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In this paper, a new vector phase diagram differentiating the initial decreasing phase (i.e. initial dip)
and the delayed hemodynamic response (HR) phase of oxy-hemoglobin changes (∆HbO) of functional
near-infrared spectroscopy (fNIRS) is developed. The vector phase diagram displays the trajectories of
∆HbO and deoxy-hemoglobin changes (∆HbR), as orthogonal components, in the ∆HbO–∆HbR polar
coordinates. To determine the occurrence of an initial dip, dual threshold circles (an inner circle from the
resting state, an outer circle from the peak values of the initial dip and the main HR) are incorporated
into the phase diagram for making decisions. The proposed scheme is then applied to a brain–computer
interface scheme, and its performance is evaluated in classifying two finger tapping tasks (right-hand
thumb and little finger) from the left motor cortex. Three gamma functions are used to model the initial
dip, the main HR, and the undershoot in generating the designed HR function. In classifying two tapping
tasks, the signal mean and signal minimum values during 0–2.5 s, as features of initial dip, are used. The
linear discriminant analysis was utilized as a classifier. The experimental results show that the active
brain locations of the two tasks were quite distinctive (p < 0.05), and moreover, spatially specific if
using the initial dip map at 4 s in comparison to the map of HRs at 14 s. Also, the average classification
accuracy was improved from 59% to 74.9% when using the phase diagram of dual threshold circles.

Keywords: Functional near-infrared spectroscopy (fNIRS); initial dip; brain–computer interface (BCI);
motor cortex; vector phase analysis; neuronal firing; designed hemodynamic response function.

1. Introduction

To reduce erroneous detections of initial dips appear-
ing in functional near-infrared spectroscopy (fNIRS)
signals, this paper presents a systematic method
using two threshold circles in the vector phase
diagram. fNIRS is a noninvasive imaging method
that uses near-infrared light within the 650–1000nm
range to measure the variations of regional cere-
bral blood flows (rCBFs) in the brain.1,2 The two
infrared light-absorbing chromophores in the blood
are oxy-hemoglobin (HbO) and deoxy-hemoglobin

(HbR).3 Upon neuronal activities,4 the concentra-
tion level of HbO/HbR in the capillaries and venules
accompanied by dilation of pial arteries and arteri-
oles increases/decreases, which is called the hemody-
namic response (HR) that reflects the introduction
of more oxygen to the brain.5,6 In contrast to the
HR, however, the initial dip denotes the consumption
of oxygen at the time of neuronal activities, which
reflects the early decreasing phenomenon of HbO.7

Recently, the improvement of temporal resolution
of fNIRS through the early detection of initial dip

†Corresponding author.

1850031-1

http://dx.doi.org/10.1142/S0129065718500314


October 22, 2018 14:30 1850031

A. Zafar & K.-S. Hong

using vector phase analysis was reported.8 The vec-
tor phase analysis is a polar coordinate plane method
defined by oxy-hemoglobin changes (∆HbO) and
deoxy-hemoglobin changes (∆HbR) as orthogonal
vector components. Two other vector components,
cerebral oxygen exchange (i.e. ∆COE = (1/

√
2)

(∆HbR − ∆HbO)) and cerebral blood volume (i.e.
∆CBV = (1/

√
2)(∆HbO + ∆HbR)), can be defined

to analyze the cerebral oxygenation and hemoglobin
changes reflecting the neural activity at the same
time.9 Furthermore, to enhance the spatial resolution
of fNIRS, the use of bundled-optode configuration
was recently proposed.10,11 Therefore, fNIRS has a
great potential to be used as a viable neuroimaging
tool, and its important applications include behav-
ioral and cognitive neurodevelopment,12 perception
and cognition,13 psychiatric conditions,14 experi-
mental psychology for language studies,15 stroke and
brain injury,16 clinical and bedside imaging,17 and
brain–computer interfaces (BCIs).18–22

Hemodynamic signals (∆HbO and ∆HbR) con-
sist of the following three parts: (i) initial dip, (ii)
main HR, and (iii) undershoot period.23,24 Figure 1

Examples of p0 and p1.26

Brain region p0 (10−1µM) p1(10
−1µM) |p0|/p1

Prefrontal cortex −0.57 1.97 0.29
Motor cortex −0.89 3.37 0.27

Fig. 1. Schematic of a typical HR including the initial
dip generated by three gamma functions assuming a 10 s
task: t0, t1, and t2 are the times to the peaks of initial
dip, main HR, and undershoot; p0, p1, and p2 are their
peak values, and w0, w1, and w2 are the durations for
half peak values, respectively.

shows the schematic of a typical normalized HR (i.e.
generated by three gamma functions25 assuming a
10 s task) depicting the initial dip, the main positive
HR period, and the undershoot period. To examine
the relative magnitudes of these responses, the peak
values of initial dips and the main HRs from three
brain cortices (prefrontal, motor, and visual) were
compared in Ref. 26.

In the HR-based brain imaging, the detection of
a neuronal activation in a particular brain region
entails the determination of a specific time-series
shape from the recorded hemodynamic signals.27,28

In fNIRS, the existence of such a waveform is deter-
mined by the t-statistics analysis of the measured
data to the time-series profile known as the canoni-
cal HR function (cHRF).29 In such statistical anal-
yses, the cHRF plays a key role, as its shape may
vary among subjects, trials, and brain regions.30 The
most frequently utilized model of cHRF is the dif-
ference between two gamma functions that charac-
terize the overall positive shape and the secondary
undershoot in time series.31,32 Then, the cHRF is
further convolved with an experimental paradigm to
generate the designed HR function (dHRF).33,34 The
dHRF is then fitted to measured HRs to find out
the active channels (i.e. a brain region) showing high
correlation to the dHRF. Then, a functional map can
be drawn to depict a cortical brain region.35,36 How-
ever, a key drawback in using two gamma functions
in the estimation of dHRF is that it cannot account
for the characteristics of the initial dip. To the best
of our knowledge, no study has used a dHRF scheme
including the initial dip for BCI purposes. Although,
NIRS-SPM and functional optical signal analysis
(fOSA) toolboxes provide three gamma functions as
an option, it allows to incorporate the dynamics of
the initial dip.36,37

The first focus in this paper is to develop a rig-
orous method in detecting the initial dip systemat-
ically, as it appears earlier in time than the con-
ventional HR. Moreover, initial dips are spatially
more specific to the neuron firing regions.38,39 Kato
et al.40–43 carried out the first study in measur-
ing the initial dips appearing in fNIRS signals from
the motor, visual, and language areas. Later on,
Jasdzewski et al.24 further confirmed the presence
of initial dips in fNIRS signals measured from the
motor and visual cortices. They found that the HR
was delayed by 2 s, which entails that the peak of

