of nonsynchronization is the worst, as appar-
ent in Figure 5(d). Important conclusions can be drawn from
Figures 4 and 5: either synchronization error 𝑒 between the
activation potentials of two FHN neurons or the region of
nonsynchronous behavior can increase, either for distant
neurons with more time-delay 𝜏 or for neurons with large
(absolute) difference values between gap junction strengths
𝑔
1
and 𝑔

2
; accordingly, the behavior of two FHN neurons

subject to a medium containing both unidirectional and
bidirectional gap junctions can change from synchronous to
nonsynchronous on an increase of either 𝜏 or |𝑔

1
− 𝑔
2
|.

4. Synchronization of FHN Neurons

Thepresentwork proposes a control strategy that uses a single
control input 𝑢 for synchronization of coupled FHN neurons

of different and unknown parameters. Thus, model (1) takes
the form

𝑑𝑥
1

𝑑𝑡
= 𝑥
1
(𝑥
1
− 1) (1 − 𝑟

1
𝑥
1
) − 𝑦
1
− 𝑔
1
(𝑥
1
− 𝑥
2
(𝑡 − 𝜏))

+ (
𝑎
1

𝜔
) cos (𝜔𝑡 + 𝜙

1
) + 𝜁
1
,

𝑑𝑦
1

𝑑𝑡
= 𝑏
1
𝑥
1
,

𝑑𝑥
2

𝑑𝑡
= 𝑥
2
(𝑥
2
− 1) (1 − 𝑟

2
𝑥
2
) − 𝑦
2
− 𝑔
2
(𝑥
2
− 𝑥
1
(𝑡 − 𝜏))

+ (
𝑎
2

𝜔
) cos (𝜔𝑡 + 𝜙

2
) + 𝜁
2
+ 𝑢,

𝑑𝑦
2

𝑑𝑡
= 𝑏
2
𝑥
2
.

(2)



Computational and Mathematical Methods in Medicine 7

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.5

1

e
=
x
1
−
x
2

−0.5

−1

𝜏 = 0.001

a

(a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.5

1

e
=
x
1
−
x
2

−0.5

−1

𝜏 = 15

a

(b)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.5

1

e
=
x
1
−
x
2

−0.5

−1

𝜏 = 30

a

(c)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.5

1
𝜏 = 40

a

−0.5

−1

e
=
x
1
−
x
2

(d)

Figure 4: Effects of time-delay due to separation between the two neurons under different gap junction strengths: (a) bifurcation diagram
of the synchronization error for 𝜏 = 0.001, (b) bifurcation diagram of the synchronization error for 𝜏 = 15; (c) bifurcation diagram of the
synchronization error for 𝜏 = 30; (d) bifurcation diagram of the synchronization error for 𝜏 = 40.

Assumption 2. The parameters (𝑟
1
, 𝑟
2
, 𝑏
1
, 𝑏
2
, 𝑔
1
, 𝑔
2
, 𝑎
1
, 𝑎
2
, 𝜙
1
,

and 𝜙
2
) of FHN neurons (2) are unknown constants.

Now, we develop a new control methodology for syn-
chronization of master-slave neurons (2) of different and
unknown parameters. Traditionally, synchronization of neu-
rons is addressed in order to minimize the differences
between all of the corresponding states of themaster and slave
neurons. In the literature [9–24], synchronization techniques
for FHN neurons ensure convergence of both synchroniza-
tion errors, the difference between the activation potentials
and the error between the recovery variables for the master-
slave systems, either to zero or in a small compact set.
Nevertheless, various experimental studies (e.g., [33]) have
demonstrated identical behavior of two synchronous neurons
for their activation potentials only. In reality, the recovery

variable is introduced in the model for membrane responses
of potassium activation and sodium inactivation. Two differ-
ent FHN neurons, with identical firing in terms of membrane
(or activation) potentials,might not necessarily have the same
(or similar) patterns for this hypothetical recovery variable.
This property can also be verified from FHN neurons (2).
Suppose that control law 𝑢 is designed to achieve 𝑥

1
= 𝑥
2
= 𝑥

and (2) reveal that ̇𝑦
1
= 𝑏
1
𝑥 and ̇𝑦

2
= 𝑏
2
𝑥. This implies that

the recovery variables, due to different parametric values of
𝑏
1
and 𝑏
2
, are not identical for the two different neurons. In

fact, different behavior between the recovery variables can be
responsible for identical membrane potentials of two differ-
ent neurons.

