Chaos, Solitons and Fractals 87 (2016) 197-207

Contents lists available at ScienceDirect

Chaos, Solitons and Fractals

Nonlinear Science, and Nonequilibrium and Complex Phenomena

journal homepage: www.elsevier.com/locate/chaos

Delay-range-dependent synchronization of drive and response systems
under input delay and saturation

@ CrossMark

Muhammad Rehan®*, Muhammad Tufail?, Keum-Shik HongP

2 Department of Electrical Engineering, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
b Department of Cogno-Mechatronics Engineering and School of Mechanical Engineering, Pusan National University; 2 Busandaehak-ro, Geumjeong-gu,
Busan 609-735, Republic of Korea

ARTICLE INFO ABSTRACT

Article history:

Received 3 December 2015
Revised 4 February 2016
Accepted 3 April 2016
Available online 20 April 2016

Keywords:

Synchronization

Input saturation

Input delay

Delay-range dependency
One-sided Lipschitz condition

This paper addresses the synchronization of nonlinear drive and response systems under input satura-
tion and subject to input time-delay. In considering generalized forms of the systems, their dynamics
are assumed to satisfy the one-sided Lipschitz condition along with the quadratic inner-boundedness
rather than the conventional Lipschitz condition. Further, the time-delays are handled by applica-
tion of the delay-range-dependent methodology, rather than the delay-dependent one, utilizable for
both short and long time-delays. Synchronization controller designs are provided by application of the
Lyapunov-Krasovskii functional, local sector condition, generalized Lipschitz continuity, quadratic inner-
boundedness criterion and Jensen’s inequality. To the best of the authors’ knowledge, a delay-range-
dependent synchronization control approach for the one-sided Lipscitz nonlinear systems under input
delay and saturation constraints is studied for the first time. A convex-routine-based solution to the con-
troller gain formulation by application of recursive nonlinear optimization using cone complementary
linearization is also provided. The proposed methodology is validated for synchronization of modified

Chua’s circuits under disturbances by considering the input delay and saturation constraints.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Synchronization of complex nonlinear systems, made possi-
ble by means of a feedback controller, has vast applications in
robotics, secure communications, image processing, avionics, infor-
mation processing, and biomedical networks [1-5]. The main pur-
pose of synchronization control is to establish a coherent behavior
between the drive and response systems by applying a feedback
of the difference between the states or outputs [6-8]. Different
control schemes and tools for synchronization of nonlinear sys-
tems have been realized: Nonetheless, selection of a synchroniza-
tion controller and type of control methodology depend on the cir-
cumstances and actual environment, which often vary from case
to case. For instance, adaptive controllers are used for adaptation
of wide-ranging unknown parameters, as seen in [9]. Robust con-
trollers, meanwhile, are applicable to fast-varying changes and per-
turbations, as demonstrated in [10]. Constrained controllers are
employed to deal with input, state or output restraints such as
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saturation. Likewise, consensus controllers are designed to deal
with specific communication and network protocols (see [11,12]).
Output and state feedback controllers are employed according to
the availability of states and outputs. Observer-based controllers
are preferable to attain the advantages of the state feedback ap-
proaches when the states are unknown [13]. Disturbance-observer-
based controllers are utilized for adaptive cancellation of unknown
matching disturbances [14]. Controller design for effectual synchro-
nization remedy of nonlinear systems is still a thought-provoking
research area, especially in view of system dynamics, uncertainties,
various constraints, and overall performance goals.

Controllers for synchronization of nonlinear time-delay systems
are designed to utilize time-delay data such as lower and up-
per bounds, the rate of delay, and the number of delays appear-
ing in the state, input or output. Conventional controllers for syn-
chronization of nonlinear systems might not guarantee synchro-
nization, because time-delays can cause oscillations and instabil-
ity in the response of the synchronization error. Several attempts
to synthesize synchronization controllers for time-delay systems
have been made, exclusively by employing delay-independent and
delay-dependent methods and by applying elusive delay-range-
dependent techniques. For instance, two delay-dependent syn-
chronization control methods for Lur'e systems based on delayed
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feedback via the partitioning-interval approach were developed in
[15]. Zhang et al. [16] utilized range-of-delay information to de-
velop a global synchronization methodology for complex networks
under stochastic disturbances. Fei and coauthors [17] followed the
delay-partitioning approach in studying the coherent behavior of
a complex network with interval time-varying delay coupling. Li
et al. [18] utilized a novel Lyapunov function in their evalua-
tion of a delay-range-dependent synchronization control mecha-
nism for Lur'e systems. The work in [19] achieved the synchro-
nization of chaotic systems with time-varying state delays and de-
layed nonlinear coupling between the drive and response systems.
Recently, Ma and Jing [20] developed, by means of a local sector
condition, a delay-independent state-feedback control approach for
synchronization of uncertain nonlinear systems with time-varying
state delays and input saturation. More recently, Cai and coworkers
[21] have reported delay-dependent synchronization conditions of
singularly perturbed systems with coupling delays.

Works on the delay-range-dependent stability investigation,
control and synchronization proficiencies (owing to their utilities
for dealing with short as well as long time-delays in the state, out-
put, input or coupling between nonlinear systems) are proceeding
apace. The literature on synchronization of the nonlinear systems
using a delay-range-dependent approach by incorporating the in-
put saturation nonlinearity and time-delays, however, is deficient.
There are two major issues with the existing synchronization tech-
niques for the nonlinear time-delay systems. First, most of the
above-mentioned studies employ a conservative continuity condi-
tion like the conventional Lipschitz condition for the derivation of
the synchronization control strategies. The literature of mathemat-
ics has developed a less conservative one-sided Lipschitz condition,
which can be used to represent the Lipschitz nonlinear systems as
a specific case of the one-sided Lipschitz nonlinear systems. More-
over, the one-sided Lipschitz constant may have a smaller value
than the Lipschitz constant, which fact can be more effectively ap-
plied for derivation of the controllers to synchronize nonlinear os-
cillators with large or region dependent Lipschitz constants. Sec-
ond, the input saturation nonlinearity cannot be ignored in practi-
cal systems because an untreated saturation nonlinearity can lead
to oscillations, lags, overshoots, undershoots, performance abase-
ment, and divergence of the closed-loop system response. For syn-
chronization of the nonlinear systems under input time-delays,
dealing with the saturation consequences is a non-trivial research
dilemma owing to simultaneous considerations of the input satu-
ration and the input delay effects.

