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An obstacle avoidance problem of rear-steered wheeled vehicles in consideration of the presence of uncertainties is addressed.
Modelling errors and additional uncertainties are taken into consideration. Controller designs for driving and steering motors
are designed. A proportional-derivative-type driving motor controller and a sliding-mode steering controller combined with
radial basis function neural network (RBFNN) based estimators are proposed. The convergence properties of the RBFNN-
based estimators are proven by the Stone–Weierstrass theorem. The stability of the proposed control law is proven using
Lyapunov stability analysis. The obstacle avoidance strategy utilising the sliding surface adjustment to an existing navigation
method is presented. It is concluded that the driving velocity and steering-angle performances of the proposed control system
are satisfactory.

Keywords: obstacle avoidance; wheeled vehicle; estimation; sliding-mode control; proportional derivative control; radial
basis function networks

1. Introduction

As robotics become increasingly sophisticated, obstacle
avoidance emerges as an ever-more important aspect of
motion control. In most motion-controller design cases,
a vehicle, for the purposes of analytical simplification, is
assumed to be free of modelling errors and additional un-
certainties (Fraichard and Asama 2004). Under certain con-
ditions, this approach is useful for determining the vehicle
behaviour and for elucidating various significant properties
in motion-control studies. However, in practical cases, the-
oretical and simplified behaviours regularly result in large
errors (Widyotriatmo, Hong, and Hong 2009). In design-
ing an obstacle-avoidance strategy therefore the distinction
between theoretical and practical behaviours should be as
small as possible.

Generally, obstacle-avoidance strategies are integrated
into motion-control designs. Various motion-control solu-
tions of this type have been reported: Examples include
the potential field approach (Huang 2009), backstepping
(Wu, Shi, and Gao 2010; Cheng, Su, and Tsai 2012) and
sliding-mode control techniques (Chwa 2004; Shi, Xia, Liu,
and Rees 2006; Park, Yoo, Park, and Choi 2009; Fallaha,
Saad, Kanaan, and Al-Haddad 2011; Lin, Xia, Shi, and Wu
2011; Chang, Chang, Chen, and Tao 2012; Gan and Liang
2012; Khan, Bhatti, Iqbal, and Ahmed 2012; Lin, Chang,
and Hsu 2012; Ngo and Hong 2012a,b; Wu, Su, and Shi
2012; Zhao and Zhou 2012). In Widyotriatmo, Hong, and
Prayudhi (2010) and Widyotriatmo and Hong (2011, 2012),
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a novel navigation function for a nonholonomic rear-steered
wheeled vehicle was proposed. In those works, however,
they did not take uncertainty into consideration.

The presence of uncertainties, particularly for nonholo-
nomic wheeled vehicles, has obliged researchers to explore
compensator design. Solutions involving neural networks
are powerful approaches: A combined backstepping and
neural-network-based method was reported in Fierro and
Lewis (1998). In Schilling, Carroll, and Al-Ajlouni (2001),
a method for nonlinear systems estimation using a radial
basis function neural network (RBFNN) was proposed.
However, it yielded only bounded-input, bounded-output
stable outputs. Ge and Zhang (2003) proposed control
of a non-affine nonlinear system with zero dynamics by
means of a multilayer neural network. Xu, Zhao, Yi, and
Tan (2009) applied a combined RBFNN/sliding-mode con-
trol for trajectory-tracking missions of an omnidirectional
wheeled mobile manipulator. Bugeja, Fabri, and Camil-
leri (2009) proposed an adaptive control that utilises two
types of neural networks: Gaussian radial basis function and
sigmoidal multilayer perceptron neural network . Kasac,
Deur, Novakovic, Kolmanovsky, and Assadian (2011) ap-
plied a backpropagation-through-time like optimal con-
trol algorithm to a 10-d.o.f. vehicle for optimisation of a
trajectory-tracking controller. Chen (2011) incorporated a
type of wavelet neural network into a proportional–integral–
derivative type learning algorithm to enhance trajectory-
tracking performance.

C© 2013 Taylor & Francis
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The capability of neural networks as estimators was in-
troduced in Hornik (1989, 1991), wherein it was claimed
that multilayer feed-forward networks can be used as uni-
versal estimators. This fact was verified by the Stone–
Weierstrass theorem (Cotter 1990), which states that multi-
layer feed-forward networks with dense and separable func-
tions are acceptable as estimators. In the case of mechanical
systems, several studies have applied neural networks for
estimation purposes: Tsai, Chan, and Li (2012) addressed
the issue of the reduction of friction effects in an H∞ con-
trol scheme for brushless DC motors. Cheng et al. (2012)
combined a sliding-mode controller with a fuzzy-neural-
network-based friction estimator. Recently, neural network
based optimisation approaches have been heavily investi-
gated (Deng, Li, and Irwin 2012; Yang, Zhu, Yuan, and
Meng 2012; Zhang and Chu 2012; Zhang, Zhu, and Yang
2012). However, the selection of an efficient number of
membership functions in fuzzy control emerges as a new
problem.