1850031-2



October 22, 2018 14:30 1850031

Neuronal Activation Detection Using Vector Phase Analysis

the initial dip exists within 2 s. They also observed
that different parts in the brain behave differently
in relation to the occurrence of initial dips. Kato7

showed that NIRS has a high sensitivity to oxygen
exchanges in capillaries. On that basis, he demon-
strated that NIRS has the ability to measure the
neural-response-related fast-oxygen response in cap-
illaries, which was named the fast-oxygen response
in capillary event (FORCE) rather than initial dip.
Akiyama et al.44 also found, within 1 s to 3 s of
motor task initiation, distinctive biphasic responses
in terms of cortical oxygenation (i.e. HbO) in the cen-
ter of the primary motor cortex. Similarly, another
study of Wylie et al.45 examined the spatiotempo-
ral co-variations among ∆HbO, ∆HbR, and total
hemoglobin (∆HbT ≈ ∆CBV) in the visual cor-
tex for their contrast-reversing checkerboard exper-
imental paradigm. They observed a decrease or an
increase in ∆HbO/∆HbR at the start of the activity
which also demonstrates the consumption of oxygen
at the time of neuronal activity (initial dip) prior to
the main HR.

The first detection of an initial dip in fNIRS
signals using a vector phase analysis method has
been done by Yoshino and Kato.46 A problem in
their vector-based phase analysis is that an unre-
lated large fluctuation might be interpreted as an
initial dip. Also, the detection time of an initial
dip was not specified in the diagram. Hong and
Naseer8 improved the vector phase diagram46 by
integrating a threshold circle having the radius of
max(∆HbO2 + ∆HbR2)1/2 during the resting state.
This circle has been used as a decision criterion
for the occurrence of an initial dip. They also pro-
posed to use an auto-regressive moving average
model with exogenous input in combination with
the vector phase analysis method to predict, q-steps
ahead, the occurrence of initial dips and, thereby,
reduce the time lag in detecting an initial dip to
about 0.9 s. Recently, Zafar and Hong26 have applied
the initial dip detection method, by changing the
threshold circle from max(∆HbO2 + ∆HbR2)1/2 to
max{∆HbO,∆HbR}, to the classification problem
of three mental tasks originated from the prefrontal
cortex for BCI. They demonstrated that the mov-
ing window size in fNIRS-based BCI can be reduced
to 2.5 s if using the proposed initial dip detection
method (the previously suggested window duration
was 5 s,18 that is, from 2 s to 7 s from the onset time

of a task). However, there still remains a possibil-
ity that any large ∆HbO/∆HbR fluctuation greater
than the threshold circle can be falsely interpreted
as the occurrence of an initial dip.

In the present study, two disjoint regions (i.e. the
initial dip region and the HR region) in the phase
diagram, see Fig. 2, are separately defined as deci-
sion criteria to reduce possible false claims of ini-
tial dips in BCI applications (see Sec. 2). The use
of a secondary threshold circle in addition to the
primary threshold circle from the resting state is
proposed. Furthermore, three gamma functions25 are
incorporated to generate a cHRF including the ini-
tial dip, the main HR, and the undershoot period to
find active channels and to draw the activation map
for online BCI applications. Outlining the obtained
results in this work briefly, first an average increase
of 15.9% in classification accuracy was observed by
using the proposed criteria in comparison to the case
of one threshold circle in the phase diagram. Sec-
ond, the activation map drawn near the end of the
initial dip period (i.e. at 4 s) demonstrates that the
locations of the activated areas from two finger tap-
ping tasks (i.e. right-hand thumb finger and right-
hand litter finger) were more clearly distinguishable
than that obtained by using the conventional HRs
(at 14 s).

Three research issues in the BCI field are (i) how
to enhance the classification accuracy; (ii) how to

Fig. 2. Vector phase diagram with dual threshold cir-
cles indicating the initial dip phase and the HR phase,
respectively.
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increase the number of brain commands for improv-
ing the degrees of freedom of an external device,
and (iii) how to quickly decode the brain commands
by reducing the delay. In this paper, two issues are
addressed: First, the initial dip detection will reduce
the detection time. Second, since the initial dip is
spatially specific to regional neuron firing, the gen-
eration of brain commands from a restricted brain
region will become diverse, which consequentially
results in an increased number of commands from
a wider brain region. To demonstrate the second
issue, a densely configured arrangement of optodes
is applied to the left motor cortex, and a distinctive
detection of two fingers (thumb, little fingers) has
been experimented.

2. Methods

2.1. Phase diagram with dual threshold
circles

The vector phase analysis is a systematic method uti-
lizing the coordinates defined by the pair of ∆HbO
and ∆HbR (or ∆CBV and ∆COE) for detection
of initial dips and HRs.46 The vector components
∆CBV and ∆COE are obtained by rotating the
vector coordinate system defined by ∆HbO and
∆HbR by 45◦ counterclockwise using the following
equations47:

∆CBV =
1√
2
(∆HbO + ∆HbR), (1)

∆COE =
1√
2
(∆HbR − ∆HbO). (2)

The magnitude and phase of a vector, p =
(∆HbO,∆HbR), in this plane can be calculated as

|p| =
√

∆HbO2 + ∆HbR2, (3)

∠p = tan−1

(
∆HbR
∆HbO

)

= tan−1

(
∆COE
∆CBV

)
+ 45◦. (4)

The ratio of ∆COE to ∆CBV (i.e. ∆COE/∆CBV)
defines the degree of oxygen exchange. Therefore,
∆COE represents the oxygen exchange in the blood
vessels and thus also the neuronal activities.48

∆COE > 0 representing deoxygenation in the cap-
illaries as a result of oxygen consumption by the
nerve cells. On the other hand, ∆COE < 0 indi-
cates that the oxygen-containing red blood cells are
being supplied by the arteries and, thus, a high level
of oxygenation in the blood vessels. The phase dia-
gram is divided into eight phases/regions accord-
ing to four components (∆HbO,∆HbR,∆CBV, and
∆COE). Table 1 summarizes the decomposition of
the phase plane into eight phases/regions and their
interpretations. Phases 1 to 5 in Table 1 are consid-
ered as initial dip phase as they are reflecting deoxy-
genation (i.e. an increase in either ∆HbR or ∆COE).
Therefore, an event-related vector residing in these
regions are defined as an initial dip.46 In Phases 1
and 2, both ∆CBV and ∆HbR are increasing, which
are named as the canonical dip.46,49 Phases 3 to 5 are
the hypoxic dips with a decrease in ∆HbO together
with increase/decrease in ∆CBV. These Phases (3
to 5) indicate the hypoxic change in blood vessels,
thus representing deoxygenation in capillaries.46–48

In Phases 6 to 8, both ∆HbR and ∆COE are decreas-
ing, therefore they are named as nondip phases.