Here, we address a partial synchronization of two distinct
FHN neurons according to their activation potentials, as
supported by experimental results and theoretical reasoning.
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Figure 5: Effects of the unidirectional gap junctions in a medium between the two neurons: (a) bifurcation diagram of the synchronization
error for 𝑔

2
= 1; (b) bifurcation diagram of the synchronization error for 𝑔

2
= 0.8; (c) bifurcation diagram of the synchronization error for

𝑔
2
= 0.5; (d) bifurcation diagram of the synchronization error for 𝑔

2
= 0.01.

In order to construct a control law, the dynamics of synchro-
nization error 𝑒 = 𝑥

1
− 𝑥
2
for FHN neurons (2) can be

expressed as

𝑑𝑒

𝑑𝑡
= 𝑓
1
(𝑥
1
) − 𝑓
2
(𝑥
2
) − 𝑦
1
+ 𝑦
2
− 𝑔
1
(𝑥
1
− 𝑥
2
(𝑡 − 𝜏))

+ 𝑔
2
(𝑥
2
− 𝑥
1
(𝑡 − 𝜏)) + (

𝑎
𝐶𝜑

𝜔
) cos𝜔𝑡 − (

𝑎
𝑆𝜑

𝜔
) sin𝜔𝑡

+ 𝜁 − 𝑢,

(3)

where

𝑓
1
(𝑥
1
) = − 𝑟

1
𝑥
3

1
+ 𝑟
1
𝑥
2

1
+ 𝑥
2

1
− 𝑥
1
,

𝑓
2
(𝑥
2
) = − 𝑟

2
𝑥
3

2
+ 𝑟
2
𝑥
2

2
+ 𝑥
2

2
− 𝑥
2
,

𝑎
𝐶𝜑
= 𝑎
1
cos𝜑
1
− 𝑎
2
cos𝜑
2
,

𝑎
𝑆𝜑
= 𝑎
1
sin𝜑
1
− 𝑎
2
sin𝜑
2
,

𝜁 = 𝜁
1
− 𝜁
2
.

(4)

The synchronization error dynamics in (3) contain the
recovery variables (i.e., 𝑦

1
and 𝑦

2
). These terms can be

canceled through the control law 𝑢; however, this requires
measurement (or estimation) of the recovery variables, which
may not be possible in the case of neuronal synchronization.
To deal with this problem, we integrate the recovery-variable
dynamics in (2) to obtain

𝑦
1
= 𝑏
1
∫

𝑡

0

𝑥
1
𝑑𝛼 + 𝑦

1
(0) ,

𝑦
2
= 𝑏
2
∫

𝑡

0

𝑥
2
𝑑𝛼 + 𝑦

2
(0) .

(5)
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According to (4)-(5), the alternate synchronization error
dynamics becomes

𝑑𝑒

𝑑𝑡
= Φ
𝑇
Γ (𝑥
1
, 𝑥
2
) + 𝑥
2

1
− 𝑥
2

2
− 𝑒 + 𝜁 − 𝑢, (6)

where Φ ∈ 𝑅
10 is a vector of unknown constant parameters

and Γ(𝑥
1
, 𝑥
2
) ∈ 𝑅

10 is a vector of a known bases function
given by
Φ
𝑇
= [𝑟1 𝑟2 𝑏1 𝑏2 𝑦1 (0) 𝑦2 (0) 𝑔1 𝑔2 𝑎𝐶𝜙 𝑎𝑆𝜙] (7)

Γ (𝑥
1
, 𝑥
2
) = [−𝑥

3

1
+ 𝑥
2

1
𝑥
3

2
− 𝑥
2

2
−∫

𝑡

0

𝑥
1
𝑑𝛼 ∫

𝑡

0

𝑥
2
𝑑𝛼 −1 1 − (𝑥

1
− 𝑥
2
(𝑡 − 𝜏)) (𝑥

2
− 𝑥
1
(𝑡 − 𝜏))

cos𝜔𝑡
𝜔

−
sin𝜔𝑡
𝜔

]