As material-handling vehicles in recent years have been
widely adopted for use in complex environments, the issue
of safety has emerged. The twin requirements (high speed
and safe motion) have been the main research issues in
this area. However, the consideration of input has brought
the concept of collision-free configuration into question.
Furthermore, the existence of modelling errors and ad-
ditional uncertainties makes this issue more complicated
still. For the purposes of safety analysis, Fraichard and
Asama (2004) introduced the concept of inevitable colli-
sion state (ICS) as an alternative method to collision-free
states/configurations. Typical collision-free configurations
are defined as those without any intersection between the ve-
hicle’s body and any obstacle. However, under the applica-
tion of particular inputs, configurations that are considered
to be collision-free become, according to the ICS, prohib-
ited configurations. The reason is based on the possibility
of colliding for the next n time sampling. Chakravarthy and
Ghose (2012) investigated this concept further by intro-
ducing ‘collision cone’ for consideration in the design of
collision-avoidance strategies, in which a number of theo-
ries regarding conditions of possible collisions were pro-
posed. However, their method lacks any discussion on the
effects of uncertainties.

In this paper, an obstacle-avoidance strategy for a type
of a rear-steered wheeled vehicle operating under the con-
ditions of modelling errors and uncertainties is presented.
Since modelling errors and additional uncertainties can
arise in voltage-to-torque conversions of the driving and
steering motors, we designed a voltage-input control law
rather than a torque control law. Control of the driving mo-
tor’s voltage is achieved as the proportional-derivative (PD)
type, and that of the steering angle is obtained in the sliding
mode. To reduce the effect of modelling errors and addi-
tional uncertainties, an RBFNN is used. To our best knowl-
edge, most motion-control problems have been solved by

means of velocity or force controllers (Hong, Tamba, and
Song 2008; Bugeja et al. 2009; Fallaha et al. 2011; Cheng
et al. 2012). A drawback in this approach becomes par-
ticularly evident when the voltage-to-force (or voltage-to-
velocity) transformation has nonlinearities. Therefore, in-
structions from the computer in the form of voltage input
might be inaccurately transmitted to force or velocity. Re-
cent studies on the assurance of safety have noted that mod-
elling errors and uncertainties are important problems to be
solved.

Our contributions are as follows. First, we design, for the
driving and steering motors of a rear-steered wheeled vehi-
cle, a voltage-input control law that can reduce the effects of
modelling errors and additional uncertainties specifically by
utilising a combination of a PD-type/sliding-mode voltage-
input control law with RBFNN-based compensators. Sec-
ondly, we improve the safety of vehicles by consideration
of collision cones. The designed sliding surface in the
steering-control law is adjusted to meet the collision-cone-
based safety criteria for solving the collision-avoidance
problem. Also, the boundary of the driving velocity that
keeps the vehicle in a safe configuration is introduced.

This paper is organised as follows. Section 2 describes
the problem of the design of motion-control laws and esti-
mators for modelling errors and uncertainties. Section 3
discusses the proposed controller’s driving velocity and
steering-angle designs. Section 4 conducts a safety anal-
ysis of the vehicle and investigates the relationship be-
tween safety and the design of the sliding-mode-based
steering-control law. Section 5 presents simulation results
of the performance of the proposed control law. Finally,
Section 6 draws conclusions and discusses future research
directions.

2. Problem description

In Figure 1, let Ob be the point of interest of a wheeled
vehicle, (x, y) and θ represent the position of Ob in the
global Cartesian space and its orientation with respect to

Figure 1. The vehicle schematic.
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the global î-axis, respectively, v and δ be the driving velocity
and the steering angle of the vehicle, respectively, and l be
the distance between the center of the rear wheelbase and
Ob. Henceforth, the term ‘configuration’ is used to represent
(x, y) and θ . The kinematics model of the vehicle in Figure 1
is provided as follows (Laumond, Jacobs, Taix, and Murray
1994; Li and Chang 2003; Tamba, Hong, and Hong 2009;
Widyotriatmo and Hong 2012):

ẋ = v cos θ cos δ, (1)

ẏ = v sin θ cos δ, (2)

θ̇ = −(v/l) sin δ. (3)

The orientation θ is assumed to have a value in the interval
of –π ≤ θ ≤ π , and the admissible steering angle δ is in the
interval –π ≤ δ ≤ π .

Let m be the vehicle’s mass, and Ib and Iδ be the moments
of inertia of the vehicle with respect to Ob and that of the rear
wheel with respect to the normal axis to the ground surface,
respectively. Further, let Ir and If be the mass moments of
inertia of the rear and front wheels, respectively; rr and rf

be the radii of the rear and front wheels, respectively; ϕr

and ϕf be the rear and front rotation angles of the rear and
front wheels, respectively, and p = [x y θ δ ϕf ϕr]T∈�6 the
state vector of the vehicle. We adopt the following dynamic
model for two-wheeled mobile robots (Widyotriatmo and
Hong 2011):

M( p) p̈ + C( p, ṗ) ṗ + f + g(p) = Bτ − J(p) f c, (4)

where M(p) = diag{m, m, Ib, Iδ , If, Ir} is the inertia
matrix, C(p, ṗ) ∈ �6×6 is the centripetal and Coriolis ma-
trix, f∈�6 is the vector of frictional forces, g(p)∈�6 is the
gravitational vector, B(p)∈�6×2 is the input transformation
matrix, τ∈�6 is the vector of torque, fc∈�4 is the vector of
constraint forces and J(p) is the constraint matrix, given as
(Widyotriatmo and Hong 2012)

J( p) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− sin θ − sin(θ + δ) cos θ cos(θ + δ)

cos θ cos(θ + δ) sin θ sin(θ + δ)

0 −l cos δ 0 −l sin δ

0 0 0 0

0 0 −rf 0

0 0 0 −rr

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5)

Let v = [ v δ̇ ]T . Let the kernel of J(p) [i.e. ST(p)J(p)
= 0] be

S( p) =[
cos θ cos δ sin θ cos δ −(1/l) sin δ 0 (1/rf ) cos δ (1/rr)

0 0 0 1 0 0

] T

.