The inner threshold circle in Fig. 2 (red solid cir-
cle) is to detect the time instance of the occurrence
of an initial dip (in Phases 3–5) and the start of the
HR (in Phases 7, 8) from the resting state. If there is

Table 1. Decomposition of the phase plane.46

Region Conditions Description

1 0 < ∆HbR < ∆HbO, ∆COE < 0 < ∆CBV Canonical dip phase with ∆COE < 0

2 0 < ∆HbO < ∆HbR, 0 < ∆COE < ∆CBV Canonical dip phase with ∆COE > 0

3 ∆HbO < 0 < ∆HbR, 0 < ∆CBV < ∆COE
Hypoxic dip phase with ∆COE > 04 ∆HbO < 0 < ∆HbR, ∆CBV < 0 < ∆COE

5 ∆HbO < ∆HbR < 0, ∆CBV < 0 < ∆COE

6 ∆HbR < ∆HbO < 0, ∆CBV < ∆COE < 0
Hyperoxia nondip phase with ∆COE < 07 ∆HbR < 0 < ∆HbO, ∆COE < ∆CBV < 0

8 ∆HbR < 0 < ∆HbO, ∆COE < 0 < ∆CBV
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no threshold circle, a resting state fluctuation with
∆COE > 0 can easily be interpreted as an initial
dip. The radius of the first threshold circle is defined
as follows:

r1 = max(∆HbO2
resting + ∆HbR2

resting)
1/2, (5)

which is the maximum value during the resting state.
However, there still remains a possibility that large
fluctuations of ∆HbO and ∆HbR above the thresh-
old circle during the task period can be interpreted as
an initial dip. For this reason, based on our previous
data,26 the use of a secondary threshold circle (i.e. an
outer circle as a bound for eliminating those ∆HbO
fluctuations departing the region surrounded by the
inner and outer circles in Phases 3–5) is proposed. To
determine the radius of the outer circle, an empirical
approach is used. In the experimental data of Zafar
and Hong,26 it was found that the ratio of the ampli-
tude of initial dip (p0) and that of the conventional
HR amplitude (p1) was about 0.3, see Fig. 1. Simi-
lar results were also reported in the previous stud-
ies of optical imaging spectroscopy and fMRI.49–53

Therefore, once an experiment starts, the p1 value
and its standard deviation (SD) through the aver-
aging over several trials from the most active chan-
nel in the training stage is determined, in which the
most active channel means the channel that shows
the largest difference between the maximum ∆HbO
values during the resting state and the averaged HR
during the training stage. Now, the second threshold
circle is defined as follows:

r2 = max(∆HbO2
resting + ∆HbR2

resting)
1/2

+ 0.3(p1 + SD). (6)

The main reason for selecting p1 in (6) for the sec-
ondary threshold circle is to make it independent
from the occurrence of initial dip. In contrast, if
we select |p0| (or |p0| + SD) instead of 0.3p1 (or
0.3(p1 + SD)), there exists a possibility that |p0| can
become zero due to averaging. If |p0| becomes zero,
the radius of the secondary circle will be r1 or r1+SD,
which will result in overlapping (or too close) of the
outer circle with the inner circle. Then, the role of
the second circle is diminished by leading to a bad
conclusion that a genuine initial dip is regarded as a
false dip.

In the relevant previous research,46–48 it was
observed that most of the initial dips were of the
hypoxic type (i.e. decreased ∆HbO). In the present

analysis, Phases 3–5 represent the hypoxic dip phase
in which ∆COE > 0. The hypoxic initial dip region is
then defined as the region between the two threshold
circles in Phases 3–5, see Fig. 2. Similarly, the region
outer the first threshold circle in Phases 7 and 8 is
defined as the HR region. Therefore, the proposed
criteria for detection of hypoxic initial dips are the
following:

(i) the vector must lie in any of Phases 3–5, and
(ii) the trajectory should remain within the two

threshold circles (i.e. the initial dip region). Any tra-
jectory outside the initial dip region in Phases 3–5
is concluded as a false dip or noise. Also, if the tra-
jectory remains in Phases 3–5 within first 2 s to 4 s
period and it moves to either Phase 7 or 8, after 2 s to
4 s, having a magnitude greater than the circle drawn
by the resting state hemodynamics (the first thresh-
old circle), the trajectory is considered as a correct
HR upon the given trial including the initial dip.

2.2. BCI framework utilizing initial dip
detection

Figure 3 illustrates the proposed BCI framework
incorporating the initial dip detection scheme dis-
cussed in Sec. 2.1. The main difference from the
conventional scheme that uses the HRs is that even
though the initial dip detection procedure fails, the
conventional scheme still backs up. It is important
to have a fail-tolerant loop in feature selection and
classification for online control command generation.
The existing fNIRS-based BCI framework uses only
the HR features for classification, in which a typ-
ical window of 10 s from the stimulation onset is
used to extract features. The commonly used HR fea-
tures include the signal mean, signal peak, and signal
slope during the 2–7 s duration, see details in Ref. 18.
Though there are a few studies that have used the
skewness, kurtosis, variance, SD, number of peaks,
sum of peaks, and median for fNIRS-BCI, the use of
initial dip does not exist yet. In the case of initial
dip, the features should be extracted from the win-
dow of 0–2 s or 0–2.5 s. In this case, the previously
mentioned features of HR may not work properly
in a reduced window. The authors’ previous work26

examined five features of ∆HbO during the initial
dip phase: Signal mean, signal minimum, signal peak,
skewness, and kurtosis to classify multiple tasks from
the prefrontal cortex in an offline analysis. The study
found that the signal mean and the signal minimum
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(a) Training scheme

(b) Online scheme

Fig. 3. BCI framework using the vector phase diagram with dual threshold circles.

worked well with the 0–2.5 s window. Two other stud-
ies54,55 have also investigated the early temporal fea-
tures (signal minimum or signal mean) to utilize the
initial dips in their early classification of multiple
brain tasks. In this study, signal mean and signal
minimum are used as features in the 0–2.5 s window,
and the linear discriminant analysis (LDA) is used
as a classifier.

2.3. Subjects

Eleven male subjects (age: mean 28.5 ± 2.5 years,
hair style: shaved or very short hair) participated in
the experiment. All were healthy and had normal or

corrected-to-normal vision, and none had a history
of any neurological or visual disorder. All were given
a detailed description on the experimental procedure
prior to the experiment, and informed consents were
obtained from all. The experiment was conducted in
accordance with the latest Declaration of Helsinki56

upon the approval of the Pusan National University
Institutional Review Board.

