
INTERNATIONAL JOURNAL OF CONTROL, 
VOL. , NO. , –
http://dx.doi.org/./..

Distributed adaptive consensus control of Lipschitz nonlinear multi-agent
systems using output feedback

Atif Jameela, Muhammad Rehana, Keum-Shik Hongb and Naeem Iqbala

aDepartment of Electrical Engineering, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan; bDepartment of
Cogno-Mechatronics Engineering and School of Mechanical Engineering, Pusan National University, Busan, Republic of Korea

ARTICLE HISTORY
Received  October 
Accepted  February 

KEYWORDS
Consensus control;
multi-agent systems;
distributed adaptive
protocol; Lipschitz
nonlinearity; decoupling
technique

ABSTRACT
This paper addresses output-feedback-based distributed adaptive consensus control of multi-agent
systems having Lipschitz nonlinear dynamics. Distributed dynamic protocols are designed based on
the relative outputs of neighbouring agents and the adaptive couplingweights, underwhich consen-
sus is reached between the nonlinear systems for all undirected connected communication topolo-
gies. Extension to the case of Lipschitz nonlinear multi-agent systems subjected to external distur-
bances is further studied, and a robust adaptive fully distributed consensus protocol is suggested. By
application of a decoupling technique, necessary and sufficient conditions for the existence of these
consensus protocols are provided in terms of linear matrix inequalities. Finally, numerical simulation
results are demonstrated to validate the effectiveness of the theoretical results.

1. Introduction

Multi-agent system consensus is a major problem in
the field of cooperative control. The main objective
of consensus is to develop a distributed interaction
rule that specifies the exchange of information between
sets of agents, such that all agents’ states converge to
the common value. In recent years, consensus con-
trol has received considerable attention from numer-
ous researchers from diverse scientific fields, and has
achieved rapid development due to the large number
of applications in many areas such as surveillance and
monitoring, multi-vehicle rendezvous, attitude align-
ment of spacecraft, formation control, distributed esti-
mation, sensor networks, flocking and formulated coor-
dination of multi-agent dynamic systems (Du, Wen, Yu,
Li, & Chen, 2015; Li, Ren, Liu, & Xie, 2013; Olfati-Saber,
Fax, & Murray, 2007; Yu & Xia, 2012). Early well-known
control policies were formulated by Jadbabaie, Lin, and
Morse (2003), Moreau (2005), Ren and Beard (2005), and
Arcak (2007) to solve the consensus problem. In Jad-
babaie et al. (2003), graph theory is introduced to the
consensus problem to illustrate the theoretical explana-
tion of the linearised Vicsek model developed in Vic-
sek, Czirók, Ben-Jacob, Cohen, and Shochet (1995). A
distributed protocol is presented in Cortés (2008) for
multi-agent networks to achieve consensus in a finite
time. The consensus problem with switching topologies
and time-delays is addressed by Olfati-Saber and Murray
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(2004) and Ren and Beard (2005) for networks of inte-
grator agents. Further, finite-time consensus protocols are
proposed by Shang (2012) for fast convergence of con-
sensus error by multi-agent systems with fixed topolo-
gies. Consensus control for networks of double integra-
tors and higher order multi-agent systems is discussed
in the work of Ding, Yu, Liu, Guan, and Feng (2013),
Ren and Beard (2008), Jiang and Wang (2010) and Ren,
Moore, and Chen (2007). Furthermore, edge- and node-
based adaptive dynamic protocols for linear multi-agent
systems, allowing construction of fully distributed pro-
tocols using output feedback, have been designed by Li
et al. (2013). In Huang, Zeng, and Sun (2015), robust
consensus control protocols are developed for synchro-
nisation of linear multi-agents in dealing with polytopic
uncertainties and external disturbances. The recent work
of Wen, Zhao, Zhisheng, Yu, and Chen (2015) consid-
ered the containment control of a general form of lin-
ear systems under directed communication topologies by
exploiting multiple leaders and multiple agents and by
employing dynamic output feedback control.

The study of nonlinearmulti-agent systems is the focus
of growing research attention and increasingly acknowl-
edged practical importance, owing to the existence of
abundant nonlinear systems in practice and the numer-
ous applications of multi-agent consensus under differ-
ent communication protocols. The consensus problem
for a network of agents with nonlinear dynamics has
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been discussed in Das and Lewis (2010) and Yu, Chen,
Cao, and Kurths (2010). In Yu, Chen, and Cao (2011),
both local and global consensus problems are investigated
for multi-agent systems having intrinsic nonlinearities.
An interesting work on second-order nonlinear multi-
agent systems by incorporating the delayed nonlinearity
and communication constraint for a strongly connected
and balanced topology is performed by Wen, Duan, Yu,
and Chen (2013). In Ding (2014) meanwhile, consensus
control is proposed for a class of nonlinear multi-agent
systems with Lipschitz nonlinearities. Li, Liu, Fu, and
Xie (2012) designed a two-step consensus algorithm for
Lipschitz nonlinear multi-agents under a strongly con-
nected directed graph topology. In the more recent work
ofWen,Duan, Chen, andYu (2014), a distributed consen-
sus tracking control methodology was studied for multi-
agent systems having Lipschitz-type node dynamics. Li
et al. (2013) designed a distributed consensus protocol
with adaptive coupling weights for both linear and Lip-
schitz nonlinear systems. In Li et al. (2012) andWen et al.
(2014), however, the consensus control is static and the
coupling weight for network topologies is non-adaptive,
which facts can limit fully distributed synchronisation
control of agents. Li et al. (2013) actually proposed a
state-feedback-based adaptive consensus protocol; how-
ever, the control is non-dynamic, and cannot be used if
the state vector is unavailable. Previous work on Lips-
chitz nonlinear multi-agent system consensus (for exam-
ple, Ding, 2014; Li et al., 2012; Li et al., 2013; Wen et al.,
2014) cannot be applied to attain a fully distributed (adap-
tive) protocol if the relative states of the neighbouring
agents are unrevealed.