(6)

Then, the first and second time derivatives of p are given as

ṗ = S( p)v, (7)

p̈ = Ṡ( p)v + S( p)v̇. (8)

Replacing the terms ṗ and p̈ in Equation (4) with Equations
(7) and (8) and pre-multiplying Equation (4) by ST(p) yields

m1v̇ + c1v + rrfv = τv, (9)

Iδδ̈ + fδ = τδ, (10)

where fv and fδ are the surface frictions along the linear
and rotational motions of the rear wheel, respectively. The
parameters in Equation (9) are defined as

m1(δ) = rr((m + (If + (rf )
2)) cos2 δ + (Ib/l2) sin2 δ + Ir),

(11)

c1(δ, δ̇) = rr((Ib/l2) − (If/(rf )
2) − m) cos δ sin δδ̇, (12)

and τ v and τ δ represent the torques applied to the driv-
ing motor and the steering motor, respectively. As in
Widyotriatmo and Hong (2012), the torques τ v and τ δ are
designed as

τv = (km,v/Rm,v)[uv − (kemf,v/rr)v], (13)

τδ = (km,δ/Rm,δ)(uδ − kemf,δ δ̇), (14)

where uv and uδ are the input voltages applied to the
driving and steering motors, respectively, km,v, Rm,v and
kemf,v are the driving motor’s torque constant, resistance
and electromotive-and-gear-ratio-related constant, respec-
tively, and km,δ , Rm,δ and kemf,δ are those of the steering
motor, respectively. Let us define the following parameters
from the vehicle, which are known:

av,0 = m1(δ)Rm,v/km,v, (15)

bv,0 = c1Rm,v/km,v + kemf ,v/rr, (16)

bδ,0 = kemf ,δ. (17)
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4 A.K. Pamosoaji et al.

The values of the parameters in Equations (15)–(17) typ-
ically come from the vehicle’s datasheet. However, because
uncertainties exist, difficulties are encountered when at-
tempting to determine their actual values at a given time in-
stance. Therefore, general expressions of those uncertainty-
accommodating parameters are introduced. Let av and bv

be the driving-motor-related parameters formulated as

av = av,0 + �av, (18)

bv = bv,0 + �bv, (19)

and let aδ and bδ be those related to the steering motor,
given by

aδ = aδ,0 + �aδ, (20)

bδ = bδ,0 + �bδ, (21)

where �av and �bv are the modelling errors related to the
driving motor, and �aδ and �bδ are those related to the
steering motor, respectively. Therefore, Equations (9)–(14)
can be rewritten as

av,0v̇ + bv,0v = uv + dv, (22)

aδ,0δ̈ + bδ,0δ̇ = uδ + dδ, (23)

where

dv = −�avv̇ − �bvv − Rm,vrrfv/km,v, (24)

dδ = −�aδδ̈ − �bδδ̇ − Rm,δfδ/km,δ. (25)

Here, dv and dδ contain modelling errors, that is, −�avv̇ −
�bvv and −�aδδ̈ − �bδδ̇, respectively, as well as the fric-
tional uncertainties −Rm,vrrfv/km,v and −Rm,δrrfδ/km,δ , re-
spectively. It is assumed that dv and dδ are bounded.

The problem is described as follows. Given the equa-
tions of motion in Equations (22) and (23), design a voltage-
input control law (uv, uδ) such that the driving and steering
motors can be driven to track the desired driving velocity
and steering angle, respectively. To design controllers that
compensate for the uncertainties dv and dδ , these uncer-
tainties must be estimated. Another problem to solve is the
use of the designed steering control to accommodate the
vehicle’s collision-avoidance behaviour. It is interesting to
approach this problem not by switching the desired actuator
values, but by increasing the value of the sliding surface.

3. Control design

3.1 Control law for driving

For the driving motor, we define the control design prob-
lem as follows. Find uv such that v approaches vd as time
approaches infinity. Since there are dynamic-model uncer-
tainties revealed in Equations (22) and (23), the controller
uv is decomposed into the main term uv,0 and the compen-
sator component uv,c as follows:

uv = uv,0 + uv,c. (26)

Suppose that uv,0 is modelled in a PD fashion as

uv,0 = av,0(v̇d − kP,v(v − vd)) + bv,0v, (27)

where vd is the desired driving velocity and kP,v > 0 is the
speed feedback coefficient. Substituting Equations (26) and
(27) into Equation (9) yields

(v̇ − v̇d) + kP,v(v − vd) = u′
v,c + d ′

v, (28)

where u′
v,c = uv,c/av,0 and d′

v,c = dv,c/av,0. Let ε′
v,c = v −

vd. Then, Equation (28) can be rewritten as

ε̇v + kD,vεv = u′
v,c + d ′

v. (29)

The uncertainty d′
v can be expressed as

d ′
v = d̂ ′

v + ςv, (30)

where d̂ ′
v is the approximated uncertainty of d′

v and ζ v is
the approximation error related to d′

v. The approximation
error ζ v is considerable if the assumption of the number of
uncertainty patterns performing d̂ ′

v is substantially distinct
from the actual d′

v. In this work, we assume that the number
of uncertainty patterns is 1.