This paper introduces controller design for synchronization of
nonlinear systems under input saturation and subject to input
time-delay varying within an interval of known lower and upper
bounds. By utilizing the Lyapunov-Krasovskii (LK) functional, one-
sided Lipschitz condition, quadratic inner-boundedness, the range
of the input delay, the limit on the derivative of the delay, the local
sector condition for input saturation and Jensen’s inequality, non-
linear matrix inequalities are derived to determine an appropriate
controller gain matrix, specifically by providing an estimate of the
region of stability in terms of synchronization error. From these
principal design conditions, novel synchronization controller de-
sign conditions for Lipschitz nonlinear systems, both for the delay-
dependent case and for the scenario of an unknown bound on
the delay-rate, are derived. Moreover, the proposed method is ex-
tended for robust synchronization of nonlinear systems under in-
put lag and saturation by considering the L, norm-bounded pertur-
bations in evaluating the allowable bound of the disturbance and
disturbance attenuation level at the state estimation error.

The main contributions of the paper are summarized as fol-
lows: (i) To the best of our knowledge, delay-range-dependent syn-
chronization of the nonlinear systems under input saturation and
input delay, to deal with the practical limitations of actuators, is

addressed for the first time. (ii) An inaugural treatment of syn-
chronization of time-delay in one-sided Lipschitz nonlinear sys-
tems is provided. Such an approach is less conservative and can
be employed to synchronize a broader class of nonlinear systems
than the conventional Lipschitz systems. (iii) An estimate of the
region of stability in terms of the difference between initial con-
ditions of the nonlinear master-slave systems under input delay
and saturation is provided. (iv) A robust synchronization method
for time-delay nonlinear systems with one-sided Lipschitz nonlin-
earities, input delay, input saturation, and external perturbations is
explored. In this regard, an upper bound on the L, norm of the
synchronization error in terms of the initial condition and distur-
bances and the region in which the synchronization error remains
bounded are revealed.

Additionally, a numerically tractable approach is outlined for
determining the synchronization controller gain matrix, parame-
ters representing the ellipsoidal region of stability, and scalars to
constitute bounds on the synchronization error by utilizing the
cone complementary linearization algorithm. Finally, a numeri-
cal simulation example is provided to demonstrate the effective-
ness of the proposed methodology for synchronization of input-
constrained modified chaotic Chua’s circuits in the presence of in-
put delays and disturbances.

This paper is organized as follows: the drive and response sys-
tems are described in Section 2. In Section 3, various synchroniza-
tion controller designs for dealing with nonlinearities, delays, in-
put saturation and disturbances are introduced. In Section 4, sim-
ulation results are provided. Concluding remarks are rendered in
Section 5.

Standard notation is used in this paper. A block diagonal matrix
is denoted as diag(xq, xy, ..., Xm), where xq,X;, ..., Xy are entries
at the corresponding diagonal blocks. L, norm for a vector x € R"
is represented as ||x||, and the ith row of a matrix A is assigned
as Agy. (w, v) represents the inner product between two vectors
w and v of matching dimensions. The saturation nonlinearity is
defined by W (ug) = sgn(ug) min(i, [ugl) for the saturation
bound given as ii(;, > 0. Positive definite and positive semi-definite
matrices are represented as Y > 0 and Y > 0, respectively, for a
symmetric matrix Y.

2. System description

Consider a master (or drive) system

d
% =AXm+f(t,Xm)+d1,

Ym(t) = Cxpp, (1)
where x;, € R", ym € RP and d; € R™ represent the state, output
and disturbance vectors, respectively. A and C are constant matri-
ces of appropriate dimensions, and f(t, xn) € R" denotes the non-
linear dynamics in the system. The slave (or response) system is
given by

dx.

de =Axs + f(t,xs) + BU(u(t — 7)) + do,

Ys(t) = Cxs, (2)
where x; € R", ys € RP, u € RY and d, € R™ are the state, output,
control input and disturbance to the response system, respectively,
B is the input matrix, and W(u) is the input saturation vector-
function. The input time-delay satisfies

O<t=1(t) <12, (3)

() < u. (4)
Assumption 1. The function f(t, x) satisfies the one-sided Lips-
chitz condition given as

(f(t, xm) — f(£,X5), Xm — Xs5) < p||Xm —Xs||2 (5)
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for a scalar p, and the quadratic inner-boundedness condition
given as

(f(t.xn) = (. %) (f(t. %) = f(£.%5))
§8||xm—xs||2+0(xm—xs,f(t,xm)—f(t,xs)) (6)
for scalars § and o.

Both the one-sided Lipschitz condition and the quadratic inner-
boundedness inequality have been employed to construct ob-
servers and controllers for a broader class of nonlinear systems rel-
ative to the Lipschitz continuity [22-26]. The one-sided Lipschitz
and quadratic inner-boundedness conditions are the supersets of
the conventional Lipschitz condition. Moreover, the conditions in
(3) and ( 4) are less conservative even for the Lipschitz nonlinear
systems as addressed in [22-26]. Therefore, the present work ex-
plores a synchronization controller design method for the general-
ized class of systems.