In this paper, we consider the consensus problem
for nonlinear multi-agent systems with Lipschitz nonlin-
earities and undirected graph topologies. Based on the
relative output information of the neighbouring agents,
various conditions for the design of fully distributed
adaptive dynamic protocols with adaptive coupling
weights for each edge, as based on graph theory, Lya-
punov stability, linear matrix inequality (LMI) tools
and decoupling procedures, are proposed. The main
contributions of the consensus protocol proposed in
this paper are fourfold. First, our protocol is fully dis-
tributed, and unlike the existing protocols (Ding, 2014;
Li et al., 2012; Wen et al., 2014), does not require
any global connection information for Lipschitz non-
linear multi-agent systems. In other words, the require-
ment for a known second communication graph eigen-
value in contrast to Li et al. (2012), Wen et al. (2014)
and Ding (2014) is relaxed. Second, contrary to the
work of Li et al. (2012), Li et al. (2013), Wen et al.
(2014), and Ding (2014), output-feedback-based infor-
mation on the neighbouring agent is employed in the

proposed work for consensus between agents. Third,
a decoupling methodology is provided that can be
used to determine the gains of the dynamic consensus
protocol. Last, an extension to the present case for devel-
opment of a robust adaptive distributed consensus pro-
tocol is provided for Lipschitz nonlinear multi-agent
systems under external disturbances using the L2 stability
theory. To the best of our knowledge, a dynamic consen-
sus protocol using output feedback and allowing adaptive
weights for the communication links is proposed herein
for the first time for Lipschitz nonlinear systems. Simu-
lation results on the adaptive consensus of a network of
one-link flexible-joint robots using output feedback in the
absence and presence of disturbances also are available in
these pages.

The rest of this paper is organised as follows. Some
basic preliminaries on graph theory and the system
description are provided in Section 2. Designed dis-
tributed adaptive consensus protocols for nonlinear
multi-agent systems without and with external distur-
bances are presented in Sections 3 and 4, respectively. For
validation of the theoretical analysis, numerical simula-
tion examples are shown in Section 5. Finally, conclusions
are drawn in Section 6.

In this paper, the following notations are used. Rn×m

represents the set of real matrices where n and m are the
sizes of rows and columns, respectively. The superscriptT
indicates the transpose of real matrices. In is the identity
matrix of dimension n. 0n×m represents the zero matrix
with n rows and m columns. 1N = [1, 1, . . . , 1]T ∈ RN

denotes the unit column vector. diag(D1, . . . ,DN ) rep-
resents a block diagonal matrix with diagonal entries Di,
i = 1, . . . ,N and zero off-diagonal entries. ForX ∈ Rn×n,
X > 0 means that X is positive-definite. ‖x‖ and ‖x‖2
denote the Euclidean norm and the L2 norm for a vec-
tor x. The L2 gain between vectors d and y is defined as
sup‖d‖2 �=0(‖y‖2/‖d‖2) by assuming a zero initial condi-
tion of a system. Finally, X ⊗Y represents the Kronecker
product of matrices X andY .

2. Graph theory and system description

Mathematically, a graph is defined as a pair of sets G =
(V, E), where V = {v1, . . ., vN} represents the set of ver-
tices and E denotes the set of edges of a communica-
tion network. The two vertices vi and v j are the end ver-
tices of an edge (vi, v j) ∈ E. Edges with the same ends
are known as loop or parallel edges. A simple graph is
defined as a graph with no parallel edges or loop. A
complete graph is a type of simple graph that contains
all the possible edges between nodes. A complete graph
with N nodes is denoted as KN . Nodes are represented as
dots or circles, while edges are expressed as either lines
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or arrows, according to the type of graph. Information
sharing between the nodes of a network can be either
unidirectional or bidirectional. And based on the type
of information sharing, there are two types of graphs:
directed and undirected. A graph G is said to be a directed
graph if the set of edges E is an ordered pair, that is, (vi, v j)
�= (v j, vi). A graph is undirected if (vi, v j) ∈ E implies (v j,
vi) ∈ E for any vi, v j ∈ V. A digraph is known as strongly
connected if there is a directed path between any two dis-
tinct nodes. A connected undirected graph means that
there is a path between any two distinct nodes. A path
is a trail or sequence of vertices provided that each of
the vertices is visited once except the starting and ending
nodes when they are the same. A closed path is known
as a circuit. For N nodes v1, v2,…, vN , a directed path is
such that (vi, vi+1) ∈ E, for all i = 1, . . . ,N. A tree is a
type of connected digraph, in which each node has an in-
degree equal to one except the root node. In a path, there
can be a circuit, but a tree does not contain any circuit. A
graph G is said to have a spanning tree if a subset of edges
forms a directed tree that contains all of the vertices of the
graph G.

