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Abstract In this paper, a detailed review on the
dynamics of axially moving systems is presented. Over
the past 60 years, vibration control of axially mov-
ing systems has attracted considerable attention owing
to the board applications including continuous mate-
rial processing, roll-to-roll systems, flexible electron-
ics, etc. Depending on the system’s flexibility and
geometric parameters, axially moving systems can be
categorized into four models: String, beam, belt, and
plate models. We first derive a total of 33 partial dif-
ferential equation (PDE) models for axially moving
systems appearing in various fields. The methods to
approximate the PDEs to ordinary differential equa-
tions (ODEs) are discussed; then, approximated ODE
models are summarized. Also, the techniques (ana-
lytical, numerical) to solve both the PDE and ODE
models are presented. The dynamic analyses includ-
ing the divergence and flutter instabilities, bifurcation,
and chaos are outlined. Lastly, future research direc-
tions to enhance the technologies in this field are also
proposed. Considering that a continuous manufactur-
ing process of composite and layered materials is more
demanding recently, this paper will provide a guideline
to select a proper mathematical model and to analyze
the dynamics of the process in advance.
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Abbreviations

DQM Differential quadrature method
FDM Finite difference method
FEM Finite-element method
GITT Generalized integral transform technique
HSDT High-order shear deformation theory
IHB Incremental harmonic balance
IPDE Integro-partial differential equation
IQM Integral quadrature method
ODE Ordinary differential equation
PDE Partial differential equation
SLS Standard linear solid
SSDT Sinusoidal shear deformation theory

1 Introduction

Axially moving systems form part of several mecha-
nisms in various engineering disciplines (Fig. 1). For
example, they play an essential role in production and
packaging lines, such as technical textile manufactur-
ing (Fig. 1a), flexible robotic end-effectors (Fig. 1b),
zinc galvanization (Fig. 1c), nanoscale metal print-
ing for making electronic devices (Fig. 1d), and so
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Fig. 1 Applications of
axially moving systems: a
Technical textile
manufacturing process
(https://www.
global-safety-textiles.com),
b flexible robotic
end-effector (https://www.
dlr.de/rm/en/
desktopdefault.aspx/
tabid-11673), c zinc
galvanization line (https://
www.sms-group.com/press-
media/press-releases/press-
detail/ssab-contracts-sms-
group-to-modernize-hot-
dip-galvanizing-line-no-3-
in-finland-793/), d
nanoscale metal printing
process (https://engineering.
purdue.edu/Papers/
Goswami.pdf)

on. In such applications, mechanical vibrations which
occurred within the moving system constitute the prin-
cipal factor tending to limit the performance and pro-
ductivity of the said systems: This is especially true for
high-speed precision systems. To enhance efficiency
and optimize the design of such systems, numerous
investigations have been performed over the past six
decades concerning the vibration behavior of axially
moving systems. The primary purpose of this paper is
to present a comprehensive review of the studies under-
taken thus far concerning the dynamics of axially mov-
ing systems. This paper discusses the development of
mathematical models for axiallymoving systems along
with the methods of vibration analysis employed over
the past 60 years.

Figure 2 depicts an axiallymoving systemwith vari-
ous boundary conditions (see also Sect. 2.5). The vibra-
tions along the i-, j-, and k-axes are called the longi-
tudinal, lateral, and transverse vibrations, respectively.
Depending on the flexibility and geometric parame-
ters of the system, four different models under tension
(constant or time-varying) can be developed: String,
beam, belt, and plate models. The string model is gen-
erally used to model components wherein the bending
stiffness of the material is relatively small and can be
ignored (i.e., threads in textilemanufacturing processes

(Fig. 1a), cables in automaticwindingmachines, and so
on) [1–5]. The beam model assumes that the bending
moment is significant in contrast to the string model
(i.e., the Euler–Bernoulli beam), and further considers
the area moment of inertia (i.e., the Rayleigh beam),
and more also includes the shear force (i.e., the Timo-
shenko beam). Examples of the Euler–Bernoulli beam
model include a steel rod in the continuous casting pro-
cess and the moving beams in [6–9]. The flexible link
with a prismatic joint in a robotic system in Fig. 1b is
an example of the Timoshenko beam model. The belt
model investigates the lateral and longitudinal vibra-
tions [10–13] by considering the longitudinal inertia
force. Such models sometimes involve only the bend-
ing moment and the longitudinal inertia force or all the
bending moment, area moment of inertial, shear force,
and the longitudinal inertia force. Examples of belt
model include the steel strip in a zinc galvanization line
(Fig. 1c) and a belt used in the power transmission sys-
tem. These axially moving string/beam/belt models are
one-dimensional model from the sense that one inde-
pendent spatial variable x appears in the equation of
motion. Instead, the plate model is a two-dimensional
model that involves two independent spatial variables
x and z in Fig. 2 and investigates both the lateral and
transverse vibrations. A plate model can include the
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bending moment, shear force, and torsion in the mid-
dle surface of the plate. A membrane model is another
two-dimensional model, but it considers only tension.
The axially moving plate model is suitable for model-
ing axially moving materials with considerable width
(e.g., the metal layer in nanoscale metal printing pro-
cesses (Fig. 1d)) [14–19].

The very first works concerning axially moving sys-
tems were published by Sack [20] and Mahalingam
[1]. Since then, various studies concerning the devel-
opment of the equations of motion of axially moving
systems have been conducted [21–24]. Subsequently,
the effect ofmaterial damping on the dynamic response
of the system has been investigated, and the math-
ematical models of translating viscoelastic materials
have been developed using several viscoelastic mod-
els [25–28]. Moreover, the dynamics subject to non-
linear factors such as viscoelastic foundations [29,
30], hydrodynamic forces [31,32], magnetic effects
[33,34], and thermal effects [35,36] have also been
reported. Dynamic behaviors of linear axially mov-
ing systems have been analyzed using methods such as
the Laplace transform [37] and Lie group theory [27].
In contrast, nonlinear models have been investigated
based on approximate methods such as perturbation
techniques [26,38–43], the Galerkin method [40–42],
finite-element method (FEM) [44,45], finite differen-
tial method (FDM) [46,47], and differential quadrature
method (DQM) [31,48].

Besides the analysis of the dynamics, control of axi-
allymoving systems has also been considered in several
existing studies. Numerous control strategies to sup-
press the vibrations of the system have been developed
by utilizing the advanced control techniques includ-
ing the passive damping method, active vibration con-
trol methods including feedback control [49], variable-
structure control [50,51], adaptive control [52–54],
boundary control [55–58], etc. See [59] for a compre-
hensive review on control of axially moving systems.

This paper provides an insight into the investiga-
tions of the dynamics of axially moving systems. The
significant studies on mathematical modeling of the
string, beam, belt, and plate models are presented. Both
the classical models and the complex nonlinear mod-
els describing axially moving systems are reported and
classified in Sect. 2. This paper is also concerned with
the dynamic models which are discretized by using the
approximate methods such as the Galerkin method, the
FEM, the FDM, or the DQM. Besides, the numerical

i, x

j, y

k, z

lateral

longitudinal

transverse

in-plane (i-j plane)
out-plane (i-k plane)

Fig. 2 Types of vibrations in the coordinate system introduced

and analytical approaches used to determine the vibra-
tional responses of translating systems were also intro-
duced. Furthermore, advanced knowledge on analyz-
ing the stability, bifurcations, and chaotic motions of
axially moving systems is also discussed. Finally, this
paper proposes several suggestions for future studies
in the field of the axially moving system.

This paper is divided into six sections. Section 2
presents a review of the significant works on develop-
ing the dynamical equations and the associated bound-
ary conditions concerning axially moving systems.
Section 3 introduces approximate models. Section 4
presents various methods to solve the equations of
motion, whereas Sect. 5 is a review of state-of-the-
art studies concerning dynamical analyses. This paper
ends with a discussion on the directions for future
research in Sect. 6.

2 Dynamic models

2.1 String model

The string model forms the simplest model to describe
axially moving systems under tension with negligible
bending stiffness of the material. Figure 3 depicts an
axially moving string model, wherein l denotes the
string length, v denotes the axial velocity, and w(x, t)
and u(x, t) denote the lateral and longitudinal displace-
ments of the string, respectively.

2.1.1 Elastic string model

In an early study concerning axially moving systems,
Mahalingam [1] used the uniform string model for
describing the lateral displacement of a power trans-
mission chain. Without considering axial deformation
of the string, the kinetic and potential energies were
obtained as K = 1/2

∫ l
0

[
(wt + vwx )

2 + v2
]
dx and
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Fig. 3 Schematic of an axially moving string (or beam) model

P = 1/2
∫ l
0 T0w

2
xdx , respectively, and the following

partial differential equation (PDE) was developed:

ρAwt t + 2ρAvwxt + ρAv2wxx − T0wxx = 0,

w(0, t) = w(l, t) = 0 (1)

where ρ denotes the density of the string material, A
denotes the cross-sectional area of the string, and T0
denotes the applied constant tension. Equation (1) rep-
resents the first formulation of the string model. The
terms on the left side of Eq. (1) (from left to right)
are associated with the lateral acceleration, Coriolis
force (due to simultaneous axial and lateral motions),
centrifugal acceleration, and tension, respectively, of
the unit element of the string at x . The dynamic
response of Eq. (1) with an initial condition w(x, 0) =
0.01 sin(xπ

/
l) is depicted in Fig. 4. Later, Bapat and

Srinivasan [21] and Mote [22] included the effect of
axial deformation of the string in the potential energy
P = 1/2

∫ l
0

(
T0w2

x + E Aw4
x/4

)
dx and developed the

following PDE.

ρAwt t + 2ρAvwxt + ρAv2wxx − T0wxx

−3

2
E Awxxw

2
x = 0, (2)

where E denotes Young’s modulus. In the studies thus
far, the strings were assumed nonaccelerating (i.e.,
constant speed). In reality, however, acceleration and
deceleration tend to affect the vibrational behavior
of such systems severely. Therefore, the cases that
string’s moving velocity was prescribed as a func-
tion of time were considered. The following equa-
tion of motion for an axially moving string with time-
dependent velocity was proposed by Pakdemirli et al.
[60]:

ρAwt t + ρAv̇wx + 2ρAvwxt + ρAv2wxx

−T0wxx = 0, (3)

where the second term is the additional Coriolis force
due to the time-varying velocity.

In the investigation of a moving string with arbitrar-
ily varying length, Fung et al. [44] formulated a set
of nonlinear ordinary differential equations (ODE)—
governing the motions of the string—via Hamil-
ton’s principle and the variable-domain finite-element
method. Later, Zhu and Ni [61] considered a string
model with a mass–damper–spring system attached at
its lower end, see Fig. 5. Consequently, the dynamic
model of a vertically translating string with varying
length and tension was derived as follows.

ρAwt t + ρAl̈wx + 2ρAl̇wxt + ρAl̇2wxx

− (T (x, t) wx )x − c
(
wt + l̇wx

) = 0, (4)

T (x, t) = [me + ρA (l − x)]
(
g − l̈

)
, (5)

me

(
wt t (l, t) + l̈wx (l, t) + 2l̇wxt (l, t) + l̇2wxx (l, t)

)

+ ce
(
wt (l, t) + l̇wx (l, t)

) + kew(l, t)

= −T (l, t)wx (l, t) (6)

where c denotes the damping coefficient of the mate-
rial, T (x, t) stands for the axially varying tension in
the string, g is the gravitational acceleration, and me,
ke, and ce denote the “end” mass, the spring con-
stant, and the damping coefficient, respectively, of the
mass–damper–spring system attached at the end. Par-
tial differential equation (4) (with (5)) represents the
string motion, whereas the ordinary differential equa-
tion (6) describes the motion of the end mass. Equa-
tion (4) also considers the damping effect of the mate-
rial by including the term c(wt + l̇wx ). The dynamic
response of the end mass with an initial condition
w(x, 0) = 0.01 sin(xπ

/
l) is depicted in Fig. 6.

The vibration of a moving string on a uniform lin-
early elastic foundation was first investigated by Bhat
et al. [62]. In their work, an axially moving string sup-
ported along its entire length by a foundation was mod-
eled using Newton’s second law. In contrast, Zhang
and Chen [63] used Hamilton’s principle to develop
the equation of motion of a string-foundation coupled
system as follows:

ρAwt t + 2vρAwxt + v2ρAwxx − T0wxx + kfw

+cf (wt + vwx ) = 0, (7)

where T0 is the constant tension, and kf and cf denote
the stiffness and the damping coefficient per unit length
of the soft foundation, respectively. For investigating a
string with a nonlinear foundation, Ghayesh [64] con-
sidered an axially accelerating string placed on a par-
tial, nonlinearly elastic foundation, see Fig. 7: In his
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Fig. 4 Free oscillation of
an axially moving string
with no damping
(w(x, 0) = 0.01 sin(xπ

/
l))

-0.1
0

0.2 10
80.4

-0.05

Length 6

Time
0.6

4
0.8 2

0

1 0

0.05

0.1

Tr
an

sv
er

se
di

sp
la

ce
m

en
t

research, the string was considered to be a three-part
system, the middle part of which was supported by a
foundation with cubic nonlinear stiffness. The equa-
tion of motion for this system under axial deformation
is expressed as follows:

ρAwt t + 2vρAwxt + v2ρAwxx − T0wxx

−3

2
E Awxxw

2
x

+ [H (x − x1) + H (x − x2)]
(
klw + knw

3
)

= 0,

(8)

where kl and kn denote the linear and nonlinear stiffness
per unit length of the foundation, respectively, and H
indicates the Heaviside function.