Defining the synchronization error e = X, — X5, (1) and (2) im-
plies
de
i =Ae+ f(t,xm) — f(t,x5) =B (u(t — 7)) +di — dy,
which, by application of ®(u) =u - W (u) and d = d; — d,, further
reveals

@ =Ae+ f(t,xm) — f(t.xs) + BO(u(t — 7)) —Bu(t —v) +d.

dt
(7)
For the dead-zone function ®(u), the sector condition
O (u(t - T)IWIw(t —7) - P(u(t-1))] =0 (8)

is satisfied for a diagonal positive-definite matrix W (see [27,28])
if, for an auxiliary defined vector w € RY, the region given by

S() = {W €R™ —lip supt—1)—we—-1) < L_l(i)} (9)

remains valid for the saturation limit .

By fixing w(t—t)=]Je(t—t) for an auxiliary matrix J of
matching dimensions, we obtain

T (u(t — ))W[e(t — ) — D(u(t — 7))] > 0, (11)
Application of (7) and (10) obtains
% =Ae —BKe(t — 7) + f(t,xm) — f(t, xs) + BO(u(t — 7)) +d.

(13)

For positive definite matrices P, Q, Q2, Q3, Z; and Z,, we define an
LK functional ([19,23], and [29]) as

2
V(t.e) = el (t)Pe(t) + Z/t eT(6)Qie(6)do
i=1 /=T

0

t t
+/ ¢ (0)Q5e(0)d0 + 1 / ¢T(6)2,6(0)d0ds
t—7(t) t+s

.
—1 ot

T / / ¢T(0)2,6(0)d0ds. (14)
T t+s

A sufficient condition for synchronization of the master-slave sys-
tems given by (1) and (2) using the delayed controller (10) under
the input saturation constraint is provided in the form of the fol-
lowing theorem.

Theorem 1. Consider the drive and response systems (1) and (2) un-
der delayed and saturated control signal WV (u(t — t)) satisfying the
time-delay properties (3) and ( 4), d(t) =0, and Assumption 1. Sup-
pose that there exist matrices K and J, symmetric matrices P, Q, Qo,
Qs, Zy and Z,, diagonal matrix W and scalars v, and v, such that
the inequalities

P>0,Q>0,0Q,>0,Q3>0,7Z;>0,7, >0,

W >0, v, >0, vy, >0, (15)
3. Controller synthesis
P K ~Ji :
The proposed controller for synchronization of (1)and (2) is " 2 20, Vi=1,..m, (16)
given by ®
rV; —PBK VA 0 (—l)] + U\)z)] +P PB —‘roW T]ATZ1 'L'21ATZZ T
* \Ilz Zy Zy 0 0 1 KTBTZ] 21 KTBTZZ
* * - -Z1 -7 0 0 0 0 0
| o * * - -2 0 0 0 0
A= * * * * —wol 0 T1Z4 012> <0 (a7
* * * * * —2W 71 BTZ1 21 BT22
* * * * * * -7 0
L * * * * * * * —Z;
u(t) = Ke(t) (10) are satisfied, where

for an appropriate controller gain matrix K. The overall closed-loop
system by considering the drive system (1), response system (2),
and the proposed controller (10) is shown in Fig. 1. The drive and
the response systems are under external disturbances d; and d,,
respectively. The synchronization error state vector is computed via
equation e = x;; — Xs and then sent as a feedback to the proposed
controller (10). The control signal is computed via u(t) = Ke(t)
and assigned to the response system, which undergoes the satu-
ration nonlinearity and the input delay, inherently present in the
response system. The aim of the present study is to compute the
controller gain matrix K for synchronization of the drive and the
response systems subject to the input saturation and time-varying
unknown input time-delay t(t) in the absence or in the presence
of the disturbances.

Wy =PA+ATP+ Qi + Qo+ Qs — Z; + (pvy + 81o)I.
Wy = —(1-u1)Q3 — 22,
Tn =T —T7.

Then, for all initial conditions holding for region V (¥, xm () —
Xs(1)) <1 for all ¥ e [-t(t) 0], the synchronization error defined
by e(t) = xm(t) — xs(t) converges to the origin asymptotically.

Proof. The time derivative of V(¢, e) is given by
V(t,e) = el (t)P(Ae — BKe(t — T) + f(t, xm) — f(t,Xs)
+BP(u(t —t)) +d) + (Ae — BKe(t — T) + f(t, xm)
—f(t,xs) + BO(u(t —t)) +d)Pe(t)
2 3
=Y et —t)Qe(t — )+ Y e (HQe(t) — (1 - e’

i=1 i=1
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Drive system

dx,

4, ; = At fx,)+d,
y,.()=Cx, Xon
Controller LBt ) BR-) | xS
u(t) . —0
u(t) = Ke(0) y.()=Cx,
Response system
e(t)

Fig. 1. Closed-loop system formed by the drive and the response systems by using the proposed control strategy.

x(t —7(t))Qse(t — t(t)) + (Ae — BKe(t — 7)

+F(t, Xm) — f(E,X5) + BOu(t — 7)) +d)T

x(T2Z1 + t4Z2) x (Ae — BKe(t — ©) + f(t, Xm)
—f(t,xs) + BOu(t — 1)) +d)

_7 / C T O)2,60)d0 — 1 / T T 0)2,6(0)d.

-7

(18)

The conditions (5) and ( 6) for positive scalars v; and v, are
rewritten as

viel () (F(t, xm) — f(t, x5)) < pviel (t)e(t), (19)
V2 (f(t,xm) — F(E. %)) (F(t Xm) — F(E,X5))
< 8vpe” (De(t) + avael () (F(t, xm) — f(E,X5)). (20)

According to (4), (18), (19) and (20), this implies that

V(t,e)
< el (t)P(Ae — BKe(t — T) + f(t, Xm) — f(t.Xs) +BO(u(t — 7)) +d)
+(Ae —BKe(t — T) + f(t, xm) — f(t,xs) + BO(u(t — 7)) +d)
2 3
Pe(t) - Y el (t —)Qe(t — 7)) + Y _ e ()Qe(t)
i=1 i=1
—(1 = p)e’(t —(t))Qse(t — T(t)) + (Ae — BKe(t — T)
+f (. xm) — f(E.%5) + BO(t — 7)) + &) (1221 + TH25)
x (Ae — BKe(t — ) + f(t, xm) — f(t,xs) + B®(u(t — 7)) +d)

t -1
-7 / ¢T(6)2,6(6)d6 — T2 / ¢T(0)2,6(6)d6
[

t—Ty
—v1el () (f(t. xm) — F(t.x5)) + pvieT (O)e(t) — v (f(t, Xm)
—f(&.x)) (£ Xm) — F(E,X5)) + Svae” (D)e(t)
+ov2eT (O) (f(t, Xm) — f(t. x5)).