The adjacency matrix of a graph G = (V, E) is N × N
matrix, given by

A = [ai j], i, j = 1, . . . ,N, (1)

where N is the total number of nodes in G such that V =
{v1, . . . vN}. In the case of an undirected graph, ai j is total
number of edges between nodes vi and v j; for a directed
graph meanwhile, ai j is the total number of edges that
comes out of the node vi and enters into the node v j. An
isolated node has ai j = 0. The adjacency matrix is sym-
metric for undirected graphs, but this property does not
hold in the case of a directed graph. Because of the sym-
metric nature of an undirected graph, its eigenvalues are
real.

The Laplacian matrix for any undirected graph can
be calculated as L = [�i j]N×N = D− A, where D =
diag(D1, . . . ,DN ) is the degree matrix, A is the adjacency
matrix, and �i j is an element of the Laplacian matrix .
Mathematically, it can also be defined as

�i j =
⎧⎨
⎩
deg(vi), if i = j,

−1, i f i �= j and vi is adjacent to v j,
0, Otherwise.

(2)

The Laplacian matrix is symmetric and positive-semi-
definite for an undirected graph.
Lemma 2.1 (Olfati-Saber et al., 2007): Laplacian matrix
L always has a zero eigenvalue. This zero eigenvalue λ1 =
0 corresponds to the right unit eigenvector 1 = [1, . . . , 1]T

such that L1 = 0. Furthermore, rank of the Laplacian

matrix is N − 1, if and only if G is a strongly connected
directed graph and has a spanning tree.

The second least eigenvalue of Laplacian matrix λ2 is
known as the Fiedler eigenvalue or the algebraic connec-
tivity of a graph. The Fiedler eigenvalue is very useful in
measuring the speed of consensus algorithms.

Lemma 2.2 (Lewis, Zhang, Hengster-Movric, & Das,
2013): Network topologies having large values of λ2depict
faster convergence to the consensus. For connected undi-
rected graph topologies, the bound on the Fiedler eigenvalue
is λ2 ≥ 1

Diam(G)×Vol(G)
, where Vol(G) is the sum of the in-

degree of each node and Diam(G) is the largest distance
between the two nodes in a graph G.

Consider N identical nonlinear agents, described by

ẋi = Axi + Bui + D1 f (xi) + D2di,
yi = Cxi, i = 1, . . . ,N,

(3)

where xi ∈ Rn, ui ∈ Rp and yi ∈ Rq are the state, con-
trol input and output vectors of the ith nonlinear agent,
respectively, in the dynamics of nonlinear multi-agent
systems. A, B,C, D1 and D2 are constant matrices having
appropriate dimensions. Let the pair (A,B) be stabilisable
and the pair (A,C) be detectable. The symbol f (xi) rep-
resents a nonlinear function, and di denotes the external
disturbances to the agents.

Assumption 2.1: The communication topology between
these interacting nonlinear agents is represented by an
undirected graph G.

Assumption 2.2: The function f (xi) satisfies the Lipschitz
condition, for the Lipschitz constant γ > 0, given by

|| f (xa) − f (xb)|| ≤ γ ||xa − xb||, ∀xa, xb ∈ Rn. (4)

We employ the dynamic consensus protocol in Li et al.
(2013), given by

żi = (A + BF )zi + L
N∑
j=1

ci jai j[C(zi − z j) − (yi − y j)],

ċi j = ηi jai j
[

yi − y j
C(zi − z j)

]T

�

[
yi − y j

C(zi − z j)

]
, (5)

ui = Fzii = 1, . . . ,N,

� =
[

Iq −Iq
−Iq Iq

]
, ci j(0) = c ji(0), ηi j = η ji,

where zi is the state of the consensus protocol, ai j is the
element of the adjacency matrix, ci j is the time-varying
coupling weight of edges between adjacent nonlinear
agents, ηi j is a positive constant that can be appropriately
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set for adaptation, and F and L are gain matrices of the
protocol having appropriate dimensions.

In order to design a consensus control protocol, global
information of the second eigenvalue of Laplacian matrix
of a communication graph is required. This information
is employed by all the agents to compute the desired cou-
pling weight for a consensus protocol, which destroys the
fully distributed nature of a consensus control method-
ology. In the present work, we have employed an edge-
based time-varying coupling weight ci j for adaptation of
the fixed coupling weight, based on the second eigenvalue
of Laplacianmatrix. This feature allows a fully distributed
consensus control protocol synthesis for the nonlinear
multi-agent systems in (3) and relaxes the requirement
of a known second eigenvalue of Laplacian matrix for a
communication graph.

3. Consensus protocol design

In the following theorem, we provide a nonlinear matrix
inequality-based condition to determine the proper con-
sensus protocol gain matrices for designing a consensus
protocol (5).

Theorem 3.1: Consider the nonlinear agents in (3) under
di = 0 satisfying Assumptions 2.1–2.2. An asymptotic con-
sensus using protocol (5) can be achieved between the
agents, if there exist scalars α̃ ≥ 1, τ1 > 0 and τ2 > 0 as
well as symmetric matrices Q̄ > 0 and Q > 0 such that for
a given matrix F, the matrix inequality

⎡
⎢⎢⎢⎢⎣

	1 Q̄BF In
√
2γ Q̄D1 0n×n

∗ 	2 0n×n 0n×n
√
2γQD1

∗ ∗ −τ1In 0n×n 0n×n
∗ ∗ ∗ −τ−1

1 In 0n×n
∗ ∗ ∗ ∗ −τ−1

2 I n

⎤
⎥⎥⎥⎥⎦ < 0 (6)

is satisfied, where 	1 = Q̄(A + BF ) + (A + BF )T Q̄,
	2 = QA + ATQ − 2α̃CTC and L = −Q−1CT .