2.4. Channel configuration and signal
processing

The brain signals generated by the tapping of two
fingers (thumb, little fingers) were acquired at a
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Fig. 4. Schematic of densely configured emitter–detector pairs in the left motor cortex.

sampling rate of 9.19Hz from the left motor cortex
using the frequency domain fNIRS system (ISS Ima-
gent, ISS Inc.). The system utilizes the near-infrared
light of two wavelengths (690 nm and 830nm). In the
present study, 3 detectors and 12 emitters were used
in a dense emitter–detector configuration to exam-
ine the C3 area of the left motor cortex. The densely
configured emitter–detector pairs helped to analyze
the data of multi-distance channels obtained at var-
ious cortical depths resulting in an improved spatial
resolution.11 The electrode placement and the cor-
responding emitter-detector distances are shown in
Fig. 4. In accordance with the International 10–20
System, the detectors were positioned by considering
C3 as the reference point. Thirty-six channels were
configured using emitter–detector combinations. ISS
Imagent data acquisition and analysis software (ISS-
Boxy) were used to obtain the raw intensity data.
The intensity data were then converted to ∆HbO
and ∆HbR with the ISS-Boxy software, with extinc-
tion coefficients εHbO = 0.95 mM−1cm−1, εHbR =
4.93 mM−1cm−1 for 690nm wavelength and εHbO =
2.135 mM−1cm−1, εHbR = 1.791 mM−1cm−1 for
830nm wavelength, according to the modified Beer–
Lambert law.57 The raw data (∆HbO & ∆HbR)
were pre-processed to remove the physiological noises
related to the respiration, cardiac and low-frequency
drift signals: A fourth-order Butterworth low- and
high-pass filter with a cutoff frequency of 0.15Hz
and 0.01Hz, respectively, was used to filter the respi-
ration, cardiac, and low frequency drift fluctuations
from the fNIRS signals.54,58,59

2.5. Experimental paradigm

Thumb and little finger tapping tasks associated with
the left motor cortex were investigated. The sub-
jects were seated on a comfortable chair and were
instructed to avoid a body movement as much as
possible during the experiment. The experiment was
conducted in a dark and quite room. Figure 5 shows
the experimental paradigm used in this study. One
experiment consists of two sessions of tasks (thumb
tapping, little finger tapping) with pre- and post-
rest periods of 60 s and 10 s, respectively. Each ses-
sion is composed of six 30 s trials. Each trial has a
10 s activity task followed by a 20 s rest. During the
task period, the subjects were instructed to tap their
(right) thumb/little fingers as fast as they could,
without paying attention to the number of taps. A
computer screen indicating individual finger tapping
was displayed on a monitor placed in front of the

Fig. 5. Experimental paradigm for thumb and little fin-
ger tapping tasks.
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subject. During the rest period, a black screen was
shown. The subjects also were instructed to keep
their eyes open during the experiment.

2.6. Initial-dip-based dHRF and t-map
generation

In the fNIRS data analysis, the estimation of cortical
activation and its localization are the most important
steps. Cortical activation can be estimated by fitting
the measured HR to the predefined dHRF,60–62 and
its existence can be concluded according to the t-
values of the associated channels. In this paper, the
t-values were computed using the robustfit function
available in MATLABTM. Let xq

p ∈ RM×1 be the
measured data at the pth channel for the qth trial,
and M be the number of data per trial. Then, the
linear regression model is defined as follows34:

xq
p = φq

pHr + ψq
p · 1 + εq

p, (7)

where Hr ∈ RM×1 is the dHRF, 1 ∈ RM×1 is a col-
umn vector of 1’s to correct the offset of the baseline,
φ is the unknown coefficient indicating the activity
strength of the dHRF, ψ is the coefficient to compen-
sate the baseline drift of the signal, and ε ∈ RM×1

denotes the white Gaussian noise. Then, the coeffi-
cient φ is estimated as follows:

[φ̂q
p, stats] = robustfit(Hr, x

q
p), (8)

where φ̂q
p denotes the estimate of φq

p and stats refers
to the statistical data including t-value, p-value,
standard error, etc. The basic idea is to test the null
hypothesis that the estimated parameter (φ̂q

p) of the
brain activity is equal to zero or not. In other words,
to test whether the estimated value (φ̂q

p) of the brain
activity is greater or less than the critical t-value
(tcrt) with statistical significance. The t-value63 is
calculated as follows:

t− value =
φ̂q

p

SE(φ̂q
p)
, (9)

where SE stands for the standard error. A higher t-
value means that the signal is highly correlated with
the dHRF. In this study, tcrt was set to 1.65 accord-
ing to the degrees of freedom (i.e. trial = 30 s, the
number of data points M = 30×9.19 = 275,M−1 =
274).

In this study, the dHRF was generated by con-
volving the cHRF, denoted by h(k), with a stimulus

period, u(k), as follows:

dHRF(k) =
k−1∑
n=0

h(n)u(k − n), (10)

u(k) =

{
1, if k ∈ task,

0, if k ∈ rest,
(11)

where task and rest represent the task period and
the rest period, respectively (task = 10 s and rest =
20 s in this study). The cHRF was generated as a
linear combination of three gamma functions by the
equation25

h(k) =
3∑

i=1

Ai
kαi−1βαi

i e−βik

Γ(αi)
, (12)

where i represents the number of gamma functions,
Ai is the amplitude, αi and βi tune the shape and
the scale, respectively, and k is the time step. In this
study, nine parameters of the cHRF were assumed
as free parameters instead of using fixed parameters.
For each subject, these free parameters were esti-
mated in order to make the best fit of the dHRF
shape to the HR data of the subject. The reason for
using the estimated parameters instead of some fixed
parameters is that the fNIRS signals vary from sub-
ject to subject due to their individual differences.64

The cHRF parameters were estimated using a
modified constrained Nelder–Mead simplex algo-
rithm that allows the use of constraints specified as
parameter bounds.65,66 The advantage of using this
algorithm is that it minimizes the function without
any derivative information.67 We have used the fmin-
searchbnd function for parameters estimation.68 The
objective function was formulated as follows:

J =
N∑

k=1

{yj
HbO(k) − dHRF(k)}2, (13)

where j represents the channel number. The above
cost function was then minimized by applying the
constraints and using the initial values as follows25:

min J(A1, A2, A3, α1, α2, α3, β1, β2, β3) such that

−5 ≤ A1 ≤ 0, 0 ≤ A2 ≤ 15, −10 ≤ A3 ≤ 0,

0 ≤ α1 ≤ 3, 2 ≤ α2 ≤ 10, 6 ≤ α3 ≤ 25,

0.5 ≤ β1 ≤ 2, 0.5 ≤ β2 ≤ 2, 0 ≤ β3 ≤ 1.5,

(14)

A1 = −0.5, A2 = 6, A3 = −1,

α1 = 1.5, α2 = 7, α3 = 16,

β1 = 1, β2 = 1, β3 = 1.