2.1.2 Viscoelastic string model

In most works considered thus far, the axially moving
strings were considered made of linearly elastic mate-
rials. The effect of material damping in the dynam-
ics analysis was usually either neglected or simpli-
fied. However, many engineering problems, such as
the creep problem of magnetic tapes and conduit vibra-
tions, require an accurate examination of viscoelastic
material properties. Under such situations, it becomes
necessary to consider viscoelastic strain–stress consti-
tutive relations. Viscoelastic models, see Fig. 8, are
usually used to model elastic and viscous properties
of the material in the form of springs and dashpots,

Fig. 5 Axially moving
string of varying length with
a mass–damper–spring
system

w(x,t )

i

j

m

l(t)

e

respectively. Various viscoelastic models have previ-
ously been proposed and adopted to describe the vis-
coelastic properties of the strings [4,26,27,46,65,66].
Li et al. [27] and Zhang et al. [66] established a math-
ematical model for viscoelastic strings based on the
Kelvin–Voigt model (Fig. 8a). In this model, the dis-
turbed stress σ(x, t) corresponding to the strain ε(x, t)
can be expressed using the following stress–strain rela-
tion:

σ = Eε + μεt , (9)

where μ denotes the dynamic viscosity of the dash-
pot. Using Eq. (9), the following nonlinear dynamic
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Fig. 6 Vibration of the end mass in Fig. 5 with initial condition
w(x, 0) = 0.01 sin(xπ
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Fig. 7 Axially moving string placed on a partial foundation
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Fig. 8 Viscoelastic models: a Kelvin–Voigt model, b standard
linear solid model (Maxwell representation), c standard linear
solid model (Kelvin representation), d Burgers model

model for an axially moving viscoelastic string was
derived:

ρAwt t + 2ρAvwxt + ρAv2wxx − T0wxx

−3

2
E Awxxw

2
x − μA

(
w2
xwxxt + 2wxwxxwxt

)

−μAv
(
w2
xwxxx + 2wxw

2
xx

)
= 0. (10)

In Eq. (10), the sixth term in the left side represents
the internal Kelvin–Voigt damping while the last term
models the simultaneous presence of axial velocity and
Kelvin–Voigt damping. The Kelvin–Voigt model is a
simple viscoelastic model that is commonly utilized.
However, it is inadequate in the sense that it does not
accommodate stress relaxations. Zhao and Chen [67]
and Zhao et al. [47] adopted amore general viscoelastic
model, known as the standard linear solid model (SLS
model) (Fig. 8b, c), to analyze the vibration of axially
moving strings. The SLS model is a three-parameter
model that considers both creep and stress relaxation.
In the SLS model, the stress–strain relationship can be
expressed as follows:

σ + μ

E1 + E2
σt = E1

E1 + E2
(E2ε + μεt ) , (11)

where E1 and E2 denote Young’s moduli of two elastic
components in the standard linear solid model.

In Zhao and Chen [67], another model, namely the
Burgers model (Fig. 8d) (or it is also popularly called
the Maxwell–Kelvin model [68]), was used to investi-
gate the problems involving viscoelastic strings. This
model is somewhat complicated in the sense that it is
comprised of the Kelvin model with the elastic mod-
ulus E1 and the viscosity μ1 and the Maxwell model
with the elastic modulus E2 and the viscosity μ2. In
the Burgers model, the stress–strain relationship can
be expressed as follows:

σ +
(

μ1

E1
+ μ2

E2
+ μ1

E2

)

σt + μ1μ2

E1E2
σt t

= μ1εt + μ1μ2

E2
εt t . (12)

Besides the aforementioned differential constitutive
laws, those of the integral type, such as Boltzmann’s
superposition principle, were also used inmodeling the
viscoelastic strings. The stress–strain relationship pre-
scribed by Boltzmann’s superposition principle takes
the following form:

σ = Eε (t, x) +
t∫

0

dEv

dt
(t − τ)ε (τ, x) dτ, (13)

where Ev denotes the stress relaxation function. Based
on Boltzmann’s superposition principle, the following
equation ofmotion of an axially accelerating viscoelas-
tic string was proposed by Zhao and Chen [4]:

ρAwt t + ρAv̇wx + 2vρAwxt + v2ρAwxx
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−T0wxx − 3

2
E Awxxw

2
x

−1

2
wxx

d

dt

⎛

⎝
t∫

0

Ev (t − τ)w2
x (τ, x) dτ

⎞

⎠

−wx
d

dt

⎛

⎝
t∫

0

Ev (t−τ)wx (τ, x) wxx (τ, x) dτ

⎞

⎠=0.

(14)

2.1.3 Applications of string model

As already mentioned, the string model is most fun-
damental in axially moving systems. It is usually used
to describe the dynamics of an axially moving mate-
rial that is entirely flexible concerning bending. These
include threads in the technical textile manufacturing
processes (Fig. 1a), cables in winding machines, nar-
row belts, and chains in power transmission systems
[1], and papers in paper-making processes [52] to name
a few. Many axially moving materials with small flex-
ural stiffness can be modeled as strings by ignoring the
flexural rigidity. For example, the string model with
varying length was used to model a hoisting cable(s) in
a container-crane system [54] and of an elevator [61].

2.2 Beam model

When the bending stiffness of an axially moving mate-
rial is sufficiently large, it should be considered as a
moving beam. In this case, the beam theories such as
the Euler–Bernoulli, Timoshenko, and Rayleigh the-
ories can be used to investigate the dynamics of the
involved system.

2.2.1 Euler–Bernoulli beam

The Euler–Bernoulli beam model is the simplest and
most commonly used one to describe an axially mov-
ing beamwithout shear deformation and rotation of the
cross section (only bending). One of the earliest works
devoted to the vibration analysis of axially moving
Euler–Bernoulli beams was performed by Mote [69].
The potential energy of the beam under a constant ten-
sionwas assumed as P = 1/2

∫ l
0

(
T0w2

x + E Iwxx
)
dx .

Subsequently, the equation ofmotion of amoving beam
was obtained as follows [70]:

ρAwt t + 2ρAvwxt + ρAv2wxx − T0wxx

+E Iwxxxx = 0,

w (0, t) = w (l, t) = 0,

wxx (0, t) = wxx (l, t) = 0 (15)

where EI denotes the flexural rigidity of the beam.
For an axially accelerating beam with a time-varying
velocity, the governing equation has been derived, and
its vibrations were analyzed in [71,72]. The effect of
axial deformation on the dynamic behavior of amoving
beam has been investigated in [73]. In 2005, Chen and
Yang [74] derived amore general form of the governing
equation in the following form:

ρAwt t + ρAv̇wx + 2ρAvwxt + ρAv2wxx

− (T (x, t) wx )x + (M (x, t))xx = 0, (16)

where T (x, t) is the tension and M(x, t) is the bending
moment. If the effect of material damping is simplified,
the tension and the bending moment can be written
as T0 + E Aε(x, t) and E Iwxx , respectively (where ε

denotes the axial strain). By ignoring the longitudinal
vibration completely, the axial strain was obtained as
ε (x, t) = 1/2w2

x , and (16) was rewritten as follows.

ρAwt t + ρAv̇wx + 2ρAvwxt + ρAv2wxx − T0wxx

+E Iwxxxx − 3

2
E Awxxw

2
x = 0. (17)

In [74], another form of the equation of motion for
a moving beam was also introduced via the use of
the quasi-static stretch assumption in [6]. Under this
assumption, the tension was assumed to be a function
of time alone (i.e., the axial strain ε (x, t) = ux+1/2w2

x
is replaced by the averaged value of the disturbed strain
as ε (x, t) = 1/ l

∫ l
0 w2

xdx). The equation of motion of
the axially moving beam was obtained as follows:

ρAwt t + ρAv̇wx + 2ρAvwxt + ρAv2wxx − T0wxx

+E Iwxxxx − 1

2

E A

l
wxx

l∫

0

w2
xdx = 0. (18)

Equation (18) is known as an integro-partial differential
equation (IPDE) [6,75,76].

Most studies concerningmovingbeams involve dou-
ble overhanging parts of constant length, whereas not
many studies concerning axially moving cantilever
beams with time-varying length are available in the
literature. About this aspect, Wang et al. [77] consid-
ered a translating cantilever beam model to analyze
the dynamics of a spacecraft antenna featuring time-
dependent velocity. The governing equation of this can-
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Fig. 9 Axially moving cantilever beam (with a tip mass)

tilever beam model was expressed as follows:

ρA
(
wt t + l̈wx + 2l̇wxt + l̇2wxx

)

− (−ρA (l − x) l̈wx
)
x + E Iwxxxx = 0. (19)

Duan et al. [78] proposed a non-uniform cantilever
beammodelwherein thedamping coefficient c(x), flex-
ural rigidityEI(x), andmass per unit lengthρA(x) vary
along the beam length. In addition, the lumpedmassme

attached to one end of the beam was subjected to exter-
nal load f (x , t); see Fig. 9. The equation of motion for
this system is described as follows:

ρA (x)
(
wt t + l̈wx + 2l̇wxt + l̇2wxx

)

+ (E I (x) wxx )xx + c (x) (wt + vwx ) = f (x, t) ,

(20)

where the external force f (x , t) is given by

f (x, t) = me
(
g − (

wt t + l̈wx + 2l̇wxt

+l̇2wxx

))
δ (x − l) , (21)

and δ denotes the Dirac function.
With regard toviscoelastic beammodels, theKelvin–

Voigt and SLS models were used to describe the effect
of material damping on the dynamic behaviors of the
beam. Chen and Yang [79] derived the following equa-
tion of motion by employing the Kelvin–Voigt consti-
tutive relation:

ρA
(
wt t + v̇wx + 2vwxt + v2wxx

)

−T0wxx + E Iwxxxx

+μIwxxxxt − 3

2
E Awxxw

2
x

+μA
(
w2
xwxxt + 2wxwxxwxt

)
= 0. (22)

In their research, the viscoelastic model did not include
the steady dissipation term owing to the axial motion
of the beam (i.e., the dissipation term can be neglected
when the material enters the steady motion). In this
model, the constitution relation canbe simplydescribed

as σ = Eε + μεt . The mathematical equations of axi-
ally moving strings and beams using the viscoelastic
model with the steady dissipation term were proposed
byMockensturmandGou [80] andDing andChen [81],
respectively. In their works, the authors assumed that
the steady dissipation resulted from the material time
derivative, and the constitution relation was given by
σ = Eε + μ(εt + vεx ). Later, Ghayesh and Amabili
[82] used this constitution relation to derive the fol-
lowing bending moment M(x, t) and tension T (x , t)
equations:

M(x, t) = E Iwxx + μIwxxt + μIvwxxx ,

T (x, t) = T0 + 1

2
E Aw2

x + μAwxtwx

+μAvwxxwx . (23)

The following equation of motion was established by
substituting (23) into the general governing equation
(Eq. (16)) of the beam model.

ρA
(
wt t + v̇wx + 2vwxt + v2wxx

)

−T0wxx + E Iwxxxx − 3

2
E Awxxw

2
x

+μI (wxxxxt + vwxxxxx )

−μA
(
w2
xwxxt + 2wxwxxwxt

)

−μAv
(
w2
xwxxx + 2wxw

2
xx

)
= 0. (24)

Dynamical analyses of axially moving viscoelastic
beams based on the IPDE model were carried out in
[74,83,84]. In Chen andYang [74], the following IPDE
was used to investigate the Kelvin–Voigt viscoelastic
beam model:

ρA
(
wt t + v̇wx + 2vwxt + v2wxx

)

−T0wxx + E Iwxxxx + μIwxxxxt

− A

l
wxx

l∫

0

(
1

2
Ew2

x + μwxwxt

)

dx = 0. (25)

In thiswork, the axial velocitywas supposed to be a har-
monic variation about the constantmean speed, namely
v = v0+εv1 sin�vt , where ε is a small parameter, and
v1 denotes the variationmagnitude of the axial velocity.
This paper further provided a comparison of instabil-
ity intervals with the amplitudes of non-trivial solu-
tions obtained using the two viscoelastic beam models
described by PDE and IPDE (i.e., Eqs. (22) and (25)).
Their numerical results demonstrated that the models
tend to change with the associated parameters in the
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same way: The instability intervals derived from Eqs.
(22) and (25) were similar, and the intervals increased
with an increase in v1 and a decrease in the viscosity
coefficient. Meanwhile, the amplitudes of non-trivial
solutions increased with a reduction in the nonlinear
coefficient

√
E I

/
T0l. Additionally, the magnitudes of

non-trivial solutions obtained by using Eq. (25) were
slightly larger than those derived from Eq. (22).