Proof: Taking vi = [xiT , ziT ]T , v̄ = 1
N

∑N
j=1 v j, ei =

vi − v̄ , v = [vT
1 , . . . , vT

N]T , and e = [eT1 , . . . , eTN]T , we
obtain e = [(IN − 1

N 11
T ) ⊗ I2n]v , which implies that 1

is the right eigenvector corresponding to the zero simple
eigenvalue of the matrix (IN − 1

N 11
T ), and the multiplic-

ity of the nonzero eigenvalues isN − 1. It further ensures
that e = 0 if and only if v1 = · · · = vN . Hence, the con-
sensus problem for the nonlinear agents in (3) under
protocol (5) can be solved by attaining the asymptotic
stability of the error e. As the communication topology
is undirected, ci j(t ) = c ji(t ), ∀t ≥ 0. Using (3) and (5)

obtains

ėi = Āei +
N∑
j=1

ci jai jB̄(ei − e j) + ϕ(xi, x̄) + ψ(di),

ċi j = ηi jai j
(
ei − e j

)TM (
ei − e j

)
,

(7)
where Ā = [ A BF

0n×n A + BF ], B̄ = [ 0n×n 0n×n
−LC LC ], ϕ(xi, x̄) =

[D1( f (xi) − 1
N

∑N
j=1 f (x j ))

0n×1
],ψ(di) = [D2(di − 1

N
∑N

j=1 d j )

0n×1
], andM =

(I2 ⊗CT )�(I2 ⊗C). �

Consider the Lyapunov function given as

V (t, ei, ci j) = 1
2

N∑
i=1

eTi Pei +
N∑
i=1

N∑
j=1, j �=i

(ci j − α)2

4ηi j
,

(8)
where P = [ Q̄ + Q −Q

−Q Q ]. Note that Q > 0 and Q̄ > 0 imply
P > 0 and that α is a positive scalar. The time-derivative
of (8) along (7) becomes

V̇ (t, ei, ci j) =
N∑
i=1

eTi Pėi +
N∑
i=1

N∑
j=1, j �=i

(ci j − α)

2ηi j
ċi j. (9)

Substituting (7) into (9) produces

V̇ (t, ei, ci j) =
N∑
i=1

eTi P
(
Āei +

N∑
j=1

ci jai jB̄(ei − e j)

+ ϕ(xi, x̄) + ψ(di, d̄)

)

+ 1
2

N∑
i=1

N∑
j=1, j �=i

(ci j − α)ai j(ei − e j)T

× M(ei − e j). (10)

As ci j(t ) = c ji(t ), ∀t ≥ 0, we have

N∑
i=1

N∑
j=1, j �=i

(ci j − α)ai j(ei − e j)TM(ei − e j)

= 2
N∑
i=1

N∑
j=1, j �=i

(ci j − α)ai jeTi M(ei − e j). (11)

Using (10)–(11), QL = −CT and the value of � from (5)
yields

V̇ (t, ei, ci j) =
N∑
i=1

eTi P(Āei + ϕ(xi, x̄) + ψ(di, d̄))

− α

N∑
i=1

N∑
j=1, j �=i

ai jeTi M(ei − e j). (12)
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Employing the transformation ẽi = Tei, we have

V̇ (t, ẽi, ci j) =
N∑
i=1

ẽTi P̃Ãẽi − α

N∑
i=1

N∑
j=1

ai jẽTi M̃(ẽi − ẽ j)

+
N∑
i=1

ẽTi P̃ϕ̃(xi, x̄) +
N∑
i=1

ẽTi P̃ψ̃ (di, d̄).

(13)

where

T =
[

In 0n×n

−In In

]
, P̃ = T−TPT−1 =

[
Q̄ 0n×n

0n×n Q

]
,

Ã = TĀT−1 =
[
A + BF BF
0n×n A

]
, M̃ =

[
0n×n 0n×n

0n×n CTC

]
,

ϕ̃(xi, x̄) = Tϕ(xi, x̄) =

⎡
⎢⎢⎢⎢⎢⎢⎣

D1

⎛
⎝ f (xi) − 1

N

N∑
j=1

f (x j)

⎞
⎠

−D1

⎛
⎝ f (xi) − 1

N

N∑
j=1

f (x j )

⎞
⎠

⎤
⎥⎥⎥⎥⎥⎥⎦

,

ψ̃ (di) = Tψ(di) =

⎡
⎢⎢⎢⎢⎢⎢⎣

D2

⎛
⎝di − 1

N

N∑
j=1

d j

⎞
⎠

−D2

⎛
⎝di − 1

N

N∑
j=1

d j

⎞
⎠

⎤
⎥⎥⎥⎥⎥⎥⎦

.