The control design problem now becomes more spe-
cific: Design the compensator d′

v,c in Equation (29), given
the uncertainty d′

v such that ε̇v → 0 and εv → 0 as time
approaches infinity. To this end, we propose a method
to estimate d′

v using a radial basis function neural net-
work (RBFNN). The purpose of which is to approxi-
mate modelling errors and uncertainties. The RBFNN
uses the linear velocity error εv in the input layer. As
in the hidden layer, the following Gaussian function is
used:

σv = exp

(
− (εv − cv) 2

λ2
v

)
, (31)

where cv is the center of the RBF hidden layer, which can be
chosen arbitrarily under the assumption that cv is the mean
of the single uncertainty pattern of d′

v, and λv > 0 is the
variance of the RBF hidden layer. Practically, the number
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International Journal of Systems Science 5

Figure 2. Control scheme of the driving motor.

of hidden layers in the RBFNN is the same as the number
of assumed uncertainty patterns of d′

v. Since the number
of uncertainty patterns is assumed to be 1 in this paper, the
RBFNN consists of one hidden layer. The output layer of
the RBFNN is d′

v, which is modelled, as a function of σ v,
as

d̂ ′
v = wvσv, (32)

where wv is the adjustable weight of the output layer. Let
nv > 0 be a learning coefficient that can be chosen without
any restraint. The updating law of wv is then given as

ẇv = −ηvεvσv. (33)

A schematic of the driving motor control scheme is pre-
sented in Figure 2.

Proposition 1: The RBFNN algorithm in Equations (31)–
(33) is a universal estimator for d′

v.

Proof: This proposition can be verified through the Stone–
Weierstrass theorem of Cotter (1990). An exponential func-
tion is a compact function satisfying three necessary condi-
tions for being a universal function: having the identity con-
dition, separability property, and algebraic closure property.
The RBFNN-based estimator in Equation (31) uses expo-
nential functions that satisfy the properties of a universal
estimator for d′

v, which is bounded. See Cotter (1990) for
details. �

Remark 1: According to Cotter (1990), Proposition 1
leads to the guarantee of convergence of the RBFNN-based
estimator in Equations (31)–(33).

Theorem 1: Consider the driving motor with indefinite
parameters as in Equation (28) and unknown disturbance
dv approximated by a neural network as in Equations (31)
and (32). The driving velocity v will follow the desired
driving velocity vd, which implies that the velocity error εv

= v – vd converges to zero if the controller and the learning
algorithm of the neural network are chosen as

uv = av,0(v̇d − kP,vεv) + bv,0v + bv,0û
′
v, (34)

û′
v =

[
(1 + ηv) wvσv − λv

εv

|εv|
]

, (35)

where kP,v, ηv, λv > 0.

Proof: Introduce the Lyapunov candidate function candi-
date as

Vv = 1/2[(εv)2 + (wv)2]. (36)

It can be determined that Vv > 0 when εv, wv 
= 0; Vv = 0
if and only if εv, wv = 0; and Vv→0 when εv, wv→0. The
time derivative of Vv is

V̇v = εvε̇v + wvẇv. (37)

From Equation (29), the following is derived:

ε̇v = û′
v,c − d ′

v − kP,vεv. (38)

Substituting Equation (33) into Equation (37) yields

V̇v = εv

(
û′

v,c − d ′
v − kP,vεv

)− wvẇv. (39)

Then, substituting Equations (32) and (35) into Equa-
tion (39), we have

V̇v = −kP,vε
2
v + (

û′
v,c − (1 + ηv) wvσv − ςv

)
εv. (40)
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6 A.K. Pamosoaji et al.

Figure 3. Control scheme of the steering motor.

Substituting Equation (35) into Equation (40) yields

V̇v = −kP,vε
2
v − λv

ε2
v

|εv| − σvεv

≤ −kP,vε
2
v − λv |εv| − |σv||εv|

≤ −kP,vε
2
v − λv |εv| − |εv| σv,0 . (41)

Choose λv = −ζ v,0 + μv, μv > 0. Then, Equation (41) can
be rewritten as

V̇v = −kP,vε
2
v − λv

ε2
v

|εv| − ςvεv ≤ −kD,vε
2
v − μv |εv| ≤ 0.