Incorporation of (11) obtains

(21)

V(t,e)
< el (t)P(Ae — BKe(t — T) + f(t, Xm) — f(t.Xs) + BO(u(t — 1))

+d) + (Ae — BKe(t — ©) + f(t,xm) — f(t,xs) + BO(u(t — 7))
2 3

+d)Pe(t) — Y e (t — 7)Qe(t — ;) + Y e (t)Qie(t)
i=1 i=1

—(1—p)e’(t — T(t))Qse(t — T(t)) + (Ae — BKe(t — 1)

+f(t.Xm) = F(£.%5) + BO(u(t — 1)) + d) (1721 + T4 25)

x (Ae — BKe(t — T) + f(t,xm) — f(t,xs) + BO(u(t — 7)) +d)

t -1
—7 / ¢T(6)2,6(6)d6 — T2 / ¢T(0)2,6(0)d6
[

t—1;

—v1eT (O (f(t. xm) — f(t.%5)) + pvrel (e(t) — vy (f(t. xm)
—fE X)) (fE.Xm) = F(£.%5)) + Sva€T (D)e(t)
+ove () (f(t, xm) — f(t. X)) + T (u(t — 7))WJe(t — 1)
20Tt —t)Wout —1))+e' (t —)'Wd(u(t - 1)).

(22)
By virtue of Jensen’s inequality, then, we have
t

n / ¢7(0)2:6(0)d0 < —(e(t)

t—-1;

—e(t — 1)) Zi (e(t) —e(t — 1)), (23)
Ty / T T 0)206(0)d0

< —(e(t—T(0) —e(t — 1)) Za(e(t — (1)) —e(t — 2))
—(e(t—m) —e(t —T(O)) Za(e(t — 1)) —e(t — T(1))). (24)

And from (22) to (24), it follows that
V(t,e)
< el (t)P(Ae — BKe(t — T) + f(t, xm) — f(t, Xs) + B®(u(t — 1))
+d) + (Ae —BKe(t — 7) + f(t,xm) — f(t,xs) + B®(u(t — 7))
2 3
+d)Pe(t) =Y el (t — 1)Qe(t — ;) + Y el (H)Qe(t)
i=1 i=1
—(1—w)e’ (t — 7 (t))Qse(t — T (t)) + (Ae — BKe(t — 1)
+f(t.xn) = f(t. %) +BOu(t — 1)) +d)' (1?21 + T4 2)
x (Ae — BKe(t — ) + f(t,xm) — f(t,xs) + B®(u(t — 7)) +d)
—(e(t) —e(t — 1)) Zi(e(t) — e(t — 1)) — (e(t — T (1))
—e(t— 1)) xZy(e(t— (1)) —e(t — 1)) — (e(t — 7))
—e(t—T(6)))'Zy x (e(t —11) —e(t — T(t)))
—viel () (f(t. xm) — f(t.x5)) + pvie’ (H)e(t)
—V2 (f(E.Xm) = F(£. )" (F(E.Xm) — F(E.%5)) + 8vze” (D)e(t)
+ovael () (F(t, Xm) — f(t. %5)) + DT (u(t — T))WJe(t — T)
20T (u(t — WUt —1)) + e’ (t — )] WP (u(t — 7)),
(25)

this further produces

V(e t) < &l A&, (26)
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g =[e®" eft-t(@t) ef(t-1)

el(t—1) fT(t,xm)—fT(tx) @T(ut-1))] (27)

' —PBK Z 0
* —(1-u1)Q—22 Z Z
Ay = * * —Ql—Zl—Zz 0
27 4 * * -Q -2
* * * *
* *k * *
+[A BK 0 0 I B]T(r1221+r22122)[A BK 0 0 I B

for d(t) = 0. To attain the asymptotic stability of the synchroniza-
tion error system (13), the condition V (e, t) < 0, which can be at-
tained through the constraint A, < 0, must hold. Then, the in-
equality (17) in Theorem 1 is achieved by application of the Schur
complement to A, < 0.

Theorem 2. Consider the drive and response systems (1) and (2) un-
der delayed and saturated control signal WV (u(t — t)) satisfying the
time-delay properties (3)-(4) and Assumption 1. Suppose that there

(—vi+ov)[+P PB+]TW

0 0

0 0

0 0
—Uzl 0

* -2W

(28)

exist matrices X and M, symmetric matrices Qy, Qy, Q3, Zy, and Z,, a
diagonal matrix H and scalars v, and v, such that the inequalities