(14)

Partitioning ϕ̃(xi, x̄) = D̃1θ̃1(xi, x̄) + D̃1θ̃2(xi, x̄) and
rearranging ψ̃ (di, d̄) = D̃2χ̃ (di, d̄), where

D̃1 =
[

D1 0n×n

0n×n D1

]
, D̃2 =

[
D2 0n×n

0n×n D2

]
,

θ̃1(xi, x̄) =
[

f (xi) − f (x̄)
− f (xi) + f (x̄)

]
,

θ̃2(xi, x̄) =

⎡
⎢⎢⎢⎢⎢⎣

f (x̄) − 1
N

N∑
j=1

f (x j)

− f (x̄) + 1
N

N∑
j=1

f (x j)

⎤
⎥⎥⎥⎥⎥⎦ ,

χ̃ (di, d̄) =

⎡
⎢⎢⎢⎢⎢⎣

di − 1
N

N∑
j=1

d j

−di + 1
N

N∑
j=1

d j

⎤
⎥⎥⎥⎥⎥⎦ , (15)

we can rewrite (13) as

V̇ (t, ẽi, ci j) =
N∑
i=1

ẽTi P̃Ãẽi − α

N∑
i=1

N∑
j=1

ai jẽTi M̃(ẽi − ẽ j)

+
N∑
i=1

ẽTi P̃D̃1θ̃1(xi, x̄)+
N∑
i=1

ẽTi P̃D̃1θ̃2(xi, x̄)

+
N∑
i=1

ẽTi P̃D̃2χ̃ (di, d̄). (16)

Applying Lipschitz condition (4) and using the matrix
algebra imply

||θ̃1(xi, x̄)|| = √
2
∥∥ f (xi) − f (x̄)

∥∥ ,

≤ √
2γ ||Zei||,

= √
2γ ||Zẽi||,

(17)

Z =
[

In 0n×n
0n×n 0n×n

]
, (18)

which entails

ẽTi P̃D̃1θ̃1(xi, x̄) ≤
∥∥∥ẽTi P̃D̃1diag(τ 1/2

1 In, τ 1/2
2 In)

∥∥∥
×

∥∥∥diag(τ−1/2
1 In, τ−1/2

2 In)θ̃1(xi, x̄)
∥∥∥ ,

≤ √
2γ

∥∥∥ẽTi P̃D̃1diag(τ 1/2
1 In, τ 1/2

2 In)
∥∥∥

×
∥∥∥diag(τ−1/2

1 In, τ−1/2
2 In)Zẽi

∥∥∥ ,

≤ 1
2
ẽTi [2γ

2P̃D̃1diag(τ1In, τ2In)D̃1P̃

+Zdiag(τ−1
1 In, τ−1

2 In)Z]ẽi. (19)

Since
∑N

i=1 ẽi = 0, we have
∑N

i=1 ẽ
T
i P̃D̃1θ̃2(xi, x̄) =

0. Incorporating the condition in (19) and∑N
i=1 ẽ

T
i P̃D̃1θ̃2(xi, x̄) = 0 into (16) reveals

V̇ (t, ẽi, ci j) ≤
N∑
i=1

ẽTi

([
P̃Ã + 1

2
(2γ 2P̃D̃1diag(τ1In, τ2In)

× D̃1P̃ + Zdiag(τ−1
1 In, τ−1

2 In)Z)

]
ẽi

− α

N∑
j=1

ai jM̃(ẽi − ẽ j)

⎞
⎠

+
N∑
i=1

ẽTi P̃D̃2χ̃ (di, d̄),

which, by assigning ẽ = [ẽT1 , ẽT2 , ...., ẽTN]T and using∑N
i=1 ẽ

T
i P̃D̃2χ̃ (di, d̄) = ẽT (IN ⊗ P̃D̃2)ψ̄, produces
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V̇ (t, ẽi, ci j) ≤ 1
2
ẽT (IN ⊗ [P̃Ã + ÃT P̃ + 2γ 2P̃D̃1

× diag(τ1In, τ2In)D̃1P̃
+Zdiag(τ−1

1 In, τ−1
2 In)Z]−2α(L ⊗ In)M̃)ẽ

+ ẽT (IN ⊗ P̃D̃2)ψ̄ (di, d̄), (20)

ψ̄ (di, d̄) =

⎡
⎢⎣

χ̃ (d1, d̄)
...

χ̃ (dN, d̄)

⎤
⎥⎦ . (21)

As G is connected under Assumption 2.1, ẽT (L ⊗
I)ẽ ≥ λ2ẽT ẽ holds, which along with (20) produces

V̇ (t, ẽi, ci j) ≤ 1
2
ẽT (IN ⊗ [P̃Ã + ÃT P̃

+ 2γ 2P̃D̃1diag(τ1In, τ2In)D̃1P̃
+Zdiag(τ−1

1 In, τ−1
2 In)Z−2αλ2M̃])ẽ

+ ẽT (IN ⊗ P̃D̃2)ψ̄ (di, d̄). (22)

For asymptotic consensus, we need V̇ (t, ẽi, ci j) < 0.
Under di = 0, (22) implies V̇ (t, ẽi, ci j) < 0, if

P̃Ã + ÃT P̃ + 2γ 2P̃D̃1diag(τ1In, τ2In)D̃1P̃
+Zdiag

(
τ−1
1 In, τ−1

2 In
)
Z − 2αλ2M̃ < 0. (23)

Application of the Schur complement and employing α̃ =
αλ2 ≥ 1, (14), (15) and (18) result in

⎡
⎢⎢⎢⎢⎢⎢⎣

	1 Q̄BF In 0n×n
√
2γ Q̄D1 0n×n

∗ 	2 0n×n 0n×n 0n×n
√
2γQD1

∗ ∗ −τ1In 0n×n 0n×n 0n×n
∗ ∗ ∗ −τ2In 0n×n 0n×n
∗ ∗ ∗ ∗ −τ−1

1 In 0n×n
∗ ∗ ∗ ∗ ∗ −τ−1

2 In

⎤
⎥⎥⎥⎥⎥⎥⎦

< 0.