(42)
The time derivative of the Lyapunov candidate function
V̇v < 0 when εv 
= 0 and V̇v = 0 only if εv = 0. Therefore,
Equation (9) is globally asymptotically stable, and v → vd

implies that the motor speed closely follows the desired
velocity with the velocity error approaching 0. Theorem 1
is proved. �

3.2 Control law for steering

For the steering system, we define the control design prob-
lem as follows. Find uδ such that δ approaches δd as time
goes to infinity. Since typically the steering-control law is
expressed as the steering angle without any specification of
its desired change rate, we model the steering-control law
differently from the driving velocity control law. For the
steering system control design, we utilise a sliding surface
s(t) defined as

s = ε̇δ + csεδ, (43)

where cs is a positive constant and εδ = δ – δd. Therefore,
Equation (10) can be rewritten as

aδ,0δ̈ + bδ,0δ̇ = uδ + dδ(s). (44)

The unknown dδ(s) is the main rationale for reducing the
control quality. Let u′

δ = uδ/aδ ,0 and d′
δ = dδ/aδ ,0. Then,

Equation (44) can be rewritten as

δ̈ + bδ,0

aδ,0
δ̇ = u′

δ + d ′
δ(s). (45)

We model the uncertainty d’δ as

d ′
δ = d̂ ′

δ + ςδ, (46)

where d̂ ′
δ and ζ δ are the approximation of d’δ and the

approximation error of d’δ , respectively. Similarly to the
driving motor case, for the approximation of the function
d̂δ , the disturbance model is chosen as follows:

d̂ ′
δ = wδσδ, (47)

where wδ is the weight of the output layer and

σδ = exp

(
− (εδ − cδ)2

λ2
δ

)
. (48)

The visualisation of the steering motor control scheme
is presented in Figure 3. The control problem is now to find
control u′

δ and a learning algorithm for ẇδ of the neural
network in Equation (48) so that s → 0 and the system
slides toward the origin εδ = 0 as δ→δd.
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Figure 4. Motion control scheme of the vehicle.

Proposition 2: The RBFNN algorithm in Equations (47)
and (48) is a universal estimator for d′

δ .

Proof: This proposition is verified similarly to
Proposition 1. �

Remark 2: According to Cotter (1990), Proposition 2
leads to the guarantee of convergence of the RBFNN-based
estimator in Equations (47) and (48).

Theorem 2: The dynamic steering system in Equation
(10) with the neural network in Equation (48) and the slid-
ing surface shown in Equation (43) will follow the desired
steering angle dδ as the error εd →0 if the following control
and learning algorithms are applied:

uδ(t) =
aδ,0

[
−
(

−bδ,0

aδ,0
+ cs

)
δ̇ + δ̈d + cs δ̇d − kss − γδ

s

|s|
]

+ (ηδ − 1)wδσδ, (49)

dwδ/dt = −ηδsσδ/aδ,0, (50)

where ks, ηδ , and γ δ are positive constants.

Proof: The following Lyapunov function candidate is
considered:

Vδ = 1/2s2 + 1/2(wδ)2. (51)

According to Equation (51), Vδ = 0 if and only if s = 0 and
wδ = 0. The time derivative of Vδ is given as

V̇δ = sṡ + wδẇδ = s (ε̈δ + csε̇δ) + wδẇδ. (52)

From Equation (45), Equation (52) can be rewritten as

V̇δ = s

[(
cs − bδ,0

aδ,0

)
δ̇ + uδ

aδ,0
+ d ′

δ − δ̈d − csδ̇d

]
+ wδẇδ.

(53)
Applying Equations (46) and (47) and (49)–(51) to Equation
(53) yields

V̇δ = −kss
2 − γδ |s| + (ηδwδsσδ + sςδ) − wδηδsσδ

= −kss
2 − γδ |s| + sςδ.

(54)
By choosing γ δ = −ζ δs/|s|, μ > ζδ ,0 and applying it to
Equation (54), we obtain

V̇δ = −kss
2. (55)

Therefore, V̇δ < 0 for all s 
= 0 and V̇δ = 0 if and only if s =
0. According to the Lyapunov stability theorem, we have s
→ 0; and from Equation (55), the system will slide toward
the origin εδ = 0. This implies that δ →δd. �
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8 A.K. Pamosoaji et al.

4. Safety analysis

Safe motion generation of automated guided vehicles has
emerged as an important issue in recent years. Significantly,
when applied inputs are taken into consideration, the clas-
sical collision-free paradigm for analysis of safety is no
longer relevant. The main problem, then, has become: how
to drive a vehicle such that some prohibited ICSs can be
avoided in a finite time. In the present study, therefore, we
adopt the ICS as an alternative scheme for collision-free
paradigm. For details on the ICS, readers should refer to
the work of Fraichard and Asama (2004). For safety analy-
sis purposes, meanwhile, we adopt the approach proposed
by Chakravarthy and Ghose (2012) known as the ‘collision
cone’ (see Figure 5). The vectors of the linear velocities
of the vehicle and some obstacles determine the utility of
the control law for guaranteeing that the vehicle diverges
from an obstacle-collision course at a certain future time
instance.

Suppose that there exists a dynamic circular obstacle
of radius R that has its center point located at (x′, y′). The
magnitude of the obstacle’s velocity is represented by v′,
and its direction by the inclination angle with respect to the
global î-axis, denoted as θ ′. Let ρ ′ and β, respectively, be
the distance of the vehicle to an obstacle and the inclination
angle of the vehicle-to-obstacle vector with respect to the
vehicle’s local îb-axis, which are given as

[
ρ ′

β

]
=
[√

(x ′ − x)2 + (y ′ − y)2

arctan 2(y ′ − y, x ′ − x) − θ

]
. (56)

Also, let ϕ′ represent the inclination angle of the obstacle’s
orientation with respect to the vehicle-to-obstacle vector.