Y>0,0,>00,>0,0;>0,7>0,7,>0,

For initial conditions bounded by V(0, e(0)) < 1, we have V(t, H>0,v1>0,v, >0, (31)
e) < 1, because V(t,e) <0. V(t, e) < 1 implies eT(t)Pe(t) < 1.
In addition, the initial condition V (¢, xn(¥) —xs(¥9)) <1 implies Y X(Ti) 7M(TI_) )
that eT(8)Pe(9) < 1 for all ¥ € [—7(t) 0]. Combining the con- % a%i) >0, Vi=1,....m, (32)
(W, —BX 7 0 (=v1+0v)Y+1 BH+M' 1;YAT 15, YAT [pv1 + 8V, |Y]
* ‘114 Zz 22 0 0 'L'1XTBT 'L'21XTBT 0
* * Wy 0 0 0 0 0 0
* % -0y — 7, 0 0 0 0 0
A3 =1 « * * * -yl 0 7l Tl 0 <0 (33)
* * * * * —2H Ty H'BT 7, HTBT 0
* * * * * % —YZIAY 0 0
* * * * * * * —YZ;lY 0
| * * * * * * * —I i

straints eT(t)Pe(t) < 1 and e(9)Pe(9) < 1 for t > 0 and for ¥
[ =t(t) 0 ], respectively, we obtain the region el (t — T)Pe(t —
7) < 1. By including the ellipsoidal region e’ (t — t)Pe(t — ) <1 in

the sector S(i1) given by (12), we obtain

el (t — T)Pe(t — 1) > i e" (t — 7) (K —j(i))T

X(l((,) —](,-))e(t—‘t), Vi=1,...,m, (29)
this implies the inequality
P—af (K = J) (Ko —J@y) = 0. Vi=1,....m. (30)

Applying the Schur complement, we attain the inequality (16) in
Theorem 1, which completes the proof. O

The constrained synchronization control approach in Theorem
1 requires an a priori guess of the matrices K and J, and therefore

are satisfied, where

W3 =AY +YAT + Q1 + Qo+ Q3 - 7y,
Wy =—(1-p1)Q - 22,
Vs =-Q1 —Z; - 2.

Then, for all initial conditions holding for region V (¥, xm(0) —
xs()) <1forall® e[ —t(t) 0 JwithP=Y"1,Q =Y"1Q,Y 1,
Q=Y"10,Y"!, Q3=Y"'Q3y"', Z =Y"1Z;y"! and Z,=
Y-1Z,Y=1, the synchronization error defined by e(t) = xm(t) — Xs(t)
converges to the origin asymptotically. The gain matrices can be
determined by K = XY~! and ] = MY~1.

Proof. Applying the congruence transformation to (16) and (17)
using diag(P~',I) and diag(P-!,P-',p-1 Pl [ w-1 z1 z°1),
respectively, and  substituting Y =P-1, Q; =P~1Q,P !,
Q=P 1QPY, Q3=P'QsP", Z; =P 'Z1P"', Z, =P 'Z,P 7,
H=W-1, X =KY and M =]JY, we obtain the constraints in (32)
and

B \113 + (,01)1 + 51)2)Y2 —-BX Z] 0 (—U] + O'Uz)Y +I1 BH+ MT T1YAT TZ]YAT
* \114 Zz 22 0 0 ‘C]XTBT T21XTBT
* * W5 0 0 0 0 0
* * * —Qy — 7 0 0 0 0

Ay = . . . QZ* 2 .y 0 ol iy <0. (34)

* * * * * —2H T;H'BT  ©HTBT
* * * * * * —YZ;1Y 0

- * *o K * * x x  =YZ'Y

cannot be applied to determine the controller gain Matrix Through
convex routines. Alternatively then, in Theorem 2, we provide a
sufficient condition for controlled synchronization of the drive and
response systems that exhibit this feature.

Incorporating (pv; +8v,)Y?2 < |pv; +8v,|Y2 as used in Cai et al
[24] and applying the Schur complement to the resultant, the in-
equality (33) is obtained, which ends the proof. O
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Remark 1. Synchronization of nonlinear systems with either the
one-sided Lipschitz nonlinearities [25] or the input saturation con-
straint [28] is lacking in the literature. Theorems 1 and 2 pro-
vide synchronization investigation methodologies for a given con-
troller gain matrix and synchronization controller synthesis ap-
proach, respectively, by considering one-sided Lipschitz, quadratic
inner-boundedness and local sector conditions. Synchronization of
the chaotic systems by simultaneous exploitation of the one-sided
Lipschitz condition and the practical input saturation limitation has
not been fully addressed in the relevant previous studies.

Remark 2. Another contribution of the present work is the con-
sideration of the input time-delay in addition to the input satu-
ration nonlinearity for formulation of the synchronization condi-
tions in Theorems 1 and 2. Incorporation of the input delay com-
plicates controller design, because the input saturation is already a
complex nonlinearity, and control signal must consider, simultane-
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Remark 4. Corollary 1 is deduced from Theorem 2 by setting
v1=0,v,=1,0 =0, and A =+/§ for synchronization of Lipschitz
nonlinear systems (1) and (2). Nevertheless, the methodology in
Theorem 2, providing a controlled synchronization remedy for one-
sided Lipschitz nonlinear systems, considers a more generic sce-
nario. However, the approach in Corollary 1 is novel, as it consid-
ers the input time-delay, unlike the existing works [20] and [28] on
synchronization of nonlinear systems under input saturation.

By substituting 7; = 0, we conclude the following corollary.

Corollary 2. Consider the drive and response systems (1) and (2) un-
der delayed and saturated control signal WV (u(t — t)) satisfying the
time-delay properties (3) and (4) with t; = 0 and Assumption 1. Sup-
pose that there exist matrices X and M, symmetric matrices Q,, Qs,
and Z,, a diagonal matrix H and scalars vy and v, such that inequal-
ities (32),

ously, constraints arising from delay and saturation. Since W(u(t)) Y>00,>0,0;>0,7Z,>0,V>0,v; >0, vy >0, (37)
[Ws —BX+7, 0 (—vi +0v)Y +1 BH+MT 1yYAT [ovy + 81, |Y 7]
* \Z 7 0 0 7 XTBT 0
* * -0, -7, 0 0 0 0
* * * —ol 0 Tl 0 <0 (38)
* * * * —2H THTBT 0
* * * * * —YZz’lY 0
L * * * * * —I _

is a specific case of W(u(t — 7)) for T =0, delayed nonlinearities
such as W(u(t — 7)) are always difficult to deal with, compared
with non-delayed ones.