(24)

Constraint (6) is obtained by ignoring the 4th column and
row of (24), which have zeros in non-diagonal elements,
thus completing the proof.

Remark 3.1: Several researchers have addressed the
issues concerning the consensus of Lipschitz nonlinear
multi-agents by providing non-adaptive (Ding, 2014; Du,
He, & Cheng, 2014; Li et al., 2012; Wen et al., 2014)
and adaptive (Li et al., 2013) protocols using state feed-
back. Contrastingly, the proposed approach in Theorem
3.1 is an output-feedback-based consensus approach that
is applicable when the states of the agents are not known.
Additionally to Li et al. (2012), Li et al. (2013), Wen et al.
(2014) and Ding (2014), our developed protocol for non-
linear agents is dynamic, employing two gain matrices F

and L, to attain multiple performance objectives. In con-
trast to Li et al. (2012),Wen et al. (2014), Ding (2014), and
Du et al. (2014), our methodology is adaptive and does
not require information on the algebraic connectivity of
a graph; it can, therefore, be implemented in a completely
distributed manner.

The condition in Theorem 3.1 can be used to find the
consensus protocol gain matrices F and L such that con-
sensus is achieved between the nonlinear agents in (3).
However, it is very difficult to solve the design condition
in Theorem 3.1, because (6) is not an LMI. Therefore,
Theorem 3.1 is not appropriate for the design of a suitable
consensus protocol. In the next theorem, we decouple
the nonlinear matrix inequality into two relatively sim-
ple constraints by extending the ideas of Huang, Huang,
Chen, andQian (2013) and Lin,Wang, Lee, He, and Chen
(2008) for the consensus control case such that the gain
matrices F and L can be calculated efficiently and inde-
pendently.

Theorem 3.2: A necessary and sufficient condition for
solving the constraints in Theorem 3.1 is that there exist
scalars τ1 > 0 and τ3 > 0 as well as symmetric matrices Q̄
> 0 and Q1 > 0 such that the following LMIs hold:

[
Q1A + ATQ1 − 2βCTC

√
2γQ1D1

∗ −τ3In

]
< 0, (25)⎡

⎣AS + BV + SAT +VTBT S
√
2γ τ1D1

∗ −τ1In 0n×n
∗ ∗ −τ1In

⎤
⎦ < 0. (26)

The gain matrices F and L of the proposed consensus pro-
tocol (5) can be computed by evaluating F = VS−1 and
L = −Q1

−1CT , respectively.

Proof: Necessity: Let us assign

ϒ1 =
⎡
⎣ Q̄−1 0n×n 0n×n 0n×n 0n×n
0n×n 0n×n In 0n×n 0n×n
0n×n 0n×n 0n×n In 0n×n

⎤
⎦ ,

ϒ2 =
[
0n×n In 0n×n 0n×n 0n×n
0n×n 0n×n 0n×n 0n×n In

]
.

(27)

�

By pre- and post-multiplication of ϒ1 and ϒT
1 , respec-

tively, to matrix inequality (6), we obtain

⎡
⎣ (A + BF )Q̄−1 + Q̄−1(A + BF )T Q̄−1

√
2γD1

∗ −τ1In 0n×n
∗ ∗ −τ−1

1 In

⎤
⎦ < 0.

(28)

Setting S = Q̄−1 andV = FQ̄−1 and, further, applying
congruence transformation using diag(In, In, τ1In) leads
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to (26). In the same way, multiplying (6) by ϒ2 and ϒT
2

leads to[
QA − ATQ − 2α̃CTC

√
2γQD1

∗ −τ−1
2 In

]
< 0, (29)

which further produces (25) by application of Q1 = Q,
τ3 = τ−1

2 and β = α̃.
Sufficiency: Applying congruence transformation,

using diagonal matrix diag(S−1, In, τ−1
1 In) and substitut-

ingV = FS and Q̄ = S−1 into (26), we have

	3 =
⎡
⎣	1 In

√
2γ Q̄D1

∗ −τ1In 0n×n
∗ ∗ −τ−1

1 In

⎤
⎦ < 0. (30)

Substituting 	4 = Q1A + ATQ1 − 2βCTC into (25)
implies

∏
5

=
[

	4
√
2γQ1D1

∗ −τ3In

]
< 0. (31)

For a sufficiently large scalar ε > 0, inequalities (30) and
(31) result in

[∏
3

∏T
6∏

6 ε
∏

5

]
< 0, (32)

T∏
6

=
⎡
⎣ Q̄BF 0n×n
0n×n 0n×n
0n×n 0n×n

⎤
⎦ . (33)

Let �i represents a matrix with five partitions of
Rn×n. The ith partition is an identity matrix, and all
other partitions are zero. For example, �3 = [0n×n,

0n×n, In, 0n×n, 0n×n]. Substituting (30), (31) and (33) into
(32) and employing pre- and post-multiplication with
[�T

1 , �T
4 , �T

2 , �T
3 , �T

5 ]T and its transpose, respectively, we
have

⎡
⎢⎢⎢⎢⎣

	1 Q̄BF In
√
2γ Q̄D1 0n×n

∗ ε	4 0n×n 0n×n
√
2γ εQ1D1

∗ ∗ −τ1In 0n×n 0n×n
∗ ∗ ∗ −τ−1

1 In 0n×n
∗ ∗ ∗ ∗ −ετ3In

⎤
⎥⎥⎥⎥⎦ < 0. (34)