The SLS model has been used in several studies
to describe material properties of viscoelastic beams.
Marynowski and Kapitaniak [85] derived the equation
of motion of a translating beam via the use of the SLS
model. In their work, the constitutive relation of the
SLSmodelwas obtained by considering it as a degener-
ate case of the generalizedMaxwellmodel (Fig. 8b, i.e.,
the SLS model–Maxwell representation). In this case,
the bending moment M(x, t) of the beam is expressed
as

M(x, t) = − (E1 + E2) Iwxx − μIwxxt . (26)

Later, Wang et al. [7] analyzed the dynamics of a trans-
lating viscoelastic cantilever beam based on the SLS
model–Kelvin representation (i.e., a degenerate case of
the generalized Kelvin–Voigt model, Fig. 8c). In this
model, the bending moment M(x, t) of the beam is
determined using the following equation:

M + μ

E1 + E2
Mt = E1E2

E1 + E2
Iwxx

+ E1

E1 + E2
μIwxxt . (27)

The influence of other complicated effects such as ther-
mal or fluid nature on the dynamic behavior of axially
moving beams has also been examined. Kazemirad et
al. [86] presented an analysis of thermal effects on the
nonlinear vibrations of a translating beam attached to
an intermediate spring–mass support through the fol-
lowing PDE:

ρA
(
wt t + 2vwxt + v2wxx

)
− T0wxx

+E Iwxxxx − 3

2
E Awxxw

2
x + cwt

+AEαth
Tthwxx +
(
klw + knw

3
)

δ (x − xm)

= f (x, t) , (28)

where αth denotes the thermal expansion coefficient of
the beam, 
Tth signifies the rise in temperature, and
kl, kn, and xm represent the linear stiffness, nonlin-
ear stiffness, and position of the spring–mass support,

respectively. Gosselin et al. [87], Lin and Qiao [31],
and Ni et al. [88] examined the vibrations of a translat-
ing cylindrical beam surrounded by fluid. These stud-
ies demonstrate that the dynamic behavior of a beam is
influenced by the normal and longitudinal components
of the viscous force (FN and FL, respectively) per unit
length. Values of FN and FL can be calculated using
the linearization scheme in [87] as follows:

FN = 1

4

(
ρA

d

)

(wt + vwx )
(
CNl̇ + C̃N

)
, (29)

FL = 1

4
CT

(
ρA

d

)

l̇2, (30)

where

CN = CT = 4

π
CF,

C̃N = 4

π

8vmax

3π
CD. (31)

In Eq. (31), CF and CD denote the form coefficient
and the friction coefficient of the cylindrical beam in
the cross-flow, respectively, and vmax is determined by
using the following relation:

v3 ∼= 8

3π
v2vmax. (32)

The dynamics of a fluid-conveying pipe, which is
considered as a special type of axially moving systems,
has also been investigated; see Païdoussis [89] for the
detailed review. In contrast to an axially moving sys-
tem that moves by itself, only the fluid inside the static
pipe flows axially. However, from the dynamical point
of view, the fluid-conveying tube is similar to an axially
movingmaterial. The fluid-conveying pipe can bemod-
eled by linear [90–93] or nonlinear [94–97] models.
In [90], a vertically fluid-conveying pipe was modeled
by a uniform tubular beam, and the dynamic model of
the pipe was established based on the Euler–Bernoulli
beam theory as follows:

μIwxxxxt + E Iwxxxx + MV 2wxx + 2MVwxt

+ (
M + ρAp

)
wt t + cwt

− [
T̄0 − p̄ Af + [(

M + ρAp
)
g − MVt

]
(l − x)

]
wxx

+ (
M + ρAp

)
gwx = 0, (33)

where ρ and Ap are the mass density and the cross-
sectional area of the tubular beam, respectively; M
denotes the mass per unit length of the fluid, Af is
the cross-sectional flow area, and V indicates the flow
velocity; T̄0 and p̄ are the externally applied tension
and the internal pressure at the downstream end of the
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pipe, respectively. In [92,93], the dynamics of fluid-
conveying pipes were also analyzed via the simple
mathematical formulations of fluid-conveying pipes,
wherein the gravity, the internal damping, the exter-
nally imposed tension, and the pressurization effects
were neglected. The simplified equation of motion of
the pipe takes the following simple form [93]:

E Iwxxxx + MV 2wxx + 2MVwxt

+ (
M + ρAp

)
wt t = 0. (34)

In addition, various nonlinear dynamicmodels of fluid-
conveying pipes were also developed and analyzed
based on diverse approaches and assumptions; see [94–
96].

Besides the above macroscale beams, investigations
on axially moving nanobeams were also performed
[98–101]. Lim et al. [98] established a mathematical
model of translating nanobeams using Eringen’s non-
local elasticity approach [102] for the first time. Later,
Li et al. [100] developed a dynamic model of an axi-
ally moving piezoelectric nanobeam under the thermo-
electromechanical forces. In [101], the nonlocal strain
gradient theory was utilized to derive the equation of
motion of a translating Euler–Bernoulli nanobeam. In
another work on axially moving beams, Sarigul [103]
studied the dynamics of a beam with multiple edge
cracks. In this work, the author separated the beam into
two parts around the crack, and a highly stressed region
due to the crack was modeled by considering the ener-
gies of two springs. Therefore, a hybrid axially moving
system consisting of multiple Euler–Bernoulli beams
connected by translational and rotational springs was
investigated.

2.2.2 Timoshenko beam

The Timoshenko beam theory considers the effects of
both shear deformation and rotational inertia. There-
fore, it is more appropriate to describe the behavior
of thick and short beams and to predict the frequen-
cies of the high modes in the vibration, because the
shear deformation becomes important in such cases.
In [104], the equation of motion of an axially mov-
ing Timoshenko beam under uniform axial tension was
used for spectral analysis of the lateral vibration of the
beam. Later, An and Su [105] formulated an approx-
imate model of a translating Timoshenko beam based
on the previous PDE equation in [104]. In accordance
with the Timoshenko beam theory, the dynamic model

of an axially moving beam can be described using the
following differential equations of two variables (i.e.,
the lateral vibration w(x, t) and the rotational angle of
the cross section θ(x , t)):

ρA
(
wt t + 2vwxt + v2wxx

)
− T0wxx

− κGA (wxx − θx ) = 0, (35)

ρ I
(
θt t + 2vθxt + v2θxx

)
− E Iθxx

− κGA (wx − θ) = 0,

w (0, t) = w (l, t) = 0,

θx (0, t) = θx (l, t) = 0 (36)

where G denotes the shear modulus, and κ denotes
the shear coefficient. The Timoshenko beam theory
assumes that the distribution of shear deformation
is uniform. The shear coefficient κ was introduced
to compensate for the drawback of the uniformity
assumption. Yan et al. [106] and Ding et al. [107] pre-
sented the following IPDEs to describe the dynamic
behavior of a translating Timoshenko beam:

ρA
(
wt t + 2vwxt + v2wxx

)
− T0wxx

−κGA (wxx − θx ) − E A

2l
wt t

l∫

0

w2
xdx = 0, (37)

ρ I
(
θt t + 2vθxt + v2θxx

)
− E Iθxx

−κGA (wx − θ) = 0. (38)

Similar to the Euler–Bernoulli beam theory, compre-
hensive studies concerning viscoelastic Timoshenko
beams have also been performed. The lateral vibrations
of an axially moving viscoelastic Timoshenko beam
were investigated by Mokhtari and Mirdamadi [108]
using the following equations:

ρA
(
wt t + 2vwxt + v2wxx

)
− T0wxx

−κGA (wxx − θx ) − κGAμ (wxxt − θxt ) = 0,

(39)

ρ I
(
θt t + 2vθxt + v2θxx

)
− E Iθxx − κGA (wx − θ)

−μIθxxt − κGAμ (wxt − θt ) = 0. (40)

The vibration characteristics of short conveying fluid
pipes have also been investigated using theTimoshenko
beam theory [109–114]. The early conveying fluid pipe
model based on the Timoshenko beam theory was pre-
sented by Huang [109]. Later, Laithiers and Païdoussis
[110] used the Hamilton principle to develop the equa-
tion of motion of an initially stressed Timoshenko pipe.
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Furthermore, the dynamicmodel ofmicroscale convey-
ing fluid pipes was also established via the Timoshenko
beam theory in [113].

Ding et al. [105] investigated the supercritical natu-
ral frequencies of amovingbeamusing theTimoshenko
beam theory. They numerically showed that the natural
supercritical frequencies were affected by the system
parameters such as bending stiffness, rotary inertia, and
shear force. Subsequently, the authors compared the
natural frequencies of the Timoshenko beam model
with those using the Euler–Bernoulli beam model.
When the axial velocity was in the vicinity of the crit-
ical speed, the first natural frequency of the moving
Euler–Bernoulli beamwas smaller than that of the Tim-
oshenko beam. However, the natural frequencies of
the Euler–Bernoulli beam became higher as the axial
velocity increased.

2.2.3 Rayleigh beam

The Timoshenko beam theory predicts the dynamic
behavior of a thick and short beam more accurately
compared to the Euler–Bernoulli beam theory. The
Timoshenko beam theory can lead tomore complicated
mathematics. In the early 1890s, Rayleigh proposed
another beam-modeling theory, which includes the
effect of rotationof the cross sectionwithout the consid-
eration of the shear force.Mathematically, theRayleigh
beam equation is more straightforward compared to
that of the Timoshenko beam. Besides, the Rayleigh
beam theory can predict the vibrational behavior more
accurately compared to the Euler–Bernoulli beam the-
ory.

Ghayesh and Balar [26] investigated the nonlinear
vibration of a Rayleigh beam made of a viscoelastic
material that can be described by theKelvin–Voigt con-
stitutive relation. The governing equation of the beam
was obtained in the fourth-order differential equation
as follows:

ρA
(
wt t + v̇wx + 2vwxt + v2wxx

)
− T0wxx

+E Iwxxxx − 3

2
E Awxxw

2
x

+μIwxxxxt − ρ I (wxxtt + 2vwxxxt + v̇wxxx

+v2wxxxx

)
− μA

(
wxxtw

2
x + 2wxtwxxwx

)
= 0.

(41)

With regard to the Rayleigh beam theory, Razaee
and Lotfan [116] also performed a study concerning

the nonlinear nonlocal vibration of an axially mov-
ing nanoscale beam. In the said study, the nonlocal
beam theory (i.e., the congruity between the atomic
theory of lattice dynamics and experimental observa-
tion) was also used to consider small-scale effects in
the nanoscale beam. Accordingly, the nonlocal bend-
ing moment Mn and axial force Nn are expressed as
follows:

Mn − (e0a)2 Mn xx = E Iwxx

+μI (wxxt + vwxxx ) = 0, (42)

Nn − (e0a)2 Nnxx = 1

2
E Aw2

x

+μA (wxtwx + vwxwxx ) = 0, (43)

where e0 is thematerial constant anda denotes the char-
acteristic length. The term e0a is a function of boundary
conditions and molecular lattice [117]. Subsequently,
the following equation ofmotionwas developed to ana-
lyze the stability of the nanoscale beam:

ρA
(
wt t + v̇wx + 2vwxt + v2wxx

)
− (Twx )x

+Mnxx − (Nnwx )x

−ρ I
(
wxxtt + 2vwxxxt + v̇wxxx + v2wxxxx

)
= 0.

(44)

2.2.4 Laminated composite beam

All formulations of axially moving systems introduced
in the previous sections are exclusively applicable to
isotropic materials. In recent years, however, in addi-
tion to isotropic materials, laminated composite mate-
rials comprising of two or more layers of orthotropic
materials with different properties have also been used
in axially moving systems, such as paper sheets, fluid
pipes, band saws, and aerospace structures. Ghayesh
[118] has discussed the dynamics of a translating
symmetrically laminated composite beam with time-
varying velocity. According to the classical laminate
theory (an extension of the classical plate theory), the
governing equation of such a system is expressed as
follows:

ρA
(
wt t + 2vwxt + v2wxx

)
+ bD11wxxxx = 0, (45)

where b denotes the width of the beam and D11 is the
first element of the bending stiffness matrix expressed
as

D11 = 1

3

m∑

n=1

(
Q̄11

)
n

(
h3n − h3n−1

)
, (46)
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Q̄11 = Q11 cos
4 θa + Q22 sin

4 θa

+2
(
Q12 + 2Q66 sin

2 θa cos
2 θa

)
, (47)

where hn denotes the distance from the external bound-
ary of the nth layer to the i-axis; θa represents the angle
from the i-axis to the normal direction of the fibers,
and Qi j (i , j = 1, 2,…, 6) are the stiffness ele-
ments of the material used in each layer. Later, Li et al.
[119] updated the dynamic model of an axially mov-
ing laminated composite beam by including the envi-
ronmental effects such as thermal stresses and blast
loads. Dynamic models of axially moving materials
with a sandwich structure were also studied in [120–
126]. Marynowski [120] developed the mathematical
model of a translating sandwich beam (Fig. 10)wherein
the core layer of the beam is viscoelastic material, and
only shear deformation is considered in this layer. The
equation of motion of the system is given as follows:

E
(hin + hout)2

2
houtbwxxxx

−E
hin + hout

2G
houtρA

(
1 − e−Gt/μ

)

(
wxxtt + 2vwxxxt + v2wxxxx − T0wxxxx

)

+ρA
(
wt t + 2vwxt + v2wxx

)
− T0wxx = 0, (48)

where hin, hout, and b are the geometrical parameters
shown in Fig. 10, andG is the shear modulus. Later, Lv
et al. [121] analyzed the lateral vibration of a similar
viscoelastic sandwich beam, neglecting shear deforma-
tion, whereas Yang et al. [122] considered a sandwich
beam with a soft core. Furthermore, Wei et al. [123]
presented the dynamic behavior of an axially moving
beam with a magnetorheological fluid core and alu-
minum outer layers under a magnetic field. Two years
later, Hao and Gao [124] analyzed the lateral vibra-
tions of a moving beamwith shape memory alloy outer
layers.