(15)
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One possible way to select the initial values of free
parameters, for finding the solution of (13), is to
choose the parameter values used to generate the
fixed optimal dHRF.36,63 However, we have used the
initial values described in (15), because the conver-
gence of the algorithm to the solution with these val-
ues was already verified in the literature.25

Several previous studies69,70 have pointed out
that HbO is more sensitive and more reliable than
HbR. Therefore, we used only HbO signals for further
analysis. To locate the active regions based on thumb
and little finger tapping, the t-value for each chan-
nel was calculated for the averaged HbO trial. Sim-
ilarly, the used dHRF was the averaged one over all
subjects. The averaging was performed over all sub-
jects and trials. The criteria for concluding active-
ness were: (i) t-value > tcrt and (ii) p-value < 0.05.
If the t-value < tcrt or p-value > 0.05, the t-value
was set to zero. The obtained t-values were normal-
ized within the 0–1 range and were displayed on a
t-map in order to illustrate an activation in the cov-
ered brain region. The active regions (the region of
interest, ROI) were then defined as a region consist-
ing of those channels whose t-values were higher than
the tcrt for the performed task. To further confirm
that the oxygen consumption was also increased dur-
ing the initial dip phase, the t-maps for COEs were
also drawn by computing the t-values between the
measured ∆COE with the negative of dHRF (i.e.
−dHRF). In this study, the t-values were computed
for two time intervals: 0–4 s and 0–14 s, respectively,
to compare the activation map of the initial dip phase
and that of the conventional HR. The reason for dis-
playing t-maps for two different time durations is to
verify that the t-map obtained at 4 s is spatially more
specific than the t-map obtained at 14 s.

2.7. Features extraction and
classification

We have compared the classification accuracies in
two cases: (i) Using the vector phase analysis and (ii)
using dHRFs. In case (i), in both single- and dual-
threshold circle cases, the channels in which initial
dips were detected were averaged for each given task.
The mean and the minimum value of the averaged
signal during the 0–2.5 s period were obtained for
each task, in which the mean and min functions from
MATLABTM were used. It is noted that, in case (i),

the activated channels were obtained from the vec-
tor phase analysis and dHRF was not used. In case
(ii), the feature extraction is upon the fact that the
three-gamma-function based dHRF has been opti-
mized in the training period by using active chan-
nels (involving an initial dip), which were found by
the dual threshold scheme. The active channels in
case (ii) are found through the t-test (t-value > tcrit
and the p-value < 0.05) between the best-fit dHRF
and the measured HR during 0–2.5 s. To compare
the classification performance between the best-fit-
initial-dip-based dHRF and the two-gamma-function
based dHRF, the mean and the minimum value dur-
ing the 0–2.5 s period were obtained for each task.
In both cases (i) and (ii), the extracted features
were then rescaled between 0 and 1 by the follow-
ing equation71:

f ′ =
f − min(f)

max(f) − min(f)
, (16)

where f ∈ Rn represents the original value of the fea-
ture, f ′ is the rescaled value between 0 and 1, max(f)
is the maximum value, and min(f) is the minimum
value. The rescaled features were then classified using
the LDA.72,73 To determine the classification accu-
racies, six runs of six-fold cross-validation were used.
Six-fold cross-validation randomly breaks the data
into six equal sets and uses five sets for training
and one set for testing. The process was repeated
six times, and the mean accuracy was obtained.74–76

3. Results

Figure 6 shows the vector phase analysis of the
thumb and little finger tapping of Sub. 1 (Ch. 18)
for all six trials using the proposed initial dip and
HR regions. It can be seen that at the start of both
tasks, the trajectory moves to the initial dip region
and then goes to the HR region. The initial dip was
not detected in Trials 5 and 6 of the thumb tap-
ping and in Trial 5 of the little finger tapping tasks.
But, it can be seen that their trajectories also cross
the inner circle in Phase 8 indicating that they are
still correct, which demonstrate the use of the regu-
lar HRs. Figure 7 shows some examples of the tra-
jectories of false and no initial dips (Sub. 1, thumb
tapping): Without the outer circle, initial dips would
have been falsely identified. It is also observed that,
in Ch. 7, see Fig. 7(a), the trajectory initially moved
toward the HR region, but later moved back to the
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Fig. 6. (Color online) Trajectories of thumb and little
finger tappings for a 10 s duration (Sub. 1, Ch. 18).

initial dip region causing a false signal. This kind
of fluctuation might be due to artifacts (head move-
ment, etc.); therefore, it would have been classified
as an incorrect trial, but it was a correct trial with a
large undershoot. On the other hand, these false dips
would have been considered as initial dips according
to the single threshold circle criterion. The channels
in which initial dips and false dips were detected for
the thumb tapping task of all the subjects are col-
lected in Table 2.

(a) False dip (the trajectory touches (Ch. 1, upper panel)
and crosses the outer circle (Ch. 7, lower panel))

(b) No initial dip

Fig. 7. Examples of false and no initial dips.

Table 2. Comparison of thumb tapping analyses (single
versus dual threshold circles).

Dual threshold circles
Single

Correct False threshold
Subject channels channels circle

1 17, 18, 21, 29, 30 1, 7

All channels

2 18, 21, 29 3, 33, 36

shown in

3 18, 21 4, 7, 15

the left

4 18, 21, 22, 29, 30 12

two columns

5 33, 34 7, 11, 26

are considered

6 13, 17, 18,

to have

29, 33, 34 10, 16, 35

an initial

7 5, 17, 18, 21, 22,

dip

23, 29, 30, 33, 34 10, 24, 31
8 5, 17, 18, 21, 1, 3, 20,

29, 33 22, 28
9 17, 21, 33 4, 6, 19, 32
10 5, 13, 14, 17, 18, 3, 11, 12,

21, 22, 23, 29, 30 15, 19
11 17, 18, 21, 22,

29, 33 9, 24, 30
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(a) Thumb tapping

(b) Little finger tapping

Fig. 8. Mean (solid line) and SDs (shaded) of the mea-
sured data and the dHRF (dotted black line) generated
by the estimated parameter values (Sub. 3).

Figure 8 plots the averages and the SDs of the
measured thumb and little finger tapping, respec-
tively, and the corresponding dHRFs as generated
by the estimated parameters of Sub. 3. Figure 9
compares the dHRFs generated using the estimated
parameters for thumb and little finger tapping tasks
(see Tables A.1 and A.2 containing the average val-
ues (over six trials) of the estimated parameters of
the cHRFs, per subjects, for thumb and little finger
tapping tasks).