𝑇

. (8)

The proposed controller takes the form

𝑢 = Φ̂
𝑇
Γ (𝑥
1
, 𝑥
2
) + 𝑥
2

1
− 𝑥
2

2
+ 𝐾𝑒, (9)

where Φ̂ is the estimate of vectorΦ and𝐾 is a scalar quantity.
The selected adaptation law for Φ̂ is

̇̂
Φ =

𝑝𝑒Γ (𝑥
1
, 𝑥
2
) 1

𝑞
, 𝑝 > 0, 𝑞 > 0, (10)

where 𝑝 and 𝑞 are scalars.

Remark 3. It is notable that the control and adaptation laws,
containing integral terms in Γ(𝑥

1
, 𝑥
2
), do not require mea-

surement of recovery variables for the master-slave neurons,
owing to the utilization of (5).

Now, we provide a condition for synchronization of FHN
neurons (2) by application of control and adaptation laws
(7)–(10) as follows.

Theorem 4. Consider the time-invariant FHN neural oscilla-
tors (2)with synchronization error dynamics (6)–(8) satisfying
Assumption 2 under zero disturbances (i.e., 𝜁

1
= 𝜁
2
= 0).

Nonlinear control and adaptation laws (8)–(10), which satisfy
𝑝(𝐾 + 1) > 0, ensure

(i) synchronization of the coupled FHN neurons under
different and unknown parameters by guaranteeing the
convergence of synchronization error 𝑒 to zero;

(ii) convergence of Φ̂ to Φ̂∗, where Φ̂∗ is the constant
steady-state value satisfying (Φ− Φ̂∗)𝑇Γ(𝑥

1
, 𝑥
2
) = 0, if

the steady state is achieved within a finite time.

Proof. Incorporating (9) into (6) leads to

𝑑𝑒

𝑑𝑡
= (Φ − Φ̂)

𝑇

Γ (𝑥
1
, 𝑥
2
) − (𝐾 + 1) 𝑒 + 𝜁. (11)

Constructing a Lyapunov function candidate as

𝑉(𝑒, (Φ − Φ̂)) = (
1

2
) (𝑝𝑒
2
+ 𝑞(Φ − Φ̂)

𝑇

(Φ − Φ̂)) , (12)

with 𝑝 > 0, 𝑞 > 0, the time-derivative of (12) is given by

�̇� (𝑒, (Φ − Φ̂)) = 𝑝𝑒 ̇𝑒 − 𝑞(Φ − Φ̂)
𝑇 ̇̂
Φ. (13)

Note that (Φ − Φ̂)𝑇 ̇̂Φ = ̇̂
Φ

𝑇

(Φ − Φ̂). Incorporating (11) into
(13), we obtain

�̇� (𝑒, (Φ − Φ̂)) = 𝑝𝑒(Φ − Φ̂)
𝑇

Γ (𝑥
1
, 𝑥
2
) − 𝑝 (𝐾 + 1) 𝑒

2

− 𝑞(Φ − Φ̂)
𝑇 ̇̂
Φ + 𝑝𝑒𝜁.

(14)

Application of the adaptation law (10) under 𝜁 = 0 yields

�̇� (𝑒, (Φ − Φ̂)) = −𝑝 (𝐾 + 1) 𝑒
2
. (15)

Thus, convergence of synchronization error 𝑒 to zero
is ensured, which completes proof of statement (i) in
Theorem 4. In practice, it has been observed that the steady
state is achieved within a finite time by application of an
adaptive control law such as inTheorem 4. In the steady state,
the synchronization error and the neuronal states satisfy

̇𝑒 = 0 𝑒 = 0, 𝑥
1
= 𝑥
2
= 𝑥. (16)

Using 𝑒 = 0 in (10), ̇̂Φ = 0 is obtained in the steady state.
This further implies that Φ̂ = Φ̂

∗ is satisfied in the steady
state, where Φ̂∗ is a constant. Similarly to the steady-state ana-
lysis in [14], applying the steady-state conditions (i.e., ̇𝑒 = 0,
𝑒 = 0, 𝑥

1
= 𝑥
2
, and Φ̂ = Φ̂∗) to (11), we obtain

(Φ − Φ̂
∗
)
𝑇

Γ (𝑥
1
, 𝑥
2
) = 0, (17)

which completes the proof of statement (ii) in Theorem 4.