Figure 5. Collision cone.

The navigation variables are now expressed as

[
ρ̇ ′

β̇

]
=
[ − cos β cos δ 0 cos ϕ′

− sin β sin δ/ρ ′ −1 sin ϕ′/ρ ′

]⎡⎣ v

ω

v′

⎤
⎦ ,

(57)
where v and ω represent the actual driving velocity and
the changing rate of the inclination angle of the vehicle-to-
obstacle vector with respect to the vehicle’s local îb-axis,
respectively. Let γ be the inclination angle of the vehicle-to-
obstacle vector with respect to the global î-axis, vγ = ρ′γ̇
and vρ′ = ρ̇′. According to the collision-cone approach, a
vehicle is said to be on a collision course with an obstacle
if and only if there exists a ray from the vehicle to a point in
the boundary of the obstacle such that vγ = 0 and vρ ′ <0.
This definition is a 2-D version of Lemma 3 in Chakravarthy
and Goshe (2012). Under constant linear velocities of the
vehicle and obstacle, the necessary and sufficient condi-
tions of ρ2(vγ )2 ≤ R2((vγ )2 + (vρ ′)2) and ρ̇ ′ < 0 lead the
vehicle and the obstacle to collide with each other at a cer-
tain future time instance (see Lemma 4, Chakravarthy and
Goshe 2012). Therefore, additional conditions that violate
the collision occurrence conditions are needed. To that end,
we introduce the following function:

q = (R′)2((vγ )2 + (vγ )2) − (ρ ′)2(vγ )2, (58)

where R′ = R + εR, εR being a small positive constant. Note
that according to Chakravarthy and Goshe (2012), q ≥ 0
implies that the vehicle is on a collision course with the
obstacle, under the assumption that the linear velocities
of the vehicle and obstacle are constants. Therefore, our
concern here is the situation in which there is a collision-
course configuration. Hence, to drive the vehicle out of the
collision course, q should be driven to zero. Accordingly,
the following function is defined:

Vs = 1/2 q2 . (59)

The time derivative of Vs is described as

V̇s = − 2vρ ′ρ ′ (R2 − ρ ′2) v4
γ + 2v̇γ

(
R2 − ρ ′2)2

v3
γ

+ 2vρ ′R2
(
v̇ρ ′
(
R2 − ρ ′2)− ρ ′v2

ρ ′
)
v2

γ

+ 2v̇γ v2
ρ ′R

2
(
R2 − ρ ′2) vγ + 2v̇ρ ′R4v3

ρ ′ . (60)

Note that since the investigation is focused on the collision-
course exit problem, we set ρ̇ ′ < 0. We investigate the
sufficient condition of v̇ρ ′ by making the term 2v̇ρ ′R4v3

ρ ′

in Equation (60) negative. Since vρ ′ < 0, we obtain the
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sufficient condition as

v̇ρ ′ > 0. (61)

The sufficient condition of vγ can be investigated by
analysing the first and third terms of Equation (60) such
that it yields a negative value for V̇ as follows. The first
part is designed such that the inequality

−2vρ ′ρ ′ (R2 − ρ ′2) v4
γ + 2vρ ′R2

× (
v̇ρ ′
(
R2 − ρ ′2)− ρv2

ρ ′
)
v2

γ < 0 (62)

is satisfied. From Equation (62), we obtain the expression

v̇ρ ′ < ρ ′v2
γ

/
R2 − ρ ′v2

ρ

/(
ρ ′2 − R2

)
. (63)

According to Equation (61), the term ρ ′(vγ )2/R2–
ρ ′(vρ)2/((ρ ′)2–R2) in Equation (63) must be positive. There-
fore, a sufficient condition of vγ is

(vγ )2 > (vρ)2 R2/((ρ ′)2 − R2). (64)

Now, assuming that the obstacle is static (i.e., v′ = 0),
the second time derivative of ρ ′ (i.e. v̇ρ ′ ) can be derived as
follows:

v̇ρ ′ = −v̇ cos β cos δ + vβ̇ sin β cos δ + vδ̇ cos β sin δ

(65)
Under the boundedness assumption of dv/dt, v, dβ/dt and
dδ/dt, it can be concluded that the value of dvρ′/dt in Equa-
tion (65) is bounded as well. Moreover, under the assump-
tion of δ̇d = 0 and

(|γδ| + |(ηδ − 1)wδδδ|/aδ,0 + dδ/aδ,0)|v| < ξδ, (66)

where ξ δ >0 and finite, the sliding surface in Equation (43)
to satisfy Equation (63) is designed as

sup ρ̈ ′ = sup v̇ + sup
(
vβ̇
)+ sup

(
vδ̇
)

= κρ ′
(

v2
γ

R2
− ρ̇ ′2(

ρ ′2 − R2
)
)