The above resultant inequality implies (6) for Q = εQ1,
τ2 = ε−1τ−1

3 and α = εβ . This completes the proof of
Theorem 3.2.
Remark 3.2: By employing a decoupling technique, a
necessary and sufficient condition is established in Theo-
rem 3.2 in terms of LMIs for designing an adaptive pro-
tocol (5), by which the nonlinear agents (3) can achieve

consensus for all undirected graph topologies. Now, con-
sensus protocol gain matrices F and L can be straightfor-
wardly and roughly computed, which addressed the limi-
tation in Theorem 3.1. The design condition in Theorem
3.2 is easy to handle comparedwith Theorem 3.1, because
of the LMIs and the elimination of dependency between
the protocol gain matrices.

Remark 3.3: The decouplingmethodology has been effi-
ciently utilised for observer-based control of linear and
Lipschitz nonlinear systems (Huang et al., 2013; Lin et al.,
2008). Note, however, that the decoupling condition in
Theorem 3.2 is not a straightforward extension of the
observer-based linear and Lipschitz nonlinear control
results in Lin et al. (2008) or Huang et al. (2013). The
present work addresses a more complex problem of the
consensus control of multiple nonlinear agents and pro-
vides a decoupling condition for an adaptive dynamic
protocol rather than a less complicated observer-based
control scenario. Moreover, both necessity and suffi-
ciency are demonstrated in Theorem 3.2, in contrast to
the previous work on Lipschitz systems by Huang et al.
(2013).

4. Robust consensus control

Now, we develop conditions for the design of distributed
robust adaptive protocols for the attainment of consen-
sus in the Lipschitz nonlinear multi-agent systems in (3).
The objective being to attain consensus of the multi-
agents in the presence of disturbances, we define x̄ =
1
N

∑N
j=1 x j, exi = xi − x̄, ex = [eTx1, eTx2, ...., eTxN]T , d̃i =

di − 1
N

∑N
j=1 d j, and d̃ = [d̃T1 , d̃T2 , ...., d̃TN]T . The follow-

ing theorem presents conditions for minimisation of dis-
turbance effects d̃ at the error signal ex.

Theorem4.1: (a)Consider the nonlinear agents in (3) sat-
isfying Assumptions 2.1–2.2 under protocol (5). Suppose
there exist scalars α̃ ≥ 1, τ1 > 0, τ2 > 0, κ1 > 0, σ1 > 0
and σ2 > 0 as well as symmetric matrices Q̄ > 0 and Q >
0 such that for a given matrix F, the matrix inequality

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2	1

1
2 Q̄BF

1
2 Q̄D2 0n×n In 1√

2 In γ Q̄D1 0n×n

∗ 1
2	2 0n×n

1
2QD2 0n×n 0n×n 0n×n γQD1

∗ ∗ −σ1I 0n×n 0n×n 0n×n 0n×n 0n×n

∗ ∗ ∗ −σ2In 0n×n 0n×n 0n×n 0n×n

∗ ∗ ∗ ∗ −κ1In 0n×n 0n×n 0n×n

∗ ∗ ∗ ∗ ∗ −τ1In 0n×n 0n×n

∗ ∗ ∗ ∗ ∗ ∗ −τ−1
1 In 0n×n

∗ ∗ ∗ ∗ ∗ ∗ ∗ −τ−1
2 In

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0

(35)

holds, where L = −Q−1CT . Then, an asymptotic consensus
of the agents using protocol (5) can be achieved if di = 0.
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Additionally, the L2 gain from d̃ to ex remains bounded by√
κ1(σ1 + σ2).
(b) A necessary and sufficient condition for solving the

constraints in Theorem 4.1(a) is that there exist scalars
τ1 > 0, τ3 > 0 κ1 > 0, σ1 > 0 and σ3 > 0 as well as sym-
metric matrices Q̄ > 0 and Q1 > 0 such that the following
LMIs hold:

⎡
⎢⎢⎢⎢⎣

1
2 [AS + BV + SAT +VTBT ] 1

2D2 S 1√
2
S γ τ1D1

∗ −σ1In 0n×n 0n×n 0n×n
∗ ∗ −κ1In 0n×n 0n×n
∗ ∗ ∗ −τ1In 0n×n
∗ ∗ ∗ ∗ −τ1In

⎤
⎥⎥⎥⎥⎦ < 0,

(36)⎡
⎣ 1

2

[
Q1A + ATQ1 − 2α1λ2CTC

] 1
2Q1D2 γQ1D1

∗ −σ3In 0n×n
∗ ∗ −τ3In

⎤
⎦ < 0.

(37)

The gain matrices F and L of the proposed consensus pro-
tocol (5) can be computed by evaluating F = VS−1 and
L = −Q1

−1CT , respectively.