Figure 10 plots the averaged HbOs (over 11 sub-
jects and 6 trials) together with the SDs of the thumb
and little finger tapping tasks. The shaded areas
along the mean values represent the SDs. It is noted
that the initial dip and the HR of the little finger
tapping were stronger than those of the thumb tap-
ping. The significance of the averaged HbOs was ver-
ified using two sample t-tests for initial dip (i.e. 4 s
data, degree of freedom = 72 and tcrt = −1.993)

(a) Thumb tapping

(b) Little finger tapping

Fig. 9. Comparison of the dHRFs of 11 subjects, which
are generated by the estimated parameters (see appendix
for the estimated cHRF parameters).

and HR (i.e. 14 s data, degree of freedom = 256
and tcrt = 1.969). The ttest2.m function available
in MATLABTM was used. The experimental results
demonstrate that the initial dip (t-value = −2.07 and

Fig. 10. Averaged HbOs (solid lines) and their SDs
(shaded) of the thumb and little finger tapping tasks.
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4
16, 8

28, 20, 12
32, 24

36

3
15, 7

27, 19, 11
31, 23

35

2
14, 6 

26, 18, 10
30, 22

34

1
13, 5

25, 17, 9
29, 21

33

(a)  Channels numbers denote the mid-points of individual emitter-detector distance.

(b) Thumb ∆HbO
at 4 s

(c) Thumb ∆COE
at 4 s

(e) Thumb ∆COE
at 14 s

(d) Thumb ∆HbO
at 14 s

(f) Little finger ∆HbO
at 4 s

(g) Little finger ∆COE
at 4 s

(i) Little finger ∆COE
at 14 s

(h) Little finger ∆HbO
at 14 s

Fig. 11. Comparison of the t-maps at 4 s and 14 s of the HbOs and COEs averaged over all subjects and trials: ∆HbO < 0
is seen at 4 s in (b) & (f), ∆COE > 0 at 4 s in (c) & (g), ∆HbO > 0 at 14 s in (d) and (h), and ∆COE < 0 at 14 s in (e)
and (f).

p-value = 0.041) and the HR (t-value = 2.29 and p-
value = 0.022) of the thumb and little finger tapping
tasks are different (p-value < 0.05).

Figure 11 compares the t-maps obtained using
HbOs and COEs at 4 s and 14 s, respectively. It can
be seen that the active spots of HbOs upon the little-
and thumb-finger tapping tasks are clearly spatially
distinguished (p-value < 0.05) in the case of 4 s win-
dow, see Figs. 11(b) and 11(f), in comparison with
the case of 14 s window, see Figs. 11(d) and 11(h).
Also, in Figs. 11(c) and 11(g), the oxygen consump-
tion increases at 4 s (∆COE > 0) as compared to 14 s
(∆COE < 0) in Fig. 11(e) and 11(i).

Table 3 reports the classification accuracies
obtained after active channel selection by the vector
phase analysis (single threshold circle, dual threshold
circles) and dHRF (initial-dip-based and two gamma
functions). To compare the significance of classifi-
cation accuracies, we have used two sample t-tests
(degree of freedom = 20, tcrt = 2.086). In com-
parison with the single threshold circle, the clas-
sification accuracy of dual circles was significantly
increased from 59.0% to 74.9% (t-value = 4.613,
p-value = 1.68e − 04). The classification accura-
cies of all subjects except Subs. 2, 5, and 10, were
higher than the recommended classification accuracy

needed for BCI (i.e. 70%). Similarly, the average
classification accuracy obtained after active channel
selection by the best-fit initial-dip-based dHRF, i.e.
72.7%, in a 2.5 s window was significantly higher than
that obtained from the two gamma functions, i.e.

Table 3. Comparison of classification accuracies of
thumb and little finger tapping tasks.

Classification accuracies (%) (Features: mean,
min value; window: 0–2.5 s)

Single Dual Initial-dip- Two-gamma-
threshold threshold based functions-based

Sub. circle circles dHRF dHRF

1 66.6 75 75 50
2 41.6 66.6 83.3 41.6
3 66.6 75 75 58.3
4 66.6 83.3 66.6 58.3
5 50 66.6 66.6 33.3
6 50 75 75 58.3
7 58.3 75 75 66.6
8 66.6 75 83.3 66.6
9 66.6 83.3 66.6 33.3
10 50 66.6 58.3 50
11 66.6 83.3 75 66.6

Mean 59.0 74.9 72.7 55.9
Std. 9.4 6.4 7.5 12.5
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Table 4. Times required to process one to six tri-
als using the proposed vector-phase analysis with dual
threshold circles and initial-dip-based dHRF.

Processing time (s)

Trials Dual threshold circle Initial-dip-based dHRF

1 0.168 0.108
2 0.304 0.169
3 0.445 0.229
4 0.585 0.287
5 0.690 0.358
6 0.806 0.409

Table 5. Comparison of classification accuracies
obtained from repeated experiments (Subs. 4 and 7).

Classification accuracies (%)
Channel selection: Initial-dip-based

dHRF (Features: mean,
Sub. min value; window: 0–2.5 s) Mean Std.

Day 1 Day 2

Session 1 Session 2 Session 1 Session 2

4 66.6 50 58.3 66.6 60.3 7.9
7 58.3 66.6 83.3 75 70.8 10.7

55.9% (t-value =4.47, p-value = 2.31e − 04). There
was no significant difference between the accura-
cies obtained using vector phase analysis with dual
threshold circles and best-fit initial-dip-based dHRF
(t-value = 0.75, p-value = 0.45). The processing
times spent to process one to six trials using the dual
vector phase analysis and initial-dip-based dHRF,
respectively, are reported in Table 4. To further check
the test–retest results of our proposed method, two
subjects (Subs. 4 and 7) were asked to participate in
more experiments. Four experiments were performed
on each subject in two consecutive days (two sessions
at different times per day). The best-fit initial-dip-
dHRF of each subject (see Fig. 9) was used to select
the active channels. Table 5 reports the classification
accuracies obtained for four different experiments.
The classification accuracy of Sub. 7 was higher than
60% in three sessions, which seems good enough and
is acceptable for BCI.

4. Discussion

The novelties of this paper are the following: (i) new
definitions of the initial dip and HR regions in the

vector phase diagram to reduce false identification of
initial dips in fNIRS signals, (ii) the use of a linear
combination of three gamma functions to model the
dHRF with initial dip to draw the initial-dip-based
brain activation map and select active channels for
fNIRS-BCI applications, and (iii) the demonstration
of the capability of classifying two finger movements
which are originated from a small brain region. This
is possible because the initial dip is more specific to
a brain region than the hemodynamics.