2.2.5 Applications of beam model

From the physical viewpoint, the beam model can be
used to analyze the dynamics of thick axially moving
systems more accurately compared to the string model
owing to the consideration of bending moment. The
saws of metal-cutting band-saw machines and the steel
strips in automatic winding machines can be modeled
using the beam model. In addition, the axially mov-
ing cantilever beam model can be used to describe the

hin

hout

hout

core layer

outer layer

outer layer

i

b

Fig. 10 Structure of a sandwich beam

dynamics of a flexible robotic end-effector (Fig. 1b),
a drill string [127], an aerospace structure [77], and a
hosting rod with a free end [61].

2.3 Belt model

In modeling axially moving systems as strings or
beams, the longitudinal vibrations are either neglected
or simplified using the quasi-static stretch assumption
[6]. In the belt model, the coupling between the lateral
and longitudinal vibrations, which becomes significant
with increasing slenderness ratio of the material (the
ratio of length to the cross-sectional area), is investi-
gated [13,128–137]. In an early study published con-
cerning the axially moving belt, Thurman and Mote
[13] developed the nonlinear governing equations of a
uniform translating strip based on the Euler–Bernoulli
beam theory. In their work, the kinetic and the potential
energies were obtained as follows:

K = 1/2
∫ l

0
[(wt + vwx )

2 + (ut + v(1 + ux ))
2]dx,

P = 1/2
∫ l

0
[T0ε + E Aε2/2]dx (49)

where the strain ε is given by ε =
√

w2
x + (

1 + u2x
)−1.

The equations of motion are expressed as follows:

ρA
(
wt t + 2vwxt + v2wxx

)
− E Awxx + E Iwxxxx

+ (E A − T0)
(1 + ux ) wxwxx − w2

xuxx
[
(1 + ux )2 + w2

x

]3/2 = 0, (50)

ρA
(
utt + 2vuxt + v2uxx

)
− E Auxx

− (E A − T0)
(1 + ux )2 wxx − (1 + ux ) wxuxx

[
(1+ux )2 + w2

x

]3/2 =0,

u (0, t) = u (l, t) = 0,

w (0, t) = w (l, t) = 0, wxx (0, t) = wxx (l, t) = 0.

(51)
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Equations (50–51) represent a comprehensive dynamic
model for axially moving belt. However, it is too com-
plicated mathematically because of the nonlinear prop-
erty of the strain ε. Therefore, simpler models dealing
with various approximated strains were developed in
[12,129–131] to facilitate the analysis of the dynamics
of the moving belt. Ghayesh [131] used the approxi-
mate strain ε = ux + 1/2w2

x to develop the following
dynamic model of an axially moving belt:

ρA
(
wt t + v̇wx + 2vwxt + v2wxx

)
− T0wxx

−E A

[

wx

(

ux + 1

2
w2
x

)]

x
+ E Iwxxxx = 0, (52)

ρA
(
utt + v̇ux + 2vuxt + v2uxx

)

−E A

(

ux + 1

2
w2
x

)

x
= 0. (53)

Later, Ghayesh and Amabili [132,133] investigated the
nonlinear dynamics of an axially moving belt based on
the Timoshenko beam theory. The following mathe-
matical model for the longitudinal and lateral vibra-
tions and the rotational angle of the cross section was
established:

ρA
(
utt + 2vuxt + v2uxx

)

−E A

(

ux + 1

2
w2
x

)

x
= 0, (54)

ρA
(
wt t + 2vwxt + v2wxx

)
− T0wxx

−E A

[

wx

(

ux + 1

2
w2
x

)]

x

+κGA (wx + θ)x = 0, (55)

ρ I
(
θt t + 2vθxt + v2θxx

)
− E Iθxx

−κGA (wx + θ) = 0. (56)

In an investigation on axiallymoving viscoelasticmate-
rial, Chen and Ding [25] used the Kelvin–Voigt model
to establish a set of PDEs describing a moving belt as
follows.

ρA
(
utt + 2vuxt + v2uxx

)

−
⎛

⎝ 1

A

(T0 + A (Eε + μεt + μvεx )) (1 + ux )√
(1 + ux )2 + w2

x

⎞

⎠

x

= 0, (57)

ρA
(
wt t + 2vwxt + v2wxx

)

+ [E Iwxxxx + μI (wxxxxt + vwxxxxx )]

−
⎛

⎝ 1

A

(T0 + A (Eε + μεt + μvεx )) wx√
(1 + ux )2 + w2

x

⎞

⎠

x

= 0. (58)

In their study, the steady-state lateral responses of the
belt model were also assessed and compared against
those obtained using the beam model.

In contrast to the in-plane vibrations of the system
(i.e., lateral and longitudinal vibrations in the plane of
i- and j-axis), only a limited number of studies have
been performed concerning the lateral, transverse, and
longitudinal vibrations [134–137]. In [136], the fol-
lowing nonlinear PDEs were developed to analyze the
vibrations in i-, j-, and k-axis of an axially accelerating
material:

ρA
(
wt t + v̇wx + 2vwxt + v2wxx

)
− T0wxx

+E Iwxxxx + cwt

−E A

(

uxwxx + uxxwx + wxηxηxx

+1

2
η2xwxx + 3

2
w2
xwxx

)

= 0, (59)

ρA
(
utt + 2vuxt + v̇ (1 + ux ) + v2uxx

)

−E A (uxx + ηxηxx + wxwxx ) + cut = 0, (60)

ρA
(
ηt t + 2vηxt + v̇ηxx + v2ηxx

)
− T0ηxx

+E Izηxxxx + cηt

−E A

(

uxηxx + uxxηx + ηxwxwxx

+1

2
w2
xηxx + 3

2
η2xηxx

)

= 0, (61)

where u, w, and η denote the lateral, longitudinal, and
transverse vibrations, respectively, and I and Iz stand
for the moments of inertia about the j- and k-axis,
respectively.

To compare the dynamic characteristics of the beam
models in Eqs. (17) and (18) and the belt model in
Eqs. (50)–(51), Ding and Chen [138] investigated the
effects of system parameters on the natural frequen-
cies of the lateral vibration. The authors indicated that
the tendencies of the first and second natural frequen-
cies calculated from these models were similar when
the axial velocity and the flexural stiffness increased.
When increasing the nonlinear coefficient and themag-
nitude of the initial condition, the changes in natural
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frequencies corresponding to Eqs. (18) and (50)–(51)
were not different, whereas those predicted by Eq. (17)
tended to increase more than the other two. Later, Ding
and Chen [10] presented non-trivial equilibrium solu-
tions of an axially moving material in the supercritical
regime, which were derived based on these three mod-
els. Using numerical simulations, the authors showed
that the non-trivial equilibrium solutions of Eqs. (18)
and (50)–(51) were the same, while the solution of Eq.
(17) was different from those explicitly. Furthermore,
in view of supercritical equilibrium solutions of axi-
ally moving systems with non-ideal boundary condi-
tions, the similarity between the models described by
Eqs. (18) and (50)–(51) was demonstrated in [139].
The above studies indicate that the dynamic character-
istics of the beam model under the quasi-static stretch
assumption (i.e., Eq. (18)) show an affinity with the one
of the belt model (i.e., Eqs. (50)–(51)).

Due to consideration of both lateral and longitudi-
nal vibrations, the belt model is suitable for model-
ing axially moving components with sufficient length,
wherein the distance between two support points is sig-
nificant. Strips and wires in zinc galvanization lines
(Fig. 1c) and belts used in power transmission systems
are typical examples. Besides, the belt model can also
be used to model the systems wherein the longitudinal
vibrations can seriously affect the quality and produc-
tivity, such as a roll-to-roll printing process to produce
flexible circuits.

2.4 Plate model

The axially moving string/beam/belt models are one-
dimensionalmodel from the sense that one independent
spatial variable x appears in the equation of motion.
The use of such models leads to a satisfactory result
in numerous cases. However, these one-dimensional
models cannot be applied in situations that the material
is of considerable width, such as ametal layer (Fig. 1d).
In such circumstances, the plate model that is a two-
dimensional model that involves two independent spa-
tial variables x and z should be used to analyze the
vibrations.

The earliest work in this aspect was reported by
Ulsoy and Mote [140]. In their study, a PDE model
describing the dynamics of the blade of a band saw
was developed based on the Hamilton principle. An
approximate solution of the equation of motion was

w(x,y,t)

u(x,y,t)

j

i

k

η(x,y,t)

h

b

l

v

+ +

+ +

Fig. 11 Axially moving plate

also obtained by using both the classical Ritz and
finite-element-Ritz methods. Later, Marynowski and
Kolakowski [17] established a nonlinear model of an
axially moving orthotropic plate: In Fig. 11, the length,
width, and thickness of the plate are denoted by l, b,
and h, respectively, while the lateral, longitudinal, and
transverse vibrations are indicated by w(x , z, t), u(x ,
z, t), and η(x , z, t), respectively. Based on the von
Karman strain theory, the strain–displacement relations
were obtained as follows:

εX = ux + 0.5w2
x ,

εZ = ηz + 0.5w2
z ,

εXZ = 0.5 (uz + ηx + wxwz) ,

κX = −wxx ,

κZ = −wzz,

κXZ = −wxz (62)

where εX, εZ, and εXZ denote the strain components for
themiddle plate in the x and z coordinates, whereas κX,
κZ, and κXZ represent the curvature modifications and
torsions of the central surface of the plate. The stress
functions σX, σZ, and σXZ and the bending moments
MX, MZ, and MXZ are given as follows:

σX = EXh

1 − χυ2 (εX + χυεZ) ,

σZ = EZhχ

1 − χυ2 (εZ + χεX) ,

σXZ = 2GhεXZ,

MX = − EXh

12
(
1 − χυ2

) (wxx + χυwzz) ,

MZ = − χEZh

12
(
1 − χυ2

) (wzz + υwxx ) ,

MXZ = −Gh3

6
wxz (63)

where G denotes the shear modulus of the plate, EX

and EZ are Young’s moduli of the plate along the i- and
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k-axis, respectively, the ratioχ = EX/EZ indicates the
orthotropic factor of the plate, and υ is Poisson’s ratio.
Based on the Hamilton principle, the dynamic model
of the axially moving plate was written as follows:

ρh
(
wt t + 2vwxt + v2wxx

)
− MXxx

−2MXZxz − MZzz

− (σXwx )x − (σZwz)z − (σXZwx )z

− (σXZwz)x = F, (64)

ρh
(
utt + 2vuxt + v2uxx

)
− σXx − σZz = 0, (65)

ρh
(
ηt t + 2vηxt + v2ηxx

)
− σXx − σZz = 0,

w (0, z, t) = w (l, z, t) = 0,

MZ (0, z, t) = MZ (l, z, t) = 0 (66)

where ρ denotes the mass density and F stands
for the lateral loading. Compared to axially mov-
ing orthotropic plates, studies concerning translating
isotropic plates have attracted greater interest owing to
its diverse research prospects. For isotropic materials,
expressions for the stress functions σX, σZ, and σXZ are
rewritten as follows:

σX = Eh

1 − υ2 (εX + υεZ) ,

σZ = Eh

1 − υ2 (εZ + υεX) ,

σXZ = Eh

1 + υ
εXZ (67)

where E denotes Young’s modulus of the isotropic
material. Under the stresses in Eq. (67), mathemati-
cal models of axially moving isotropic plates were also
established in [15,28,141].

Lin andMote [142] and Liu et al. [143] analyzed the
dynamics of axially moving plates with large displace-
ments. In such cases, the stress induced by large deflec-
tions tended to influence the dynamic responses of the
plate significantly. In their works, the vonKarman large
deflection theory that can model the plate stress aris-
ing from the plate curvature was used to develop the
following governing equations for translating plates:

ρh
(
wt t + v̇wx + 2vwxt + v2wxx

)
+ D∇4w

+ cwt = hL (w,�) , (68)

∇4� = − E

2
L (w,w) (69)

where D = Eh3[12(1−υ2)] denotes the bending stiff-
ness. Equations (68) and (69) are partial differential

equations relating the large-amplitude vibration w(x ,
z, t) and the stress function �(x , z, t). The biharmonic
operator ∇4 and the operator L (ω,�) were defined as
follows:
⎧
⎨

⎩

∇4 =
(

∂4

∂x4
+ ∂4

∂x2∂z2
+ ∂4

∂z4

)
,

L (w,�) =
(

∂2�
∂z2

∂2w
∂x2

− 2 ∂2�
∂x∂z

∂2w
∂x∂z + ∂2�

∂x2
∂2w
∂z2

)
.

(70)

Similar to the string, beam, and belt models, the vis-
coelastic models have also been used to describe mate-
rial propertieswhile considering the vibration of axially
moving plates. Based on theKelvin–Voigtmodel, Zhou
and Wang [48] investigated the dynamic behavior and
the stability of an axially moving viscoelastic plate.
Later, Abedi et al. [14] derived the dynamic model
for an axially moving viscoelastic material obeying the
vonKarman large deflection theory.Marynowski [144]
used the SLSmodel to establish a mathematical formu-
lation describing a translating hybrid plate consisting
of both elastic and viscoelastic regions. Subsequently,
the author presented the solution to a simplified case
wherein the pure viscoelastic plate.