Remark 3. It should be noted that the input delay is exploited in
the present work using the delay-range-dependent paradigm re-
garding variations in delay, rather than the traditionalistic delay-
dependent methods. The delay-range-dependent methodologies al-
low interval time-delays with any finite zero or nonzero lower
bound, whereas for delay-dependent methods, the lower bound is
fixed to zero.

By taking v; =0, v; =1, 0 =0, and A = /8, where A is the Lip-
chitz constant for f{t, x), the following corollary is straightforwardly
obtained from Theorem 2.

Corollary 1. Consider the drive and response systems (1) and (2) un-
der delayed and saturated control signal WV (u(t — t)) satisfying the
time-delay properties (3), (4) and (6) for o = 0. Suppose that there
exist matrices X and M, symmetric matrices Qq, Qy, Q3, Z;, and Zs,
and a diagonal matrix H such that inequalities (32),

Y>00,>00,>00:>0,7,>0,Z >0 H>0, (35)
W, —BX Z; 0 I BH+M' 1 YAT 1, YAT

* \114 Zz 22 0 0 T]XTBT ‘L'z]XTBT

* x*  Ws 0 0 0 0 0

x o« % —0,-7, 0 0 0 0

* * * * —I 0 7Tl Tl

* * * * * —2H T;H'BT  1,HTBT

* * * * * * fYZﬂY 0

* * * * % * * —YZ(lY
| * * * * * * * *

are satisfied. Then, for all initial conditions holding for region
V(O xm(®) —xs(9)) <1 forall $ e[ —t(t) 0 ] with P=Y"1,
Q=Y1QY!, Q=Y"1Q¥ ", Qs=Y1Q:Y"", Z; =Y 'Z;v!
and Z, =Y-1Z,Y~1, the synchronization error defined by e(t) =
xm(t) — xs(t) converges to the origin asymptotically. The gain matri-
ces can be determined by K = XY~ and | = MY~1.

AYT]

O O OO0 OO0

are satisfied, where

W =AY + YAT + @ + Q3 - 2,
V7 = —(1 - u1)Q3 —22,.

Then, for all initial conditions holding for region V (¥, xm () —
xs(¥)) <1 forall ¥ e[ —t(t) 0 ] withP=Y"1, Q =0, Q=
Y-10,Y1, Q3 =Y-105Y~", Z; =0 and Z, = Y~'Z,Y~1, the synchro-
nization error defined by e(t) = xm (t) — Xs(t) converges to the origin
asymptotically. The gain matrices can be determined by K = XY~! and
J=My-1,

Remark 5. In Corollary 2, delay-dependent controller design con-
sidering 0 < 7(t) < T, is derived from the approach in Theorem
2. Whereas the existing preliminary results in [20] on the syn-
chronization of nonlinear systems under input saturation are based
on delay-independent stability criteria, the proposed method in
Corollary 2 is established using a relatively less conservative delay-
dependent treatment. Additionally, Corollary 2, in contrast to [20],
considers the input delay case, which presents greater difficulty for
controller design owing to the necessary consideration of delayed
saturation nonlinearity.

<0 (36)

For Q3 = 0 in (14), the following corollary is obtained.

Corollary 3. Consider the drive and response systems (1) and (2) un-
der delayed and saturated control signal WV (u(t —t)) of unknown
delay-rate satisfying the time-delay property (3) and Assumption 1.
Suppose that there exist matrices X and M, symmetric matrices Qy,
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Q,, Zy, and Z,, a diagonal matrix H and scalars v, and v, such that
inequalities (32),

Y>0,0,>00,>07,>072,>0H>0,v;>0, vy >0,

203
(ii) the  synchronization error  e(t) = xm(t) —xs(t)  satisfies
le®)lI3 < ¥2lldl3+yV(0,e0)), if [d®)lI3<s~", where

s=y/( =1
(iii) The gain matrices can be determined by K = XY~! and ] = MY~1.

(39)
[ws —BX Z; 0 (—=vi+0v,)Y+1 BH+MT 1,YAT 15 YAT [ov1 + Svy|Y ]
x =27, 7o 7, 0 0 71 XTBT 1 XTBT 0
* * Wy 0 0 0 0 0 0
* * ¥ —0y—2y 0 0 0 0 0
* * * * -yl 0 711 Tyl 0 <0 (40)
* * * * * —2H T{HTBT  1,H"BT 0
* * % * * * —Yz;lY 0 0
* * * * * * * —YZl_lY 0
| * * % * * * * % —I i

are satisfied, where
Wg =AY +YAT + Q1 + Q> - Z1.

Then, for all initial conditions holding for region V (9, xm(9) —
xs(®)) <1foralld e[ —t(t) 0 |withP=Y"1,Q =Y"1Q;Y 1,
Q=Y"10,Y", Q3=0, Z;=Y"1Z;Y"! and Z, =Y 'Z,Y-1, the
synchronization error defined by e(t) = xn(t) — xs(t) converges to

the origin asymptotically. The gain matrices can be determined by
K=XY"!and =My~

Remark 6. It is difficult to identify the parameter w if a priori
knowledge of the rate of delay is not available. In such cases,
the control methodologies provided in Theorems 1 and 2 and
Corollaries 1 and 2 are inapplicable. Corollary 3 therefore is de-
rived as a special case of the approach in Theorem 2, and can be
applied to deal with the unknown delay derivative information.

A sufficient condition for a synchronization controller design
that is robust against disturbances and perturbations is provided
in the following theorem.