Remark 5. In contrast to the traditional synchronization
methodologies [9–20], the proposed adaptive control strategy
inTheorem 4 can be used for synchronization of two different
FHN neurons with all parameters unknown. This feature is
achieved by incorporation of the knowledge acquired in
experimental studies (e.g., [33]) on synchronization of a
single state (i.e., the membrane potential) of neurons (rather
than both themembrane potential and the recovery variable).

We now provide conditions for robust adaptive synchro-
nization of different FHN neurons of unknown parameters
under disturbances. First, wemake the following assumption.

Assumption 6. Assume that ‖𝜁‖ = ‖𝜁
1
− 𝜁
2
‖ ≤ 𝜁
𝑚
and ‖Φ‖ ≤

Φ
𝑚
, where 𝜁

𝑚
and Φ

𝑚
are positive scalars.
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Theorem 7. Consider the time-invariant FHN neurons (2)
with synchronization error dynamics (6)–(8) satisfying Assum-
ptions 2 and 6. Nonlinear control laws (8)-(9) and the adapta-
tion law given by

̇̂
Φ =

(𝑝𝑒Γ (𝑥
1
, 𝑥
2
) − 𝑘
𝑐 ‖𝑒‖ Φ̂)

𝑞
, 𝑝 > 0, 𝑞 > 0, 𝑘

𝑐
> 0,

(18)

where 𝑘
𝑐
is a scalar, will ensure uniformly ultimately bounded

synchronization error 𝑒 and parameter estimation errorΦ−Φ̂,
if𝑝(𝐾+1) > 0 is satisfied.Moreover, the estimation error can be
kept small by selecting a large value of 𝑘

𝑐
for a given value of 𝑝,

and the synchronization error can be minimized by enlarging
𝑝(𝐾 + 1) for a given value of 𝑘

𝑐
.

Proof. Consider Lyapunov function (12). The time-derivative
of (12) was given by (14). Using (14) and (18) implies

�̇� (𝑒, (Φ − Φ̂)
𝑇

) = −𝑝 (𝐾 + 1) 𝑒
2
− (Φ − Φ̂)

𝑇

Φ̂𝑘
𝑐 ‖𝑒‖ + 𝑝𝑒𝜁.

(19)

It can easily be verified under ‖Φ‖ ≤ Φ
𝑚
that

(Φ − Φ̂)
𝑇

Φ̂ = (Φ − Φ̂)
𝑇

(Φ̂ − Φ + Φ)

≥

Φ − Φ̂



2

−

Φ − Φ̂


‖Φ‖

≥

Φ − Φ̂



2

−

Φ − Φ̂


Φ
𝑚
.

(20)

Using (19), (20), and ‖𝜁‖ ≤ 𝜁
𝑚
yields

�̇� (𝑒, (Φ − Φ̂)
𝑇

)

≤ −𝑝 (𝐾 + 1) 𝑒
2
− (

Φ − Φ̂



2

−

Φ − Φ̂


Φ
𝑚
)

× 𝑘
𝑐 ‖𝑒‖ + 𝑝𝑒𝜁𝑚,

(21)

�̇� (𝑒, (Φ − Φ̂)
𝑇

)

≤ − ‖𝑒‖ (𝑝 (𝐾 + 1) ‖𝑒‖ + 𝑘𝑐(

Φ − Φ̂


−
Φ
𝑚

2
)

2

− 𝑘
𝑐

Φ
2

𝑚

4
− 𝑝𝜁
𝑚
) .