Concerning axially moving laminated composite
plates, Hamita et al. [145], based on the classical lam-
inate theory, developed the governing equation of a
moving laminated plate. Zhang et al. [146] employed
the high-order shear deformation theory (HSDT) to
establish the dynamic model of a laminated composite
cantilever plate. The HSDT assumes that a displace-
ment can be expanded to a cubic function in the thick-
ness coordinate. Essentially, this theory is more effi-
cient in comparison with the classical laminate theory
in the analysis of laminated composite plates. Arani
et al. [33] used a third-order shear deformation the-
ory to develop the mathematical model of a moving
plate on a visco-Pasternak foundation. In their work,
the system was subjected to a longitudinal magnetic
field, and the effect of this magnetic field on the crit-
ical velocity of the plate was investigated. In [147],
the influence of the inherent small scale of a mov-
ing viscoelastic microplate was considered via the use
of the modified coupled stress theory, and the sinu-
soidal shear deformation theory (SSDT) was used to
develop the dynamic model of the plate. The authors
also compared the results obtained via the use of SSDT
with those obtained using the classical plate theory. In
[148], a nanocomposite platemoving along the i- and k-
axis was investigated based on various shear deforma-
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tion theories. Furthermore, Liu et al. [149] established
a mathematical model describing an axially moving
nanoplate using the nonlocal elasticity theory proposed
by Eringen and Edelen [150].

Besides the studies considering the influence of
material properties on the dynamic behavior of moving
plates, the effect of the external environment has also
been discussed in numerous researches. Marynowski
and Grabski [35] developed a mathematical model of
an axiallymoving plate subjected to thermal loading. In
their model, the potential energy of the plate included
the strain energy due to heating to consider the effect of
temperature on plate dynamics. Yao and Zhang [151]
developed a dynamicmodel based on the thin-plate and
linear potential-flow theories for the investigation on
the dynamics of a moving plate subjected to surround-
ing airflow. Concerning the effect of fluid flow,Wang et
al. [32,152] revealed that the fluid pressure has a signif-
icant influence on the vibration characteristics and the
stability of the moving plate-fluid system. This study
not only presented the equation of motion of an axially
moving plate partially immersed in fluid in a rigid con-
tainer but also discussed the effect of parameters such
as immersed-depth ratio and the distance between the
plate and container walls on the vibration characteris-
tics of the plate. Additionally, around the same time,Hu
et al. [34] published a study concerning the influence of
electromagnetic forces on a moving plate. In this work,
the nonlinear governing equation describing an axially
moving plate in the magnetic field was developed and
subsequently used to analyze its complicated dynamic
behaviors.

The plate model is a reasonable means for the analy-
sis of axially moving components withstanding tensile
stresses and bending. The axially moving plate model
can accurately predict the vibration behavior of numer-
ous systems such as the metal sheets in thin-metal pro-
duction lines and coil-coating processes as well as the
metal layers in the nanoscale metal printing (Fig. 1d).

2.5 Boundary conditions of axially moving systems

Boundary conditions significantly affect the vibration
behavior of axially moving systems. Most studies usu-
ally deal with simply supported boundaries, which do
not experience any deflection and torque. In this case,
the considered system has the ideal boundary condi-
tions. In practice, the boundary conditions, however,

are non-ideal due to the operation of other machine ele-
ments or the influence of external excitations. Dynamic
analyses of axially moving systems with non-ideal
boundaries were presented in [153–168]. Wang and
Mote [154] investigated the mathematical model of a
band-wheel mechanical system, as shown in Fig. 12,
wherein the wheels were supported by linear springs
of stiffness kL and kR (i.e., left spring and right spring,
respectively). In this work, the axially moving band
with the following tension was modeled using the belt
model.

T = T0 + mv2

1 + k̄l
/
2E A

, (71)

where k̄ is the equivalent support stiffness. Using
Hamilton’s principle, the following equations ofmotion
of the system were developed.

ρAu1t t + 2ρAvu1xt + ρAv2u1xx

−E A (u1xx − w1xxw1x ) = 0,

ρAu2t t − 2ρAvu2xt + ρAv2u2xx

−E A (u2xx − w2xxw2x ) = 0,

ρAw1t t + 2ρAvw1xt − (T − ρAc) w1t t + E Iw1t t t t

−E A (w1xu1x )x − 3/2E Aw2
1xw1xx = 0,

ρAw2t t − 2ρAvw2xt − (T − ρAc) w2t t + E Iw2t t t t

−E A (w2xu2x )x − 3/2E Aw2
2xw2xx = 0. (72)

The non-homogeneous boundary conditions at x = 0
are
(
JL

/
2l2R2

L

)
(u1t t − u2t t )

−E Ah (u1x − u2x ) − (E Ah/2)
(
w2
1x − w2

2x

)
= 0,

(
mL

/
2l2

)
(u1t t − u2t t ) + (

kLh
/
2
)
(u1 − u2)

−E Ah (u1x − u2x ) − (E Ah/2)
(
w2
1x − w2

2x

)
= 0,

w1 = w2 = 0,

w1xx = −w2xx = MLl
2h

/
E I , (73)

and at x = l
(
JR

/
2l2R2

R

)
(u1t t − u2t t )

+E Ah (u1x − u2x ) + (E Ah/2)
(
w2
1x − w2

2x

)
= 0,

(
mR

/
2l2

)
(u1t t − u2t t ) + (

kRh
/
2
)
(u1 − u2)

+E Ah (u1x − u2x ) + (E Ah/2)
(
w2
1x − w2

2x

)
= 0,
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w1 = w2 = 0,

w1xx = −w2xx = MRl
2h

/
E I, (74)

where the lateral and longitudinal vibrations of the top
and bottom spans are denoted by (w1, u1) and (w2, u2),
respectively; JR, mR, and RR indicate the rotational
inertia, the mass, and the radius of the right wheel; and
JL, mL, and RL denote the corresponding variables for
the left wheel; h indicates the band thickness. MR and
ML are the constant moments at the ends of the span,
which arise from the bending of the continuous band
around thewheels. The authors then linearized the non-
linear equations of motion (i.e., Eq. (72)) and devel-
oped an ODE model based on the Galerkin method.
Subsequently, the equilibrium configuration, vibration
modes, and the influence of system parameters on the
coupled vibrationswere analyzed. In another investiga-
tion concerning the lateral vibration of a moving beam
wrapped on fixed pulleys (Fig. 13b), Yue [155] exam-
ined the case in which the contacting points between
the belt and the pulley were not fixed on the com-
mon tangent line between two pulleys during vibration;
therefore, the span length was varying. Later, Hwang
and Perkins [156] revisited the previous model in [154]
and investigated large static band deflections described
by the inextensible elastic theory, wherein the contact-
ing points were not fixed. An approximated model that
included the rod rigid bodymodeswas developedby the
Ritz method. The prediction of the system’s vibration
behaviors was subsequently experimentally verified. In
[157], two distinct vibration models of belt/pulley sys-
tems, i.e., Fig. 13a, b, were presented. The differences
in these models in natural frequencies were also dis-
cussed via numerical analyses. In other studies,Orloske
et al. [158,159] investigated a full mathematical model
describing both in-plane and out-plane displacements
of a belt/pulley system undergoing parallel pulley mis-
alignment. Under the misalignment, the boundary con-
ditions were non-homogeneous, and the number of
boundary conditions was fewer than the total order of
spatial derivatives in the dynamicmodel. To handle this
issue, the authors derived a simpler formof the dynamic
model by assuming negligible geometric torsion and
usingTaylor’s serial expansion. The equilibria, bifurca-
tion, stability, and vibration characteristics of this sys-
tem were then analyzed based on this simple model.

Investigations on axially moving viscoelastic mate-
rials with non-ideal boundary conditions were intro-
duced in [160–166]. In [160,161], the belt in a

k kL R

l

w
u

w
u

1

1

2

2

RL RR

v

Fig. 12 Axially moving system with rotating wheels

belt/pulley system with a one-way clutch was modeled
as a translating viscoelastic beam using the Kelvin–
Voigt model. The equations of motion of the belt are
given by

ρAw1t t + 2ρAvw1xt + ρAv2w1xx − (T0 + T1) w1xx

+E Iw1xxxx + μIw1xxxxt = 0,

ρAw2t t + 2ρAvw2xt + ρAv2w2xx − (T0 + T2) w2xx

+E Iw2xxxx + μIw2xxxxt = 0, (75)

and the non-ideal boundary conditions are

w1 (0, t) = w2 (0, t) = w1 (l, t) = w2 (l, t) = 0,

w1xx (0, t) = w2xx (0, t) = w1xx (l, t)

= w2xx (l, t) = 1
/
R (76)

where R denotes the radius of pulleys and T1 and T2 are
the dynamic tensions, which correspond to the dynam-
ics of the pulleys and one-way clutch. Later, Ding
[162,163] studied the vibration response of the above-
mentioned belt/pulley system undergoing dual excita-
tions. Furthermore, Ding et al. [164] experimentally
investigated the damping effect of the one-way clutch
on the previous belt/pulley system. In a study concern-
ing axially moving systems with non-homogeneous
boundary conditions, Ding et al. [165] presented a PDE
model describing the dynamic of an axiallymoving vis-
coelastic belt wrapping around two pulleys with differ-
ent radii. Based on the PDEmodel, the influence of the
non-homogeneous boundary conditions on the equi-
librium configuration and the natural frequencies was
analyzed. Around the same time, Ding et al. [166] used
the IPDE to model the system in [165] and then inves-
tigated the static equilibrium shape of the belt and the
steady-state response of the forced vibration.

Axially moving systems with non-ideal boundary
conditions due to the excitation of external forces were
investigated in [167]. In this work, the right boundary
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Fig. 13 Belt and pulleys systems: a fixed boundaries, b unfixed
boundaries

of a moving string was excited by an arbitrary lateral
force; and the lateral vibration behavior was then deter-
mined through the Laplace transforms method. Yurd-
das et al. [168] analyzed the nonlinear vibrations of a
translating string subjected to four supports: Two sup-
ports at the ends of the string were considered as ideal
supports, and two supports located in the middle of the
string span allowed minimal deflections. These sup-
ports divide the string into three regions with different
boundary conditions.

3 Approximate model

In many investigations concerning the analysis of the
dynamics of axially moving systems, approximate
methods have been used to convert the PDEs, describ-
ing system vibrations, into a low-dimensional system
of ordinary differential equations (ODEs) to facili-
tate the use of certain techniques employed for solv-
ing discrete problems. One of the most well-known
techniques is the Galerkin method, also known as the
Galerkin approximation. This method has been widely
used in axially moving systems.Wickert andMote [43]
developed ODEs of a string model using the classical
Galerkin method, which assumes that the solution of
the equation of motion takes the following form:

w (x, t) =
n∑

i=1

qi (t) ϕi (x), (77)

where qi (t) is a set of generalized displacements of
the string, and ϕi (x) represents the set of basis func-
tions satisfying all boundary conditions. The said basis
functions are chosen to be the eigenfunctions of a linear
static string for given boundary conditions as follows:

ϕi (x) = sin

(
iπx

l

)

. (78)

According to the Galerkin method, a set of n coupled
ODEs in the following generalized form is established.

Mq̈ + Cq̇ + Kq = 0, (79)

where M, C, and K refer to the global matrices of the
mass, damping coefficient, and string stiffness, respec-
tively, while q̈, q̇, and q represent the string accelera-
tions, velocity, and deflection vectors, respectively. The
Galerkin method, wherein basis functions are given by
Eq. (78), has also been used to discretize the PDEs of
the beam and coupled models [41,76,129,169]. Apart
from the classical Galerkin method, the complex-mode
Galerkin method has also been used to solve the prob-
lems concerning axially moving strings, as proposed
by Zhang et al. [66]. In this method, the basis func-
tions must satisfy the boundary conditions and spe-
cial orthonormality relations of the gyroscopic sys-
tem. Additionally, through the comparison of numer-
ical results, the authors also revealed that the conver-
gence velocity of the complex-mode Galerkin method
is higher compared to that observed when using the
classical approach.

Marynowski and Kolaknowski [17], Marynowski
and Grabski [35], and Wang et al. [170] extended the
Galerkin method to discretize the equations of motion
and boundary conditions of axially moving plate sys-
tems. The extended Galerkin method requires the basis
functions to satisfy the kinetic boundary conditions
while not necessarily satisfying the dynamic ones.With
regard to two-dimensional plate models, out-of-plane
deflection can be assumed to take the following form:

w (x, y, t) =
ni∑

i=1

nk∑

j=1

qi j (t) ϕi (x) ψ j (z), (80)

where qi j (t) refers to the unknown functions of time;
ϕi (x) and ψ j (z) denote the basis functions; and ni and
nk refer to the total number of basis functions concern-
ing out-of-plane defections along the i and k direc-
tions. Basis functionsϕi (x) can be chosen similar to the
case of a simply supported beam, whereas ψ j (z) pos-
sesses the same form as the case of a free-free beam. By
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employing the extended Galerkin procedure, the gov-
erning equation, described by a set of ni .nk coupled
ODEs concerning out-of-plane deflections of a plate
model, can be expressed in the matrix form similar to
Eq. (79).