Theorem 3. Consider the drive and response systems (1) and (2) un-
der delayed and saturated control signal W (u(t — t)) satisfying the
time-delay properties (3) and (4) and Assumption 1. Suppose that
there exist matrices X and M, symmetric matrices Oy, Qo, O3, Z;, and
Z,, a diagonal matrix H and scalars vy and v, such that inequalities

(31)

T T
n=>0,y>0, [Y X _2M<i>} >0,Vi=1,...m, (41)
* U

fW; —BX 7 0 (=vi+0v)Y+I BH+MT I
% lI’4 22 22 0 O 0
* * Vs 0 0 0 0
* * x =0y -2, 0 0 0
* * * * -l 0 0
* * * * * —2H 0
* * * * * * -yl
k k k k * 3k *
* * * * * * *
* * * k * * *

L % * * * * * *

are satisfied. Then, for all initial conditions holding for region
V@, xm(®) —xs(3)) <1 for all ¥ e[ —t(t) 0 ] with P=Y"",
Q; =Y"10;Y!, Q=Y"10,Y", Q3 =Y"1Q5Y1, Z; =Y-1Z;v!
and Z, =Y~'Z,Y~1, the synchronization error e(t) = xm(t) — Xs(t)
remains bounded within the region ne’ (t — t)Yle(t —t) <1, and
the following holds:

(i) the synchronization error e(t) = xn(t) — xs(t) converges to the
origin asymptotically, if d(t) = 0;

Proof. To achieve robustness against disturbances, we employ the
following inequality

Vit,e)+y el (t)e(t) — ydT (t)d(t) < 0.

Integrating the constraint from 0 to T, we obtain
/T
0
(44)

If d(t) =0, (43) ensures asymptotic convergence of the syn-
chronization error e(t) to zero, owing to V(t,e) <0, for all
initial conditions validating V (¢, xm(¥) —x5(¥)) <1 under 9 €
[ —t(t) 0 ]. Further, V(t,e) <0 and V(¥,xn(d) —xs(®)) < 1
imply e (t—t)Pe(t—t) <1. If |ld(®)[3 <¢~', (44) entails
V(t,e) <1+yc' under V(& xn(¥)—xs(%)) <1. For the
LK functional (14), we have e (t)Pe(t) <1+ y¢~', which for
V(@ xm(P) —xs(9)) <1 with 9 e[ —t(t) 0 | implies that
the ellipsoidal region (1+y¢~1)~'eT(t —t)Pe(t — ) <1 holds.
Moreover, the synchronization error satisfies fOT el (He(t)dt <
yszT d"(t)d(t)dt +yV(0,e(0)) for all time, and minimization
of y reduces the effects of disturbances and initial conditions
on the synchronization error. Note that el (t—T)Pe(t—1) <
1c(+yg ) lel(t—t)Pe(t—7) <1 holds as 1+yc!>1;
therefore, the synchronization error e(t) always remains bounded

(43)

T
V(T,e(T))-V(0,e(0))+y! eT(t)e(t)dt—y/dT(t)d(t)dt <0.
0

Y ‘ClYAT 'L'21YAT |,OV1 + 6U2|Y_
0 T]XTBT T21XTBT 0
0 0 0 0
0 0 0 0
0 T11 TZ]I 0
0 T]HTBT Tz]HTBT 0 <0 (42)
0 0 0 0
I 0 0 0
x  =YZ7lY 0 0
* * —YZl_lY 0
% * * -1 .

within the region ne’ (t — t)Yle(t — t) < 1 either d(t) = 0, or the
disturbance is bounded as ||d(¢)[|2 < ¢~!. Incorporating (25) into
(43) obtains

V(t.e)+y e (t)et) — yd (t)d(t) < &I Aséy, (45)
E=le et-1(t) €t-1) (t-1)
Tt xm) — fT(t,x) DT (u(t —1)) dT(t)], (46)
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Fig. 2. Behavior of the drive and response modified Chua’s circuits with zero control input: (a) response of the master system, (b) response of the slave system, (c) synchro-
nization errors between the drive and response circuits.

RIS —PBK Z4 0 (=vi+0ov)I+P PB+]TW P
* —(1 —/,L])Q3—222 Zz Zz 0 0 0
* * —Ql — Z1 — ZZ O 0 0 0
A3 = * * * -Q -7 0 0 0
* * * * —ol 0 0
* * * * —2W 0
L * * * * * * -yl
+[A BK 0 0 I B I ]T(rle +t3%)[ A BK 0 0 I B I] (47)

Condition (43) holds for A3 < 0. Applying two successive Schur
complements to the matrix inequality A3 < 0 produces

(W, —PBK 71 0 (=vi+0v)I+P PB+J'W P I T1ATZ; 531ATZy ]
* v, Z Z 0 0 0 0 1:K'B"'Z; t»1K'B'Z,
* * -1 -Z1 -2 0 0 0 0 0 0 0
* * * -Qy -7 0 0 0 0 0 0
* * * * —ol 0 0 0 T1Z1 12>

Aa= * * * * * —2W 0 0 71877, 191B7Z, <0 (48)

* * * * * * -yl 0 0 0
* * * * * * x =yl 0 0
* * * * * * * * —7Z1 0

| * % % * * * * % * —7Z5
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Fig. 3. Behavior of the drive and response modified Chua’s circuits with the proposed controller: (a) response of the master system, (b) response of the slave system, (c)

synchronization errors between the drive and response circuits.

Applying the congruence transformation by diag(P~1,P-1,
p-1 P 1 L w-1 1 1,Zz71,Z7Y), using pv; + 8V, < |pvy +8v,], ap-
plying the Schur complement, and utilizing the aforementioned
substitutions, we obtain the inequality (42) in Theorem 3, whereas
(41) is obtained by including region nel (t — t)Yle(t —7) <1 in
S@). O

Remark 7. An extension to Theorem 2 is provided in Theorem 3 in
order to achieve robust synchronization of two nonlinear or chaotic
systems under external disturbances in addition to the input time-
delay and actuator saturation. The approach provided in Theorem
3 can be used to synchronize systems that are sensitive to pertur-
bations. For instance, secure communications using synchroniza-
tion of chaos cannot be attained using the controller obtained from
Theorem 2, due to the highly sensitive nature of the chaotic oscil-
lators. In point of fact, disturbances and perturbations can result
in non-synchronous responses of two nonlinear systems; therefore,
Theorem 3 can be applied to attain the desired robustness against
perturbations when synthesizing a synchronization controller.