In this paper, the use of dual threshold circles
to clarify the initial dip and HR regions in the vec-
tor phase diagram to detect the occurrence of initial
dips in fNIRS signals is proposed for the first time.
The early fNIRS studies used a single threshold circle
having a radius of either max(∆HbO2 + ∆HbR2)1/2

or max{∆HbO,∆HbR}, as a decision criterion, from
the resting state hemodynamics. Our work has an
advantage over the early studies, as we were able to
identify whether the dips are false or motion-related
artifacts, which enhanced the classification accuracy
for the BCI applications. We have used a 30% of the
maximum value and its SD of the HR of an active
channel in the decision of the radius of the second
threshold circle because we had found in our previous
study that the amplitude of the initial dip is almost
0.3 times that of the conventional HR.26 This find-
ing is consistent with optical imaging spectroscopy
studies in which the early response is about 1/3
of the delayed response.49–52 Later, an fMRI study
reported that in the motor area, the ratio of the ear-
lier response to the delayed response is roughly 0.3.53

However, in the case of fMRI, it was also found that
the ratio of the initial dip peak to the HR peak varies
with the strength of the magnetic field of the fMRI
system.52,77 Furthermore, we used only Phases 3–5
to define the hypoxic initial dip region, because in
the previous fNIRS studies as well as in our cur-
rent study, it was observed that hypoxic-ischemic-
type (i.e. decreased ∆HbO) initial dips frequently
occurred.26,46–48 Our proposed criteria worked well
for all subjects, trials, and activity tasks. The peaks
of the initial dips of all subjects and tasks remained
within the initial dip region (see Fig. 6 of Sub. 1),
which helped to identify and eliminate the false-dip
channels.

In this paper, the use of a linear combination of
three gamma functions (instead of two) for the detec-
tion of cortical activation as well as active channel
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selection for BCI was also utilized. Several previ-
ous studies used a modified version of the exist-
ing two-gamma-function dHRF to analyze the fNIRS
time series.29,60 The advantage of using three gamma
functions over two gamma functions is that it will
also include the initial dip in the dHRF model for
better estimation of the fNIRS signal. Also, the exist-
ing literature suggests that the fNIRS signals vary
in their shape and characteristics from subject-to-
subject and trial-to-trial.64 In fact, it is evident in
Fig. 9 that inter-subject differences existed in the
cHRF parameters due to individual differences in
anatomical factors. Therefore, the estimation of the
dHRF shape of each subject for a better online-BCI
channel selection was useful.

With regard to the active brain regions upon indi-
vidual finger movements, the activation maps were
drawn at the ends of 4 s and 14 s periods based on
the averaged HbO and the initial-dip-based dHRF.
Recalling that several previous studies indicated that
the initial dip peaks occurred at around 2 s and
finished at around 4 s,24,52,78,79 the first t-map was
drawn at 4 s, see Figs. 11(b) and 11(f), and another
one at 14 s, see Figs. 11(d) and 11(h), in order to
compare the active brain areas by using the initial
dip and the conventional HR. It was found that the
highly active locations of HbOs upon thumb and
little-finger tapping were more spatially specific at
4 s than at 14 s. The 14 s t-map is more widely spread
over the region. But, very distinctive activation loca-
tions for individual taps are shown in 4 s map. Sim-
ilarly, in the case of COEs, the oxygen consumption
in 4 s was also higher (∆COE > 0) and distinctive for
both tasks in comparison to 14 s (∆COE < 0). This
shows that the oxygen consumption during neuro-
activation is higher in the dip phases as compared
to HR phases, which is consistent with the exist-
ing literature.46 Also, the HR of little finger tapping
was stronger than that of thumb finger tapping. The
obtained results are quite consistent with the pre-
vious relevant studies.10,80–83 Even though the cur-
rent results in initial-dip-based dHRF are prelimi-
nary, they will certainly contribute constructively to
the fNIRS brain-imaging community.

In this study, the window size was chosen as 0–
2.5 s, and the features used to classify thumb and
little finger tapping tasks were the signal mean and
the signal minimum value. Several previous stud-
ies have reported the occurrence of the initial dip

peak at approximately 2–2.5 s.44–46,52 Therefore, a
2.5 s window can provide the reliable classification
accuracy in using the initial dips. The classification
accuracy obtained by using the dual threshold circles
for channel selection was significantly higher than
that obtained with the single threshold circle (see
Table 3). The reason for the low accuracy with the
single threshold circle criterion (i.e. 59% in our case)
is that it used all of the channels showing a magni-
tude greater than the maximum value in resting state
hemodynamics. There is a possibility that during an
activity period, some channels will show unexpected
peaks due to unknown fluctuations. In the previous
method, there is no criterion to identify those chan-
nels showing such false dips. The advantage of the
second threshold circle is that it helps to eliminate
those channels before the channel averaging for BCI
applications, which results in a higher classification
accuracy (i.e. 74.9% in this study). It is important to
note that, for a channel to be selected as an active
channel using the vector phase analysis with dual
threshold circles, we have to wait till the trajectory
enters the HR region (i.e. approximately 6 s to 7 s),
which is too slow for the online applications. Also,
it requires a computation time of 0.168 s and 0.806 s
for one trial and six trials, respectively.

Finally, to address the above issue (i.e. delay
of approximately 6 s to 7 s), we suggest using the
best-fit initial-dip-based dHRF model for selection of
active channels for the classification of the tapping
task. The best-fit initial-dip-based dHRF yielded
a higher classification accuracy, 72.7%, in a 2.5 s
window than that of two gamma functions, 55.9%.
In comparison with the vector phase analysis of
dual threshold circles, the best-fit initial dip dHRF
yielded a slightly lower classification accuracy (t-
value = 0.75, p-value = 0.45), but it can reduce
the delay time from 6 s to 2.5 s. Also, the computa-
tion time needed for processing of six trials is almost
half (i.e. 0.409 s) of the processing time taken by
the vector phase analysis (i.e. 0.806 s). The reduc-
tion in delay and overall processing time are a signifi-
cant improvement toward real-time BCI applications
using fNIRS.54,84–88

5. Limitations and Future Prospects

In this study, the value 0.3 for the ratio of |p0|
to p1 was adopted from the literature, which is
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from empirical data. This ratio may depend on the
tasks, measured locations, subjects, definition of ini-
tial dips, and the temporal resolution of the fNIRS
system. Therefore, this ratio should be determined
in the training phase by performing several trials for
a given task. Once the training data are obtained,
the ratio can be calculated based on the averaged
data and its SD for the specific tasks, measured loca-
tions, and subjects. However, there exists a possibil-
ity that the initial dip may disappear by averaging.
Specifically, in the case of initial dip disappearance,
the ratio will be kept to 0.3 for the second threshold
circle. Moreover, an optimal value of the ratio may
exist, which can help to investigate the best possi-
ble radius of the threshold circles. Thus, it further
enables us to investigate the vector phase analysis to
be used as an independent classifier. We have con-
sidered hypoxic initial dips, however, other types of
dips should also be considered in the future.

For the estimation of dHRF parameters, gamma
functions were used to model the cHRF. The use
of three gamma functions provides an extra degree
of freedom in the estimation of dHRF including an
initial dip. Previously, Ye et al.36 had observed a
significant increase in the correlation between the
hemodynamic components (HbO, HbR, and HbT)
and the dHRF approximated with multiple gamma
functions (maximum 4 in their case). Therefore, mul-
tiple gamma functions in the estimation of a dHRF
should be investigated for finding the best degree of
freedom. Also, other functions like Gaussian model,
half cosine functions, etc., deserve a further investi-
gation.