Shin et al. [171] used the extended Galerkin method
to develop an approximate model for axially moving
plates, wherein the equations of out-plane deflections
(i.e., u(x , z, t) and η(x , z, t) in the i–k plane) can be
solved independently to w(x , z, t). Consequently, two
matrix-vector equations, each concerning in-plane and
out-of-plane deflections, were established as follows:

Muηq̈uη + 2vGuηq̇uη +
(
v2Huη + v̇Guη

+Kuη
)
quη = fuη, (81)

Mwq̈w + 2vGwq̇w +
(
v2Hw + v̇Gw

+Kw
(
quη

))
qw = fw (82)

where quη and qw denote the 2mi · mk and ni · nk
vectors, respectively (mi and mk denote the total num-
ber of basis functions concerning the defections);Muη,
Guη, Huη, and Kuη denote the global matrices for
the mass, gyroscopic component, centrifugal compo-
nent, and stiffness in the in-plane deflections, respec-
tively. The corresponding notations for the out-of-plane
deflections areMw,Gw,Hw, andKw. Lastly, fuη and fw
denote the external force vectors. It is noted thatKw is
a function of quη. The vector quη as well as the longitu-
dinal and transverse displacements, u(x , z, t) and η(x ,
z, t), can be obtained independently without consider-
ing the lateral displacement w(x , z, t) by solving Eq.
(81). In addition, once quη is determined, Eq. (82) can
be solved to determine the lateral displacement. For
a plate model with large displacement, the equations
of motion become the PDEs of two variables, that is,
the large-amplitude deflection w(x , z, t) and the stress
function �(x , y, t) (refer to Eqs. (68) and (69)). To
convert the said PDEs to ODEs through the use of the
extended Galerkin method, Liu et al. [143] assumed
that w(x , z, t) and �(x , z, t) are given as follows:

w (x, z, t) =
ni∑

i=1

nk∑

j=1

qi j (t) sin

(
iπx

l

)

sin

(
jπ z

b

)

,

(83)

�(x, z, t) = z2b

2hl
+

ni∑

i=1

nk∑

j=1

φi j (t) sin
2
(
iπx

l

)

sin2
(
jπ z

b

)

, (84)

where qi j (t) and φi j (t) denote the sets of generalized
displacements and stress variables concerning theplate.
To obtain the set of ODEs, the stress function was first
determined using the extended Galerkin method for
Eq. (69), thereby yielding a function that depends on
the generalized displacement qi j (t). Subsequently, this
stress function can be substituted into Eq. (68), and the
extended Galerkin method can be used again to estab-
lish a set of ODEs.

Another approximate method to discretize the equa-
tion of motion, known as the finite-element method
(FEM), has also been widely used in the studies related
to axiallymoving systems [44,45,172–174], especially
with regard to models involving time-varying material
lengths. Fung et al. [44] and Chen and Ferguson [45]
employed the FEM technique to establish ODEs con-
cerning a translating string model with time-varying
length. In their studies, since the length of the string
was a function of time t , the FEM analysis pertain-
ing to a fixed-sized domain proved to be unsuitable.
Investigators, therefore, employed an FEM technique
involving a variable-domain and constant number of
elements, for instance, thework of Stylianou andTabar-
rok [172,173]. In these techniques, as long as the string
length changes, the length of each element also changes
correspondingly. The string is first discretized into n
elements with the lateral displacement w(x, t) within
a linear element j being expressed as follows:

w (x, t) = N j (x, l (t)) q j (t) , x j ≤ x ≤ x j+1,

j = 1, 2, . . . , n, (85)

where N j denotes the shape function—a function of
x and length l(t), whereas q j represents the nodal
variable vector. Subsequently, the governing equation
for each element j can be derived by calculating the
energy within each element j using Lagrange’s equa-
tion. Lastly, the global equation of motion described by
ODEs can be established by assembling all elemental
governing equations in the form expressed as follows:

Mq̈ + Cq̇ + Kq + S(q) = 0, (86)

where M, C, and K denote the global matrices for the
mass, damping coefficient, and string stiffness, respec-
tively, and S is the matrix of the nonlinear term of the
nodal displacement. It is to be noted that matrix S is
not constant, but a function of Q instead. Equation
(86) becomes a nonlinear differential equation with
time-dependent coefficients. It can be solved using
numerical techniques, such as the Runge–Kutta [44]
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and Newmark-Beta [45] methods. For axially moving
platemodels,Hatami et al. [175] developedFEM-based
formulations for each element of the plate, wherein the
lateral, longitudinal, and transverse deflections of nodal
points in the mid-plane were considered.

In addition to the Galerkin method and the FEM, the
finite difference method (FDM) has also been utilized
for discretizing the equations of motion of axially mov-
ing systems. The first step toward establishing an FDM-
based approximate equation involves discretizing inde-
pendent PDE variables (i.e., spatial and temporal vari-
ables) into a finite number of small segments 
x and

t and establishing an equispaced mesh grid with grid
points (x j , t j ). Subsequently, derivative terms in the
PDE at each grid point can be converted into algebraic
approximations via Taylor-series expansion. For axi-
ally moving systems, Ding and Chen [138] employed
the FDM method to derive the following equations for
solving the lateral vibration responses of a translating
beam at the grid point

(
x̄i , t̄ j

)
:

w̄
j+1
i − 2w̄ j

i + w̄
j−1
i


t̄2

+v̄
w̄

j
i+1 − w̄

j
i−1 − w̄

j−1
i+1 + w̄

j−1
i−1


x̄ t̄

+λ21
w̄

j
i+2 − 4w̄ j

i+1 + 6w̄ j
i − 4w̄ j

i−1 + w̄
j
i−2


x̄4

− w̄
j
i+1 − 2w̄ j

i + w̄
j
i−1


x̄2

⎡

⎣
(
1 − v̄2

)

+3

2
λ22

(
w̄

j
i+1 − w̄

j
i−1

2
x̄

)2
⎤

⎦ = 0, (87)

where

w̄ = w

l
, x̄ = x

l
, t̄ = t

√
T0

ρAl2
, v̄ = v

√
ρA

T0
,

λ1 =
√

E I

T0l2
, λ2 =

√
E A

T0
. (88)

The FDM is also a highly efficient numerical method
for the analysis of axially moving strings consider-
ing viscoelastic material properties through the use
of appropriate models, especially compound models
such as the Burgers model and the standard linear solid
model [47,67]. Using the FDM, PDEs of the equa-
tions describing the stress–strain relationship can be
discretized. Subsequently, the resulting equations can

be combined to determine the vibration behavior of the
string. Furthermore, to solve nonlinear PDEs describ-
ing the lateral vibrations of a translating viscoelastic
plate, Yang et al. [176] used the FDM approach in both
the spatial and temporal domains in consideration of
spatial differentiation based on a 3 × 3 mesh grid.

Another approach for developing an approximate
model involves the differential quadrature method
(DQM) [31,83,177]. In the DQM, the spatial variable
x is discretized into N nodes. Subsequently, the partial
derivative of the function with respect to variable x at
a node can be described by means of a weighted sum
of the functions at all nodes. For example, in the inves-
tigation performed by Lin and Qiao [31], the partial
derivative of the lateral vibration of a translating beam
at the i th node was approximated as follows:

∂(d)

∂x (d)
w (x, t)

∣
∣
∣
∣
∣
x=xi

=
N∑

j=1

A(d)
i j w

(
x j , t

)
, (89)

where d denotes the dth derivative and A(d)
i j denotes

the weighting-coefficient matrix to be determined.
This approximation is substituted into the equation of
motion with appropriate boundary conditions, thereby
leading to the establishment of DQM-based ODEs.
These ODEs can be expressed in the matrix form as
follows:(

�2M + �C + K
)

w̄ = 0, (90)

where M, C, and K denote the global matrices for
the mass, damping coefficient, and stiffness, respec-
tively; � and w̄ denote the dimensionless frequency
and amplitude of the vibration. In Eq. (90), � can be
determined by setting the determinant of the coefficient
matrix equal to zero to obtain a non-trivial solution.
DQM can also be used for solving translating-plate
models, wherein both spatial variables x and z are dis-
cretized into discrete points. Zhou and Wang [48] and
Robinson [178] developed approximatemodels for axi-
allymoving viscoelastic plates.With regard to dynamic
models described by an IPDE (e.g., Eq. (18)), in con-
junction with DQM, the integral quadrature method
(IQM) can be used to derive the set ofODEs concerning
system vibration [83,84,179]. In such systems, differ-
ential terms can be approximated using DQM, whereas
the integral term can be expressed by using IQM as fol-
lows:
x j∫

xi

g(x, t)dx =
N∑

k=1

I i jk g(xk, t), (91)
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where I i jk denotes the integral weighting coefficients
and g(x , t) is an arbitrary function.

4 Vibration solutions

To evaluate the influence of the parameters on the
dynamic response of axially moving systems and to
determine the parameters needed for vibration control,
vibration behaviors are usually analyzed by solving the
equations of motion pertaining to both linear and non-
linear cases. As regard to linear models, exact solutions
can be determined using the techniques such as Laplace
transform [37] and the Lie group theory [27]. However,
it is impossible to determine exact solutions to the non-
linear equations of motion of axially moving systems.
Therefore, approximate solutions have been obtained
for analyzing the vibrations of a nonlinearmodel via the
use of numerical, analytical, or combined numerical–
analytical methods.

4.1 Numerical solutions

When using numerical methods [43,44,85,170,180,
181], an approximate model is usually established first
based on a technique presented in Sect. 3. Subse-
quently, an approximate solution of the equations of
motion can be obtained using techniques such as the
Runge–Kutta and Newmark-Beta methods. In other
words, the spatial discretization is performed based
on the methods such as the Galerkin approximation,
FEM, or DQM. In contrast, the temporal discretization
can be performed using the Runge–Kutta or Newmark-
Beta methods. For example, to investigate the dynamic
response of an axially moving string with time-varying
length, Fung et al. [44] solved the nonlinear FEM-based
equations of motion using the Runge–Kutta method.
In contrast, Chen and Ferguson [45] utilized the FEM
technique along with the Newmark-Beta method to
solve the vibration response of a nonlinear string
model. Zhao and Chen [4] approximated an integro-
differential equation involving a string model using the
Galerkin method and subsequently employed an iter-
ative algorithm to determine approximate solutions.
Based on numerical results, the effectiveness of the
iterative algorithm and the effects of the parameters
on the vibration response of a translating viscoelastic
string have also been evaluated. An and Su [182,183]

proposed the use of a hybridmethod, known as the gen-
eralized integral transform technique (GITT), to ana-
lyze the lateral vibrations of an axially moving beam.
The authors employed GITT to eliminate the spatial
variables of PDEs and derive a system comprising
second-order ODEs in time. Subsequently, the vibra-
tion response of the system was obtained by numeri-
cally solving the resulting ODEs.

4.2 Analytical solutions

Under certain circumstances, approximate solutions to
the equations of motion can be expressed in a mathe-
matical form by using analytical techniques for solv-
ing differential equations. Themost common analytical
methodused to analyze the vibrations of axiallymoving
systems is the perturbation technique. The perturbation
technique is a powerful tool for solving the equations of
motion [40,184,185] and investigates the steady-state
responses of axially moving systems [29,168,186].
The perturbation technique is usually used for solv-
ing nearly linear and autonomous systems, wherein the
terms that render the nonlinearity are relatively small
and are referred to as perturbations. In such cases, it is
possible to assume that the mathematical form of the
solution would correspond to a power series of a small
parameter. A drawback of the classical perturbation
method is the appearance of a secular term in the solu-
tion that tends to increase indefinitely in time, thereby
leading to loss of convergence of the solution. To
address this concern, perturbation techniques, such as
the multiple-scales, Krylov–Bogoliubov–Mitropolsky,
Lindstedt–Poincaré, and harmonic balance methods
that tend to eliminate the presence of secular terms,
have been developed.

Mote [69] is recognized as a pioneer in using
the perturbation method for analyzing the dynamic
response of axially moving systems. Subsequently,
Pakdemirli and Ulsoy [187] presented a detailed solu-
tion to the vibration of a translating string based on
the discretization–multiple-scales method. This work
first assumed the velocity function to be harmonically
varying about a mean velocity v0 such that

v = v0 + εv1 sin (�vt) , (92)

where ε denotes a small parameter, and�v indicates the
frequency of the velocity. PDEs describing the system
were also converted to ODEs, wherein the translating
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vibration was assumed to be a series of a generalized
displacement qi (t) of the string and basis functions
ϕi (x) (refer to Eq. (78)). Subsequently, the multiple-
scales method was applied by expressing the displace-
ment qi (t) in the form of the following power series.

qi (t, ε) = qi0 (τ0, τ1, τ2, . . .) + εqi1 (τ0, τ1, τ2, . . .)

+ ε2qi2 (τ0, τ1, τ2, . . .) + · · · , (93)

where τi = εi t; i = 0, 1, 2, . . . and the time deriva-
tives can be written as follows.
d

dt
= ∂

∂τ0
+ ε

∂

∂τ1
+ · · · ,

d2

dt2
= ∂2

∂τ 20
+ 2ε

∂2

∂τ0∂τ1
+ · · ·. (94)

By substituting Eqs. (93) and (94) into ODEs, the terms
at each order of ε can be obtained, followed by attain-
ment of the analytical solution for lateral vibration
at each order of ε, which can be expressed using a
Fourier series. In addition, the multiple-scales method
can also be directly used to solve the PDEs without the
need to discretize the equation of motion [26,127,184,
187–189]. Unlike the discretization–multiple-scales
method, the lateral vibrations can directly be expressed
in the following power-series form:

w (x, t, ε) = w0 (x, τ0, τ1, τ2, . . .)