(22)

Given that 𝑝(𝐾+1) > 0, (22) implies that �̇�(𝑒
1
, (Φ−Φ̂)

𝑇
) < 0

if either

‖𝑒‖ >
𝑘
𝑐
Φ
2

𝑚
/4 + 𝑝𝜁

𝑚

𝑝 (𝐾 + 1)
(23)

or


Φ − Φ̂


>
Φ
𝑚

2
+ √

Φ
2

𝑚

4
+
𝑝𝜁
𝑚

𝑘
𝑐

. (24)

Therefore, synchronization error 𝑒 and estimation error Φ −
Φ̂ are uniformly ultimately bounded. The size of compact set
‖Φ−Φ̂‖ ≤ Φ

𝑚
/2+√Φ2

𝑚
/4 + 𝑝𝜁

𝑚
/𝑘
𝑐
can beminimized by sel-

ecting a large value of 𝑘
𝑐
for a given value of 𝑝. Similarly, the

size of ‖𝑒‖ ≤ (𝑘
𝑐
Φ
2

𝑚
/4+𝑝𝜁

𝑚
)/𝑝(𝐾+1) can be kept smaller by

selecting a large value of 𝑝(𝐾 + 1) for a given parameter 𝑘
𝑐
.

This completes the proof of Theorem 7.

Remark 8. By application of Theorem 7, synchronization of
different chaotic FHN systems of unknown parameters under
disturbances can be achieved, in contrast to the traditionalis-
tic synchronization tools, by ensuring uniformly ultimately
bounded synchronization and parametric estimation errors.
Further, the effect of disturbances can be minimized by
selecting suitable control parameters𝐾, 𝑘

𝑐
, and 𝑝.

5. Controlled Synchronization Simulation

To demonstrate the effectiveness of the proposed methodol-
ogy, we set themodel parameters for FHNneurons (2) as 𝑟

1
=

10, 𝑎
1
= 0.1, 𝑏

1
= 1, 𝜙

1
= 𝜋, 𝑔

1
= 0.1, 𝑟

2
= 10.5, 𝑎

2
= 0.14,

𝑏
2
= 1.06, 𝜙

2
= 𝜋/3, 𝑔

2
= 0.2, 𝑓 = 0.135, and 𝜏 = 40. By

Theorem 7, the controller and the adaptation law parameters
are obtained as 𝑝 = 1, 𝑞 = 1, 𝑘

𝑐
= 5, and 𝐾 = 20. Figure 6

shows phase portraits and a synchronization error plot for the
two coupled chaotic FHN neurons under disturbances 𝜁

1
=

0.1 sin 12𝑡 and 𝜁
2
= 0.1 sin 20𝑡. By application of the

controller at 𝑡 = 185, synchronization error 𝑒 converges to
a small compact set, as shown in Figure 6(c).

Although the simulation results provided herein rep-
resent a specific scenario of FHN neurons, the proposed
methods inTheorems 4 and 7 are applicable to a general form
of FHN neurons with different parameters. Further, robust-
ness against bounded perturbations has been ensured in
Theorem 7. The results of Theorems 4 and 7 may not be
applicable to FHNsystemswith fast time-varying parameters.
Nevertheless, studies on time-varying FHN systems can be
carried out in the future. To conclude, the proposed robust
adaptive control methodology can be used for synchroniza-
tion of distinct FHN neurons of unknown model parameters
subject to disturbances.

6. Conclusions

This paper addressed the synchronization of two coupled
chaotic FHN neurons for different and unknown parameters
under uncertain external stimulation and disturbances. The
dynamics of coupled FHN neurons of different parameters
were studied in amedium containing both unidirectional and
bidirectional gap junctions. The effects of the neuronal-
parameter difference, the gap junction strength variation, and
time-delay deviation on the synchronization error were
investigated. Nonlinear adaptive and robust adaptive control
strategies were developed to cope with synchronization of the
FHN neurons under the circumstances of different and
unknown parameters, the infeasibility of recovery-variable
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Figure 6: Synchronization of the two different coupled chaotic FHN neurons under EES by application of the proposed control scheme.The
controller was applied for the time 𝑡 ≥ 185: (a) phase portrait of the first neuron; (b) phase portrait of the second neuron; (c) synchronization
error plot.

measurement, uncertainty of stimulation current, and dis-
turbances. The proposed control scheme was successfully
applied to the synchronization of coupled chaotic FHN neu-
rons, the numerical simulation results of which were pro-
vided.
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