, (67)

where 0< ξ <1,

sup v̇ = ∣∣v̇d − kP,vεv

∣∣+ bv,0

av,0
| (2 + ηv) wvσv |

− λv

bv,0

av,0

εv

|εv| , (68)

sup
(
vβ̇
) =

∣∣∣∣
(

1

ρ ′ − 1

l

)∣∣∣∣ |v|2 + ∣∣v′v
∣∣ , (69)

Figure 6. Driving velocity profile: desired velocity (dotted line,
vd = 2 m/s) and actual velocity (solid line).

sup
(
vδ̇
) = ∣∣δ̇dv

∣∣+ kscs |εδv|
(cs + ks)

+ ξδ

(cs + ks)
|v| . (70)

Now, the following auxiliary variables are introduced:

ξs,1 = (0.5κρ ′ (R−2 (vγ )2 − (dρ ′/dt)2((ρ ′)2 − R2)−1)),
(71)

ξs,2 = |((ρ ′)−1 − l−1)||v|2 + |vv′|. (72)

To determine the sufficient conditions of cs and ks, Equation
(67) is rewritten as

ξs,2 + (kscs |εδv| + ξδ)(cs + ks)
−1 = ξs,1. (73)

It is straightforward that the expression of ks is

ks = ((ξs,1 − ξs,2)cs − ξδ)(−(ξs,1 − ξs,2) + cs |εδv|). (74)

Theorem 3: If (cs)2 > ξδ |εδv|−1, the vehicle can move off
from the collision course if the following sufficient condi-
tions are satisfied:

(1) v ≤ ξδ|εδv|−1 if ξδ(cs)
−1 < ξs,1 − ξs,2 < cs |εδv|,

(75)

(2) v > ξδ (cs)
−2|ξδ|−1, elsewhere. (76)

Proof: According to Equation (55), ks ≥ 0 makes steering
system (44) asymptotically stable. There are two alterna-
tives for achieving this goal. The first is to make both the
numerator and denominator on the right-hand side of Equa-
tion (74) positive and the second is to make them negative.
According to the first alternative, the range of ξ s,1–ξ s,2 to
make ks ≥ 0 is ξ δ/cs<(ξ s,1–ξ s,2) < cs|ξ δ vdr|, on the ba-
sis of which it can be concluded that the driving velocity
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10 A.K. Pamosoaji et al.

Figure 7. Steering angle profile: desired angle (dotted line, ωd = 30◦/s) and actual angle (solid line).

should be |v| > (ξ s,1–ξ s,2) > ξδ (cs)−1, and it is clear that
by means of the second alternative, the range of ξ s,1–ξ s,2 is
(ξ s,1–ξ s,2)>cs|ξ δvdr| or (ξ s,1–ξ s,2) > ξδ (cs)−1. The theorem
is proved. �

Theorem 4: If (cs)2<ξδ |εδvdr|−1, the vehicle can move off
from the collision course if the following sufficient condi-
tions are satisfied:

(1) vdr ≤ ξδ(cs)
−2|εδ|−1 if ξs,1 − ξs,2 > ξδ(cs)

−1

or ξs,1 − ξs,2 < cs |ξδvdr|, (77)

(2) vdr > ξδ(cs)
−2|εδ|−1, elsewhere. (78)

Proof: The proof of this theorem is similar to that of
Theorem 3. �

Theorem 5: Assume that v̇d = 0 in Equation (27) with
a constant proportional gain kP,v. The following condition,
then, is required for vρ to drive the vehicle off from the
collision course:

vρ <

√√√√( v2
γ

R2
− 2

κρ ′

(
bv,0 |(2 + ηv) wvσv|

av,0
− |εv|

∣∣kP,v

∣∣)) (ρ ′2 − R2
)
. (79)

Proof: From Equations (67) and (68), it can be determined
that

|λv| <
av,0

bv,0 |εv|
(
ξs,1 − ∣∣v̇∗

dr

∣∣)− |(2 + ηv) wvσv|
|εv|

−av,0

bv,0

∣∣kP,v

∣∣ . (80)

For the left-hand side of Equation (80) to exist, the right-
hand side must be positive. Therefore, the theorem is
proved. �

5. Simulation results

The overall motion-control scheme is depicted in Figure 4.
Let ρ, α and ϕ denote the distance between the vehicle and
the goal point, the inclination angle made by the local îb-axis
of the vehicle and the vehicle-to-reference point, respec-
tively. In summary, given the goal configuration (xg,yg,θg),
the driving and steering motors have to apply driving veloc-
ity v and steering-angle δ such that the navigation variables
ρ, α and ϕ approach infinity in a finite time. The kinematic
controller processes those variables into the desired driving
velocity vd and steering angle ωd.

In this section, the performance of the proposed control
law is presented. Some of the parameter values are set as in
Widyotriatmo and Hong (2012): the mass of the vehicle is

m = 1,500 kg, and the moments of inertia are Ib = 350 kg
m2, Iδ = 350 kg m2, If = 0.1 kg m2 and Ir = 0.6 kg m2; the
radii of the front and rear wheels are rf = 25 mm and rr =
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Figure 8. Output weight profiles.

150 mm, respectively; the motor parameters are km,v = km,δ

= 87.7 Nm/A, Rm,v = Rm,δ = 0.75 �, ks = 10 and kD,v =
10 V s2 m−1, respectively, and the RBFNN parameters are
nv = 1, λv = 103, λδ = 105, cv = 105, ηδ = aδ /50, cδ = 10
and cs = 2000, respectively.