+ εw1 (x, τ0, τ1, τ2, . . .)

+ ε2w2 (x, τ0, τ1, τ2, . . .) + · · · . (95)

This formulation canbe substituted into aPDEmodel to
determine analytical solutions at each order of ε. For
high-order perturbation schemes, the direct multiple-
scales method is more straightforward, and the results
are also more accurate compared to those based on
the discretization–multiple-scales method. Malookani
and Van Horssen [190] combined the multiple-scales
methodwith themethod of characteristic coordinates to
develop an approximate solution of a translating string
problem to avoid computational difficulties and occur-
rence of errors via eliminations of the Fourier series.

Wickert [6] and Moon and Wickert [191] used
a perturbation technique, known as the Krylov–
Bogoliubov–Mitropolskymethod, to analyze the vibra-
tions of an axially traveling beam. In contrast, Pelli-
cano andZirilli [192] employed theLindstedt–Poincaré
method to suppress secular terms present in the solu-
tion for nonlinear vibrations of an axiallymovingbeam.
Later, Chen et al. [73] analyzed the dynamics of an axi-
ally moving beam through the use of the multidimen-

sional Lindstedt–Poincaré method (involving general-
ization of the Lindstedt–Poincaré method to multiple-
degree-of-freedom systems). Their study revealed that
the saidmethod ismore convenient and straightforward
compared to other perturbation techniques employed
in the analysis of the multiple-degree-of-freedom sys-
tems. Another investigation performed by Sze et al.
[12] involved the use of the incremental harmonic bal-
ance (IHB) method [193] to solve ODEs describing the
dynamics of a moving beam. In their work, an incre-
mental equation in the matrix-vector form was devel-
oped fromODEs through the use of a new time variable
τ = �f .t (�f denotes the frequency of an external exci-
tation). This incremental equation was linearized using
the Newton–Raphson procedure. The Galerkin proce-
durewas then employed to establish a set of linear equa-
tions. The solution process began with a guessed solu-
tion. Subsequently, the nonlinear frequency–amplitude
response curve is then solved point-by-point by incre-
menting the frequency�f or incrementing a component
of the coefficient vector of the set of linear equations.

Besides the perturbation techniques, themodal anal-
ysis method developed by Meirovitch [194] was also
used to investigate the dynamics of axially moving sys-
tems via eigensolutions. Wickert and Mote [24] were
among the early researchers who applied the modal
analysis method to axially moving materials. In their
work, the equation of motion of a translating beamwas
first expressed in the canonical state-space form, and a
solution to this equation was obtained by analyzing the
eigenvalue problem and using the following separable
solution:
[

wt

w

]

= Re
{
� (x) eαt} , (96)

whereα is a complex number and� (x) is the complex-
mode function vector. Consequently, a closed-form
solution to the vibration response of the beam was
obtained. Yang et al. [3,195] used the invariant mani-
fold method for deriving the linear and nonlinear com-
plex mode functions of the axially moving material.
The modal analysis method offers an efficient means
to investigate free- and forced-vibration responses of
axiallymoving systems. However, for a translating sys-
tem with a viscoelastic foundation, the classical modal
analysis method cannot be directly utilized owing to
the influence of damping of the foundation. Zhang et
al. [196], therefore, proposed a complex modal analy-
sis method for investigating such systems. Their study
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revealed that the complex modal analysis method was
applied efficiently to the non-self-adjoint systems, such
as those with viscoelastic foundations.

5 Dynamic behavior analysis

Besides the approximate solutions of mathematical
models, dynamical behaviors of axially moving sys-
tems including natural frequencies, equilibrium, bifur-
cation, and stability have also been discussed in detail
in [197–223]. Wicket [6] investigated the equilibrium
configurations of a moving beam described by the fol-
lowing equation of motion:

w̄t̄ t̄ + 2v̄w̄x̄ t̄ + v̄2w̄x̄ x̄ − w̄x̄ x̄ + λ1w̄x̄ x̄ x̄ x̄

−λ22

2
w̄x̄ x̄

1∫

0

w̄2
x̄dx = 0, (97)

where the dimensionless parameters w̄, v̄, x̄ , t̄ , λ2, and
λ1 are given as Eq. (88). In this work, the equilibrium
solutions ŵ(x̄) of the beam were obtained by solving
the following equation:

λ21ŵx̄ x̄ x̄ x̄ + ŵx̄ x̄

⎡

⎣v̄2 − 1 − λ22

2

1∫

0

ŵ2
x̄dx̄

⎤

⎦ = 0,

ŵ (0) = ŵ (1) = 0, ŵx̄ x̄ (0) = ŵx̄ x̄ (1) = 0. (98)

Equation (98) has the trivial solution w̄0 (x̄) = 0 and
non-trivial solutions bifurcating from the straight con-
figuration as follows:

ŵ±
i (x̄) = ± 2

iπλ2

√
v̄2 − γ 2

i sin (iπ x̄) ,

i = 1, 2, 3, . . ., (99)

where γi =
√
1 + (iπλ1)

2 denotes the critical velocity
for the linear mode i . Based on Eq. (99), the author
showed the relationship between the equilibrium of an
axiallymoving beam and the axial velocity. The regime
in which v̄ is smaller than the first critical speed γ1
is called the subcritical, whereas the regime wherein
v̄ > γ1 is called the supercritical regime. In the for-
mer regime, the equilibrium configuration of the sys-
tem is a straight line (i.e., w̄0 (x̄) = 0), while there
exist 2i + 1 equilibrium configurations corresponding
to γi < v̄ < γi+1 in the latter regime. In most stud-
ies on axially moving systems, dynamics analysis has
been generally performed in the subcritical regime and

investigated the behaviors around the trivial equilib-
rium. However, in nonlinear systems with high veloc-
ity, the trivial equilibrium can become unstable, and
many complicated types ofmotions such as bifurcation,
chaos, divergence, and flutter instabilities may occur.
Therefore, the global dynamics of axially moving sys-
tems in the supercritical regime also are an interesting
problem and have received considerable attention. Var-
ious investigations on the stability and bifurcation were
published in [10,46,76,115,198,200,203–207].

5.1 Stability and bifurcation: String and beam models

Wang [197] is recognized for his study on the stability
of the equilibrium configurations of an axially moving
system in the supercritical regime. The author consid-
ered two translating beams:A straight beamand a beam
with end curvatures due to applying bending moments
to two supports. The author found that the trivial con-
figuration of the former one became unstable in the
supercritical regime showing the existence of a pitch-
fork bifurcation. In contrast, the equilibrium config-
uration of the latter one changed with an increase in
the axial velocity, but it remained stable. Pakdemirli
and Ulsoy [187] examined the influence of the fre-
quency �v (i.e., Eq. (92)) on the stability of an axi-
ally moving string. Based on the approximated analyt-
ical solutions, the authors showed that when �v was
close to twice any natural frequency of the system or
close to the sum of any two natural frequencies, the
string became unstable. Later, Öz and Pakdemirli [71]
used the Euler–Bernoulli beam model to investigate
the previous problem and achieved similar conclusions.
Öz et al. [188] extended the study in [71] by using
the nonlinear moving beam model in Eq. (97). Conse-
quently, the stability and the bifurcations of steady-state
solutions were analyzed, and the frequency–response
curves were given. Concerning chaotic motions of axi-
ally moving systems, Ravindra and Zhu [76] investi-
gated the bifurcation and the chaos of an axially mov-
ing beam based on a one-mode approximated model
established by theGalerkinmethod. In the supercritical
regime, the response of the system can become chaotic
due to the nonlinear effects. A criterion for the occur-
renceof the chaoswasobtainedviaMelnikov’smethod.
Furthermore, the authors proved that both the period-
doubling and intermittency routes to chaos exist in the
system as the system parameters vary. Later, Pellicano
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and Vestroni [169] discussed the stability of an axially
moving beam in the supercritical regime based on an
approximate model developed by using the four-term
Galerkin truncate. Zhu and Ni [61] presented a study
on the energetics and stability of an axially moving
string/beamwith varying length. In [198],Özhan inves-
tigated the stability of an axiallymoving beam,wherein
both axial velocity and tension were time-dependent.
According to the solutions of the equation of motion
using themultiple-scalesmethod, seven resonance con-
ditions were obtained, and then the stability condition
of each case was considered analytically. Besides the
Euler–Bernoulli beam, the Rayleigh beam theory was
also used for investigating the influence of rotary inertia
on the dynamic behavior of an axially moving system.
In [205], the dynamic behavior of a Rayleigh beamwas
analyzed in both the sub and supercritical regime.

Marynowski andKapitaniak [208] examined the sta-
bility of an axially moving viscoelastic beam using
both the Kelvin–Voigt and the Burgers models. The
authors obtained several significant results related to
the effects of axial velocity and dynamic viscosityμ on
the instability regions of the system and the occurrence
of divergence andflutter instabilities in the supercritical
regime. Concerning parametric excitations with time-
dependent axial velocity, Sahoo and coauthors used
the direct multiple-scales method to investigate the
stability, the bifurcation in steady-state solution, and
the chaotic dynamics of axially traveling viscoelastic
beams under single excitation frequency in [209,210]
and two excitation frequencies in [211,212] under the
3:1 internal resonance between the first and second nat-
ural frequencies.Marynowski [19] subsequently inves-
tigated the bifurcation and the chaotic motions of a vis-
coelastic beamwith a time-varying axial force using the
Kelvin–Voigt model. Furthermore, Sahoo [213] con-
sidered a viscoelastic moving beam under paramet-
ric excitations derived from both varying axial veloc-
ity and tension simultaneously. In his paper, the sta-
bility, bifurcations, and the chaotic behaviors of the
beam were analyzed. Another viscoelastic model, the
SLS model—Maxwell representation (Fig. 8b), was
also used to develop a dynamic model of a translat-
ing beam in [85]. Based on this dynamic model, the
authors concluded that the critical velocity obtained
from the dynamic model using the SLS model is simi-
lar to the one using the Burgers model and smaller than
the one using theKelvin–Voigtmodel. In another study,
Ghayesh [186] employed the Routh–Hurwitz criterion

to obtain the stability conditions of amoving viscoelas-
tic string placed on a partial foundation (Fig. 7). The
author further analyzed the effects of axial velocity,
the damping viscosity, and the length and stiffness of
the foundation on natural frequencies, the stability, and
the bifurcations of the system. Subsequently, an elas-
tic string subject to a nonlinear foundation (i.e., Eq.
(7)) and a translating viscoelastic Rayleigh beam (i.e.,
Eq. (41)) were analyzed in [64] and [26], respectively.
Additionally, Ding et al. [83] examined the chaotic
dynamics of a viscoelastic beam based on the numeri-
cal solutions obtained using two approaches; the high-
order Galerkin truncations and the differential and inte-
gral quadrature methods. Comparisons of the bifurca-
tion diagrams, the phase portraits, and the Poincaré
maps of two-, four-, and six-term Galerkin’s trunca-
tions and the DQM & IQM were further conducted.

Studies on the stability and the bifurcation of trans-
lating systemsunder external excitationswere also pub-
lished [75,201,202,214–218]. In [75], the bifurcation
and the chaotic dynamics of an axially moving beam
with a harmonic point-wise excitation were investi-
gated in the supercritical regime. The bifurcation dia-
grams presented in [75] provide a panoramic view of
the vibration behaviors as the axial velocity, and the
amplitude and frequency of the excitation force are
varied. In the supercritical regime, the authors found
the existence of complicated dynamical phenomena,
such as cascaded bifurcations, blue-sky catastrophes
(i.e., a sudden disappearance of a chaotic orbit), and
the coexistence of chaotic and periodic orbits. Con-
cerning the stability of axially moving systems with
an internal resonance, Huang et al. [214] analyzed a
moving Euler–Bernoulli beam under harmonic lateral
excitations. The nonlinear dynamic behaviors of the
system were investigated based on the IHB and the
multivariable Floquet theory. The authors presented
the stable regions and bifurcation points for the case
where the excitation frequency is near the first two nat-
ural frequencies of the system. Concurrently, Ghayesh
[201] examined the relationship between the material
damping and the bifurcations of an axially moving sys-
tem tuned to internal resonances through considering a
translating viscoelastic beam. The author showed that
Neimark–Sacker bifurcations could occur in the sub-
critical regime, and the chance for the existence of
these bifurcations increases as the damping viscosity
decreases. Later, both the sub- and supercritical non-
linear dynamics of an axially moving beam with a 3:1
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internal resonance were investigated in [202]. In this
paper, the bifurcation diagrams and the Poincaré maps
were analyzed via the direct time integration. In the
supercritical regime, various dynamical phenomena,
including the period-doubling, the quasiperiodic, and
the chaoticmotions,were exhibited.Additionally,Ding
et al. [215] also discussed the influences of nonlinear
vibrations on the stress distribution and fatigue life of a
translating beamwith a 3:1 internal resonance. In recent
studies on axially moving material with complicated
structure, Li et al. [216] and Zhu et al. [217] investi-
gated the stability of translating viscoelastic sandwich
beams, whereas Sarigul [218] discussed the internal
resonance of a translating beam with multimass.