The constraints provided in Theorems 2 and 3 are nonlinear;
however, they can be resolved by means of convex routines that
convert the nonlinear constraints into linear constraints with a
nonlinear objective function for optimization. For instance, the
constraints in Theorem 3 are written in an equivalent form as

PY_-i-_Yl?l + Yz?g -i: Z_]Z_] + 222_2 + Z]N] + ZzNZ
+Z1Y121Y1 + Z,Y2Z5Y5 + Z1Y1N Y1 + Z,YoNL Y,
subject to(31), (41),(42)x, (49)

min trace(

P 1 Y; I Zi 1 N;i
el st ot e

Z Y z; Y o
[* Z}zo,[* N >0,i=1,2, (51)

where (42)x in (49) represents (42) by substituting Z; = YZ;'Y and
7, =YZ;'Y. The constraints in (50) along with the nonlinear term,
given by PY -‘rY]?] +Y2?2 +Z1Z1 +ZzZz +ZlNl +22N2, in the ob-
jective function are employed to ensure P=Y~1, Y, =Y !, Z; = 271,
Z;=N:", while the constraints in (51) along with the nonlinear
term Z1Y121?1 +22y222Y2 +Z1Y1N1Y1 + Z5Yo N, Yy of the objective
function reveal that Z]?]Z] Y/] = 22?222?2 = Z] Y] N] Y] = 22Y2N2Y2 =1
(see [23]). By application of the cone complementary lineariza-
tion algorithm, the above-mentioned nonlinear optimization can
be solved for given positive scalars v; and v, using the convex
routines in [23] and [30].

4. Simulation results

Chua’s circuit has various applications in secure communica-
tions, chaos investigation, oscillation analysis and neuronal behav-
ior study owing to its utility in representing a wide range of dy-
namical behaviors (see [19] and references therein). We consider a
modified Chua’s circuit model containing cubic nonlinearity, which
is more difficult to handle than the conventional Chua’s circuit
containing absolute nonlinearity.
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Fig. 4. Effects of disturbances on synchronization errors between the drive and response circuits.

The model of the modified Chua’s circuit, as seen in [31] and
references therein, is given by

107 10 0O —(20/7)x3
A=| 1 -1 1|, ft.x) = 0 :
0 -100/7 0 0

100
B=|0 1 0. (52)
00 1

First, we show that the function f{t, x) satisfies the one-sided Lips-
chitz condition globally. Evaluating the left side of (5) obtains

(f(t, xm) — f(E,Xs), Xm — Xs5) = (20/7)[Xm1xsl (X%’l +X£) _an _X?]'

(53)
As we already know that
XmiXst = 0.5(x%; +x%4) = 0.5(Xm1 — Xs1)°, (54)
it reveals, by application of (53), that
(ft. xm) = f(t,Xs), Xm — Xs5) < 0. (55)

Hence, the function f{t, x) satisfies the one-sided Lipschitz continu-
ity globally with p = 0. To compute the constants of the quadratic
inner-boundedness, the supremum of the maximum eigenvalues of
(af(t, x)[0x)T(Af(t, x)[0x) for region x; €[ —1 1 | is numerically
calculated as 73.47. Therefore, we can select § = 73.47 and o =0.
We can expect a 3-9 ms input delay due to the conduction of
current through wires; consequently, 7; =3 ms and 7, = 9 ms are
fixed. The input saturation limits are takenasi=[ 5 5 5 |
The controller gain and the L, performance index for u = 0.2 are
obtained as

1911 7.79 1.53

K=16.71 2242 -643|, y =9.15, (56)
1.65 -8.67 16.45

by solving the constraints in Theorem 3. The open-loop responses

of the modified Chua’s circuits are demonstrated in Fig. 2. Phase

portraits of the master and slave systems and plots of the synchro-
nization errors, depicting the chaotic and non-synchronous behav-

iors of the drive and response circuits, are shown in Figs. 2(a), 1(b)
and (c).

By application of the proposed controller, the above-noted re-
sponses and synchronization errors are plotted in Fig. 3(a), (b) and
(c). In Fig. 3(c), it is observed that the proposed controller synchro-
nizes all of the states of the master-slave modified Chua’s circuits
in the absence of disturbances.

To evaluate the robustness of the proposed approach, the dis-
turbances are taken as

dy; = 0.59sin350¢t,

di; = 0.3sin400t,

di3 = 0.72sin370t,

d» = 0.595sin290t,

dy; = 0.3sin300t,

da3 = 0.72sin 270t. (57)

Synchronization error plots by application of the proposed ro-
bust controller for a time-varying delay of 5 — 0.5sin 0.002¢t (in ms)
are provided in Fig. 4, which shows that all of the synchronization
errors e, e, and ez are converging in the presence of disturbance.
In summary, synchronization of complex nonlinear drive and re-
sponse systems under interval time-delays, input saturation and
disturbances can be precisely obtained by means of the proposed
control methods.

5. Conclusions

The present study formulated novel control strategies for the
synchronization of nonlinear drive and response systems subjected
to input delay and saturation. To deal with the delay, a delay-
range-dependent methodology utilizing the LK functional and al-
lowing for time-varying interval delays was employed. Input satu-
ration was treated using the local sector condition, through which
local synchronization schemes were developed that guarantee the
regional stability of the synchronization error. Further, to con-
sider a control scheme applicable to a wide class of systems, the
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concepts of one-sided Lipschitz continuity and quadratic inner-
boundedness were applied, which are generalized forms of the Lip-
schitz continuity. Moreover, the robustness of the proposed syn-
chronization controller against disturbances was ensured by means
of L, stability analysis. The proposed methodology was successfully
tested for synchronization of modified chaotic Chua’s circuits un-
der input time-varying delay, input saturation and disturbances.
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