It should also be noted that the densely con-
figured emitter–detector pairs in our study contain
only 12 emitters and 3 detectors, resulting in only
36 channels that can record brain activities only in
a local brain region of 2 cm × 4.9 cm area. However,
if more emitter/detector combinations are available
for forming more channels that cover a wider brain
region, more findings can be made. We have focused
only on the activation map generated by the aver-
aged signal over all subjects and trials. We were
able to see that the t-maps of thumb and little
fingers were distinguishable in some subjects, but
not from all subjects. This is possibly due to two
reasons: (i) the muscle motions of each finger are
affected by each other81 and (ii) the spatial res-
olution of our configuration was not sufficient to

distinguish these overlapping regions. Therefore, a
further investigation to improve the spatial reso-
lution with a densely configured arrangement of
optodes with closely placed emitter–detector pairs
should be made.

In this study, we have used a Butterworth filter
at a cutoff frequency of 0.15Hz to reduce physiolog-
ical noise. In this case, the HR caused by skin blood
flow may be present, which may affect the features’
value. However, it was shown in the previous study89

that the correlated or uncorrelated information could
enhance the overall classification accuracy as these
features would work well for each other. In the
future, it should be investigated that the improve-
ment in classification accuracy can be achieved by
using a skin blood flow removal technique. Another
main limitation of fNIRS is the inter-subject and
intra-subject variations in HRs due to physiologi-
cal/psychological individual differences and trial-to-
trial variability.64,90,91 These individual differences
can variate the threshold circle radii and the classi-
fication accuracies (as observed in Tables 3 and 5).
For a clinical application, the variation in HRs can be
minimized by averaging over trials per session. How-
ever, in the case of BCI, the variation in individual
subjects (due to HRs variation) can be minimized
by introducing additional features from a secondary
modality (e.g. EEG). Therefore, the dip detection
and accuracy improvement should be investigated by
employing hybrid modalities.92–94 Finally, we have
used only temporal features from the HbO signals. In
the future, other features (including HbR, COE, and
CBV) should be investigated for further improve-
ment of initial dip classification accuracy.

6. Conclusion

In this study, the vector phase analysis method with
dual threshold circles was used to identify the false
dips in the fNIRS signals. Also, the use of a three-
gamma function to model initial-dip-based dHRF
for active channel selection, identifying the active
regions for the initial dip, and their application for
BCI were demonstrated. Right-hand thumb and lit-
tle finger tapping tasks associated with the left motor
cortex were performed. The initial dip region in the
vector phase analysis revealed that the initial dip can
indeed be detected successfully and remain within
this region. Our results demonstrated that by using
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the initial-dip-based dHRF, the activation map for
the initial dip (i.e. 4 s) can show highly active loca-
tions of tapping tasks more specifically and distin-
guishably than the activation map for the main HR
(i.e. 14 s). We used temporal features with LDA-
based classification to achieve 74.9% accuracy within
the 0–2.5 s window with the dual threshold circles.
In comparison with the single threshold circle, an
average increase of 15.9% was observed. Also, the
initial-dip-based dHRF, due to its shorter delay and
processing time than that of vector phase analy-
sis, yielded a higher classification accuracy than the

commonly used two-gamma-function dHRF for an
online application. These encouraging results show
a greater potential of the initial-dip-based classifica-
tion method for fNIRS-based BCI applications.
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Appendix

Table A.1. Averages of the estimated parameters of cHRF for thumb tapping task (over six trials).

1st Γ 2nd Γ 3rd Γ

Sub A1 α1 β1 A2 α2 β2 A3 α3 β3

1 −4.6E−06 1.8849 1.1206 2.8E−04 6.0836 0.6753 −1.9E−04 14.9801 1.4508
2 −1.9E−05 1.8848 1.1216 2.9E−04 6.0792 0.6752 −2.0E−04 14.9557 1.4513
3 −1.0E−05 1.9709 1.1497 1.5E−04 6.0857 0.7686 −8.9E−05 13.7450 1.4387
4 −8.7E−06 1.8834 1.1019 2.4E−04 6.0899 0.6934 −1.4E−04 15.5289 1.4329
5 −1.1E−05 1.8860 1.1244 2.0E−04 5.9398 0.6694 −1.3E−04 15.1059 1.4593
6 −4.5E−06 1.8802 1.1239 1.7E−04 6.0048 0.6740 −1.3E−04 14.8595 1.4558
7 −4.0E−06 1.4774 1.3338 1.2E−04 5.2271 0.7488 −3.2E−05 18.0041 1.4898
8 −5.3E−05 2.3609 0.5724 8.6E−05 4.2503 0.9202 −1.8E−05 20.6709 1.0017
9 −3.9E−06 1.9017 1.1140 1.3E−04 5.9138 0.6862 −8.5E−05 15.6304 1.4519

10 −1.2E−05 1.8833 1.1189 2.9E−04 6.1045 0.6761 −1.8E−04 14.9293 1.4503
11 −4.2E−06 2.0754 1.0735 8.9E−05 5.6422 0.8070 −3.5E−05 14.4542 1.4341

Table A.2. Averages of the estimated parameters of cHRF for little finger tapping task (over six
trials).

1st Γ 2nd Γ 3rd Γ

Sub A1 α1 β1 A2 α2 β2 A3 α3 β3

1 −1.5E−05 1.8862 1.1954 2.1E−04 5.4101 0.6802 −1.1E−04 15.1609 1.4750
2 −1.6E−05 1.8836 1.1213 3.2E−04 6.0844 0.6746 −2.2E−04 14.9719 1.4513
3 −1.2E−05 1.8846 1.1211 2.6E−04 6.0818 0.6746 −1.8E−04 14.9513 1.4514
4 −1.6E−05 1.9253 1.1283 2.6E−04 5.7056 0.7159 −1.4E−04 14.7616 1.4630
5 −1.7E−05 1.8854 1.1253 2.5E−04 5.9335 0.6708 −1.8E−04 14.9495 1.4605
6 −1.4E−05 1.9721 1.0843 2.1E−04 5.7295 0.7268 −1.3E−04 13.7830 1.4427
7 −6.0E−06 1.8998 1.1434 3.5E−04 6.2377 0.7016 −2.1E−04 14.9294 1.4650
8 −1.3E−05 1.8820 1.1260 2.1E−04 5.9572 0.6699 −1.3E−04 14.9636 1.4593
9 −4.5E−06 1.8970 1.1237 4.1E−04 6.1241 0.6581 −3.1E−04 14.0625 1.4631

10 −1.5E−05 1.8906 1.1331 2.8E−04 6.0308 0.6853 −1.6E−04 15.3705 1.4553
11 −1.3E−05 1.8863 1.1217 2.1E−04 6.0491 0.6768 −9.8E−05 14.9411 1.4531
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