Figures 6 and 7 demonstrate the performance of the
proposed control law and estimation method for given con-
stants vd and ωd. The velocities were set to vd = 2 m s−1

and δd = 30o, respectively The initial values of the output
layers’ weights were wv = 0 and wδ = 0. As shown in Fig-
ure 6, the desired velocity is attained in 1.5 s. Moreover, as
shown in Figure 7, the desired steering angle is achieved
in no more than 1 s. It can be concluded, therefore, that
the proposed control law works good in this situation. The
profiles of weights wv and wδ of the RBFNN outputs are
plotted in Figure 8, which shows that when the desired driv-
ing velocity and steering angle are tracked accurately, wv

goes to zero and wδ tends to 0.0027 as time approached
infinity.

Figures 9∼11 demonstrate the performance of the con-
trol law and estimation method for a point-stabilisation
problem in a simple workspace involving a circular obstacle
of radius robs = 1 m. Here, the desired driving velocity and
steering angle are designed as follows:

vd = (
(kv,1ρ cos α)2 + l2(kv,2 sin α

−(kv,2 − kv,1 cos α)φ)2
)0.5

, (81)

Figure 9. Comparison of the generated paths for point
stabilisation.

δd = − arctan
(
l
((

kv,2 sin α

−(kv,2 − kv,1 cos α)φ
)
/(kv,1ρ cos α)

))
. (82)

The coefficients in Equations (81) and (82) are set to
kv,1 = 0.5 s−1 and kv,2 = 5 s−1. In this scenario, the ini-
tial configuration of the vehicle is set to (x, y, θ ) = (0 m,
0 m, 0o), and the goal configuration is given by (xg, yg,
θg) = (4 m, −4 m, 0o). The obstacle occupies the point
(x′ y′) = (2 m, 2 m). In our algorithm, we apply Theo-
rems 3–5 when the conditions therein are satisfied, which
means that the vehicle lies in a collision course with the
obstacle.

Under this particular condition, the sliding surface’s pa-
rameter is set to cs = −0.01. Under the normal condition
(i.e. the vehicle is not on a collision course), the parameter
would be set at cs = −0.01. The purpose of setting cs < 0
is to make a large steering-angle deviation in the presence
of the obstacle. The generated paths of the original algo-
rithm of Widyotriatmo and Hong (2012) and the modified
algorithm are shown in Figure 9. As the method of Widy-
otriatmo and Hong (2012) lacks any obstacle-avoidance
feature, the vehicle might collide with the obstacle. With
our proposed method and its obstacle-avoidance algorithm,
the vehicle, despite approaching very close to the obstacle
at a particular time, was able to avoid it, as illustrated in
Figure 9.

A comparison to another work reported by Huang
(2009) is provided in Figure 9 as well, where a po-
tential field-based velocity planning was compared. This
method utilises the concept of attractive and repulsive
forces generated by the goal point and the center of
the obstacle, respectively. The proposed controller was
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12 A.K. Pamosoaji et al.

Figure 10. Steering angle of the vehicle.

defined as

v =
{

κattP − κrepR
−2‖P′‖−1(R−1 − R−1

0 )P′, if ρ ′ ≤ R0,

κattP, elsewhere,
(83)

where v is the velocity vector of the vehicle, P and P′ are
the vehicle-to-goal and vehicle-to-obstacle vectors, respec-
tively, κatt and κ rep are the attractive and repulsive scaling
factors, respectively, and R0 is defined as the radius of the
influence area of the obstacle. In this comparison, we set
κatt = 0.2, κ rep = 0.4, R0 = 2 m. However, the potential
function based algorithm has a drawback: the length of the
influence area’s radius might cause failure in motion gen-
eration processes. A simple example is when the vehicle
starts in the influence area: if the values of κatt and κ rep are
not proper, the vehicle might fail to reach the goal point
since the repulsive force is larger than the attractive one.
The generated path in Figure 9 is an example of a successful
motion generation.

Figure 11. Orientation angle of the vehicle.

The collision-avoidance feature in our proposed method
is actually potentiated by the change of the sliding-mode
parameter from a positive value to a negative value, which
increases the value of the sliding surface, and which in turn
leads to an increased steering-angle error εδ . As shown in
Figure 10, this approach drives the trajectory of the steering
angle to its maximum and minimum values. Figure 11 re-
veals the vehicle’s orientation, thereby demonstrating that
the fluctuation of steering angle εδ leads to the fluctuation
of vehicle orientation θ .

6. Conclusions

A sliding-mode control and RBFNN-based estimation
method to compensate for modelling errors and additional
uncertainties for a class of wheeled vehicles was proposed.
A novel principle here was the achievement of obstacle
avoidance by sliding-mode parameter adjustment. The pro-
posed method has been incorporated into the existing nav-
igation schemes to guarantee safe collision-free movement
around obstacles. Simulation results revealed that the pro-
posed method can track a planned driving velocity and
steering angle and, in so doing, enables successful avoid-
ance of collisions. Future work is to extend the proposed
method in improving the safety of multiple vehicles in dy-
namic environments.
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