5.2 Stability and bifurcation: Belt model

The stability of axially moving systems described by
the belt model was analyzed in [130,133,135,219,
220]. Riedel and Tan [130] introduced the subcritical
dynamics of a translating strip subject to harmonic lat-
eral forces.Ghayesh et al. [219] presented both the local
and global dynamic behaviors of a moving belt with an
internal resonance based on the Euler–Bernoulli beam
theory. Later,Ghayesh andAmabili [133] used theTim-
oshenko beam theory to analyze the dynamics of an
axially moving belt with intermediate spring supports
in the sub- and supercritical regimes. Furthermore, the
global nonlinear dynamics of a translating viscoelas-
tic belt were analyzed in [135]. The previous studies
considered moving belts under lateral external excita-
tions. In contrast, Farokhi et al. [220] investigated para-
metric resonances of an axially moving belt subject to
a sinusoidal longitudinal excitation. In their work, the
dynamic stability of the system in the subcritical regime
was analyzed.

5.3 Stability and bifurcation: Plate model

Investigations on the stability and the bifurcation of
the axially moving plates were presented in [143,149,
176,221–229]. Yang et al. [176] studied the natural fre-
quencies of free vibration and the bifurcation and the
chaotic dynamics of the forced vibration of a trans-
lating viscoelastic plate based on FDM. Bifurcation
diagrams showed the effects of the axial velocity, the
amplitude of the excitation, and the damping viscosity

on the dynamic behavior of the system: When these
parameters increase, the equilibrium becomes unsta-
ble and bifurcates into periodic motions, and the chaos
occurs after a sequence of period-doubling bifurcation.
In [222], the flutter and divergence instabilities of a
translating viscoelastic plate with different boundary
conditions were examined. In this paper, the complex
eigenvalue equationswere established using the power-
series method. The authors also exhibited the influ-
ences of the viscosity coefficient, the geometrical ratio
of plate, and boundary conditions on the system insta-
bility. The chaotic dynamics of axially moving plates
using the von Karman large deflection theory (i.e., Eqs.
(68–69)) were also discussed in [143] and [221].Mean-
while, the stability analysis of amoving nanoscale plate
in the sub- and supercritical regime was performed in
Liu et al. [149]. In this work, the authors drew several
conclusions concerning the relationship between and
the dynamic behaviors of the system and the system
parameters (i.e., small-scale parameter, axial velocity,
and boundary constraints). Subsequently, Duan et al.
[223] analyzed the stability of a translating nanoscale
plate subjected to a viscoelastic foundation. Concern-
ing composite materials, Yang and Chen [224] devel-
oped a dynamic model of a translating rectangular anti-
symmetric cross-ply composite plate and investigated
the divergence and flutter instabilities analyzing the
complex natural frequencies.

The stability of axially moving plates in diverse
environments such as fluids, magnetic fields, and
thermoelectromechanical fields was also discussed in
[34,100,226–229]. In [227], the stability and chaotic
motion of a translating plate immersed in a liquid were
investigated. Later, Li et al. [228] performed a study
on complicated dynamic behaviors of a moving plate
immersed in a fluid with an internal resonance. In
another investigation on axially moving plates in fluid,
Wang and Zu [229] analyzed the instability of a vis-
coelastic plate. The authors derived unstable regions
for different types of resonances using the solvability
conditions and the Routh–Hurwitz criterion. They fur-
ther showed the influences of the system parameters on
the unstable boundaries. A study on the dynamics of a
translating plate in a magnetic field was also performed
by Hu et al. [34]. Based on bifurcation diagrams, they
showed that the chaotic dynamics of the system are
sensitive to the parameters: The magnetic induction
intensity, the axial velocity, the tension, and the ampli-
tude and frequency of the external excitation. Around
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Table 1 Key contributions related to the dynamics of axially moving systems

Model Reference Contributions

String model Mahalingam [1] Modeling of axially moving strings, Eq. (1)

Mote [22] Modeling of axially moving strings with axial deformation, Eq. (2)

Wickert and Mote [24] Modal analysis method for axially moving systems

Pakdemirli et al. [60] String model with varying velocity, Eq. (3)

Pakdemirli and Ulsoy [187] Multiple-scales discretization method, Eq. (93)

Fung et al. [9] FEM modeling of a translating string with varying length

Zhu and Ni [61] Stability analysis of moving strings/beams with varying length

Mockensturm and Gou [80] Modeling of moving viscoelastic strings with a steady dissipation term

Ghayseh [186] Stability of a moving string on a partial viscoelastic foundation

Yurdass et al. [168] Modeling of a moving string with non-ideal boundaries

Beam model Mote [69] Modeling of axially moving beams, Eq. (15)

Wickert [6] Modeling of axially moving beams in the form of IPDE, Eq. (18)

Stylianou and Tabarrok [172] FEM modeling of a moving cantilever beam: Variable domain

Ravindra and Zhu [76] Bifurcation and chaos analyses of an axially moving beam using
one-term Galerkin’s truncate

Öz and Pakdemirli [71] Stability analysis of axially moving beams: Harmonically varying
velocity

Pellicanon and Vestroni [169] Stability in the supercritical regime using the four-term Galerkin
truncate

Marynowski and Kapitaniak [208] Modeling and stability analysis of a moving viscoelastic beam using
the Kelvin–Voigt and Burgers models

Pellicanon and Vestroni [75] Chaos dynamics of a beam with a harmonic point-wise excitation in
the supercritical regime

Lee et al. [104] Timoshenko beam model for spectral analysis

Marynowski [19] Bifurcation and chaos analyses of a translating viscoelastic beam with
varying tension using the Kelvin–Voigt model

Chen and Yang [74] Modeling and stability analysis of a viscoelastic beam using the
Kelvin–Voigt model, see Eq. (22)

Chen and Yang [79] Steady-state response analysis of two viscoelastic beams described by
PDE and IPDE.

Chen et al. [73] Application of the multidimensional Lindstedt–Poincare method for
vibration analysis of a moving beam

Marynowski and Kapitaniak [85] Modeling of a translating beam using the SLS model: Stability and
bifurcation analysis

Ghayesh and Balar [26] Application of Rayleigh beam theory for stability analysis of a
viscoelastic beam

Lin and Qiao [31] Stability analysis of a beam immersed in fluid

Lim et al. [98] Euler–Bernoulli nanobeam model using Erigen’s nonlocal elasticity
approach

Ghayesh [118] Modeling of a laminated composite beam using the classical laminate
theory, for investigation of the critical velocity, natural frequency,
and complex mode function

Huang et al. [214] Stability and bifurcation of a beam with a 3:1 internal resonance

Ghayesh [201] Bifurcation analysis on material damping for a viscoelastic beam
tuned to internal resonances
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Table 1 continued

Model Reference Contributions

Ghayesh et al. [202] Local and global dynamics of a moving beam with internal resonances

Marynowski [120] Dynamic model of a sandwich beam with a viscoelastic core

Yan et al. [106] Viscoelastic Timoshenko beam model described by IPDE for
investigation of the vibration responses and chaos of the system

Razaee and Lotfan [116] Application of Rayleigh beam theory for investigation of the nonlinear
nonlocal vibration of a nanoscale beam

Ding et al. [107] Investigation of the equilibrium bifurcation of a Timoshenko beam
described by IPDEs

Ding et al. [115] Comparison of the supercritical natural frequencies of the Timoshenko
beam and the Euler–Bernoulli beam

Zhang et al. [196] Usage of the complex modal analysis method for vibration analysis of
a moving beam placed on a foundation

Ding et al. [164] Usage of the Rayleigh beam theory for investigation of the effect of
rotary inertia on the vibration of a beam in the sub- and supercritical
regimes

Ding et al. [165] Investigation of the static equilibrium and steady-state response of a
translating system with non-homogeneous boundaries

Zhu et al. [217] Investigation of the stability in principle resonances of translating
viscoelastic sandwich beams

Wang et al. [101] Usage of the nonlocal strain gradient theory for developing a dynamic
model of a moving nanobeam

Sarigul [103] Development of a dynamic model of a moving beam with edge cracks

Belt model Thurman and Mote [13] Comprehensive axially moving belt model, see Eqs. (50) and (51)

Wang and Mote [154] Usage of the belt model for describing a band-wheel mechanism, see
Eqs. (72)–(74)

Riedel and Tan [130] Developed of a simple belt model for investigation of the subcritical
dynamic of a translating strip subjected to harmonic lateral forces

Sze et al. [12] Usage of the IHB method for vibration analysis

Chen and Ding [25] Viscoelastic belt model using the Kelvin–Voigt model

Ding and Chen [129] Usage of Galerkin’s method for investigation of natural frequencies of
a moving belt model

Ding et al. [139] Comparison of supercritical equilibrium solutions of the beam and belt
models

Ghayesh. [181] Simple belt model using the approximated strain

Ghayesh et al. [219] Modeling for the local and global dynamic behaviors of a moving belt
with an internal resonance

Farokhi et al. [220] Usage of the viscoelastic belt model consisting of the in-plane and
out-plane vibrations for investigation of the global dynamics.

Plate model Ulsoy and Mote [140] Two-dimensional model for investigation of the vibration of a moving
band saw

Lin and Mote [142] Mathematical model of an axially moving plate using the von Karman
large deflection theory, see Eqs. (68)–(69)

Marynowski and Kolakowski [17] Mathematical model of an axially moving orthotropic plate, Eqs.
(64)–(66)
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Table 1 continued

Model Reference Contributions

Hatami et al. [145] Dynamic model of translating laminated composite plates

Hatami et al. [175] Usage of FEM for vibration analysis of a translating plate

Yang et al. [224] Investigation of complex natural frequencies and instability of a com-
posite plate using Galerkin’s method and DQM.

Yang et al. [176] Usage of FDM for investigation of natural frequencies, bifurcation, and
chaos of a translating viscoelastic plate

Zhang et al. [146] Modeling of a laminated composite cantilever plate: High-order shear
deformation theory

Arani et al. [33] Dynamics of a graphene sheet on a foundation under the magnetic field:
Third-order shear deformation theory

Wang et al. [32] Investigation of fluid pressure on vibration characteristics and stability
of moving plate-fluid systems

Arani and Haghparast [147] Dynamic of a moving viscoelastic microplates using the modified cou-
pled stress theory

Arani et al. [148] Dynamics of a nanocomposite plate moving in two directions

Li et al. [100] Stability of a viscoelastic piezoelectric nanoplate under a thermoelec-
tromechanical field

Liu et al. [149] Usage of the nonlocal elasticity theory for investigating the stability of
a translating nanoplate

Wang et al. [229] Investigation of the dynamic stability of a viscoelastic plate immersed
in a fluid

Robinson. [178] Usage of DQM for vibration analysis of a viscoelastic plate

the same time, Li et al. [100] studied the stability of
an axially moving viscoelastic piezoelectric nanoscale
plate under the multi-thermoelectromechanical field.

6 Conclusions and future prospects

This paper provided adetailed reviewof extant researches
performed concerning the dynamics of axially moving
systems. Mathematical models (linear and nonlinear)
of the string, beam, belt, and plate models and bound-
ary conditions are introduced in Sect. 2.Approximation
methods used to discretize the equations of motion are
presented in Sect. 3. The techniques to determine the
solutions of axially moving systems are discussed in
Sect. 4. Finally, the local and global dynamics of axi-
ally moving systems are examined in Sect. 5. Several
key works on the dynamical analysis of axially mov-
ing systems are summarized in Table. 1. Based on the
review presented in this paper, the following six spe-
cific aspects are outlined for initiating future research
endeavors to be undertaken concerning axially moving
systems.

Laminated composite materials: The laminated
composite material is a material type that includes two
or more layers of orthotropic materials with different
properties. Recently, the use of these materials in axi-
allymoving systems instead of homogeneousmaterials
has drawn considerable attention due to their improved
properties. Although several studies on this aspect were
published in recent years, the dynamic analyses of axi-
allymoving compositematerials, however, are still lim-
ited, particularly investigation on its stability and com-
plicated dynamics. The emphasis of laminated com-
posite materials will reveal the diversity of dynamic
behaviors due to the differential properties of material
layers. In the future, this aspect is one of themost antic-
ipated fields.

Axially moving materials in the nanoscale: Also,
due to the broad applications of nanotechnology, the
dynamics and stability analyses of axially moving sys-
tems in nanoscale, in which the small-scale effect
and nanoscale surface effect are considered, should be
investigated.

Axially moving materials with defects: In axially
moving systems, the long-term effects of vibrations can
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cause potential damages for the system and lead to a
failure of components. Furthermore, the existence of
damages or cracks in the material seriously affects the
safety and performance of the system. There are many
studies on the vibrations of static beams and plates with
crack defects. However, the works of moving materi-
als with defects are rare yet. Therefore, investigation
of the vibration responses of axially moving materials
with defects must be pursued in the future.

Non-ideal boundary conditions:With regard to axi-
ally moving systems with non-ideal boundaries, espe-
cially non-homogeneous boundary conditions, most of
the published works focused on analyzing the linear
vibration of the system. Not much work concerning the
effects of non-ideal boundary conditions, bifurcation,
and chaotic motions has been reported. In the future,
this aspect must be further studied.

Non-uniform materials: Most studies have consid-
ered axially moving systems made of uniform mate-
rials: Basic parameters such as mass density, cross-
sectional area, and flexural rigidity were assumed con-
stant. The use of non-uniformmaterials can be pursued
with regard to future research endeavors.

Experimental analysis: Lastly, experimental analy-
ses must be performed when investigating the vibra-
tion response of axially moving materials. This is all
the more applicable to the system subject to affective
environmental factors including fluid interactions, the
presence of magnetic and thermal fields, etc.
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