Proof: Defining

J(t, ẽi, ci j, d̃) = V̇ (t, ẽi, ci j) + κ−1
1 eTx ex − σ d̃T d̃. (38)

�

Under zero disturbance, d̃ = 0 is implied; therefore,
J(t, ẽi, ci j, d̃) < 0 ensures V̇ (t, ẽi, ci j) < 0. That is,
asymptotic consensus of the agents can be achieved under
zero disturbances through J(t, ẽi, ci j, d̃) < 0. When
di �= 0, integrating (38) under zero initial condition
reveals that ‖ex‖22 < κ1σ‖d̃‖22; that is, the L2 gain between
signals d̃ and ex is less than

√
κ1σ . Using ẽi = Tei,

e = [eT1 , . . . , eTN]T , ei = vi − v̄ , vi = [xiT , ziT ]T ,
v̄ = 1

N
∑N

j=1 v j, exi = xi − x̄, ex = [eTx1, eTx2, ...., eTxN]T ,
and x̄ = 1

N
∑N

j=1 x j and solvingmatrix algebra, we obtain

κ−1
1 eTx ex = ẽT (IN ⊗Y ) ẽ, (39)

Y =
[

κ−1
1 In 0n×n
0n×n 0n×n

]
=

[
In 0n×n

0n×n 0n×n

] [
κ−1
1 In 0n×n
0n×n κ−1

2 In

]

×
[

In 0n×n
0n×n 0n×n

]
. (40)

Partitioning the scalar σ as σ = σ1 + σ2 and
using (15), (21), d̃i = di − 1

N
∑N

j=1 d j, and d̃ =

[d̃T1 , d̃T2 , ...., d̃TN]T , we obtain

σ d̃T d̃ = ψ̄T (di, d̄) (IN ⊗W ) ψ̄ (di, d̄),

W =
[

σ1In 0n×n
0n×n σ2In

]
. (41)

Incorporating (39) and (41) into (38), we have

J(t, ẽi, ci j, d̃) = V̇ (t, ẽi, ci j) + ẽT (IN ⊗Y ) ẽ

− ψ̄T (di, d̄) (IN ⊗W ) ψ̄ (di, d̄). (42)

Substituting (22) into (42) entails

J(t, ẽi, ci j, d̃) ≤ 1
2
ẽT (IN ⊗ [P̃Ã + ÃT P̃ + 2γ 2P̃D̃1

× diag(τ1In, τ2In)D̃1P̃
+Zdiag(τ−1

1 In, τ−1
2 In)Z−2αλ2M̃])ẽ

+ ẽT (IN ⊗ P̃D̃2)ψ̄ (di, d̄)+ẽT (IN ⊗Y )ẽ
− ψ̄T (di, d̄)(IN ⊗W )ψ̄ (di, d̄), (43)

which can be rewritten

J(t, ẽi, ci j, d̃) ≤ [
ẽT ψ̄T (di, d̄)

] [
IN ⊗ 	7 IN ⊗ 1

2 P̃D̃2
∗ −IN ⊗W

]

×
[

ẽ
ψ̄ (di, d̄)

]
, (44)

	7 = 1
2

[
P̃Ã + ÃT P̃ + 2γ 2P̃D̃1diag(τ1In, τ2In)D̃1P̃

+Zdiag(τ−1
1 In, τ−1

2 In)Z − 2αλ2M̃ + 2Y
]
.

(45)

For J(t, ẽi, ci j, d̃) < 0, we require

[
IN ⊗ 	7 IN ⊗ 1

2 P̃D̃2
∗ −IN ⊗W

]
< 0. (46)

By expanding the Kronecker product and interchanging
the rows and columns with each other, constraint (46)
produces

IN ⊗
[

	7
1
2 P̃D̃2

∗ −W

]
< 0. (47)

Note that the left sides of (46) and (47) are not equal; how-
ever, inequalities (46) and (47) are equivalent, due to the
rows and columns interchange operation. Since IN > 0,
J(t, ẽi, ci j, d̃) < 0 if

[
	7

1
2 P̃D̃2

∗ −W

]
< 0. (48)
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Substituting (45), applying the Schur complement,
incorporating (14), (15), (18), (40) and (41) into (48), and
solving the matrix algebra, it is obvious that

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2	1

1
2 Q̄BF

1
2 Q̄D2 0n×n In 0n×n

1√
2
In 0n×n γ Q̄D1 0n×n

∗ 1
2	2 0n×n

1
2QD2 0n×n 0n×n 0n×n 0n×n 0n×n γQD1

∗ ∗ −σ1In 0n×n 0n×n 0n×n 0n×n 0n×n 0n×n 0n×n
∗ ∗ 0 −σ2In 0n×n 0n×n 0n×n 0n×n 0n×n 0n×n
∗ ∗ ∗ ∗ −κ1In 0n×n 0n×n 0n×n 0n×n 0n×n
∗ ∗ ∗ ∗ ∗ −κ2In 0n×n 0n×n 0n×n 0n×n
∗ ∗ ∗ ∗ ∗ ∗ −τ1In 0n×n 0n×n 0n×n
∗ ∗ ∗ ∗ ∗ ∗ ∗ −τ2In 0n×n 0n×n
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −τ−1

1 In 0n×n
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −τ−1

2 In

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0. (49)

By ignoring the sixth and eighth rows and columns, we
obtain (35). This completes the proof of Theorem 4.1(a).
The proof of Theorem4.1(b) is analogous toTheorem3.2.

Remark 4.1: When nonlinear agents are subject to exter-
nal disturbances, Theorems 3.1 and 3.2 are not suitable
for evaluating gainmatrices of the consensus protocol (5).
In Theorem 4.1(a) and 4.1(b), two design conditions are
provided to design robust adaptive fully distributed con-
sensus protocols based on nonlinear matrix inequalities
and LMIs. These consensus protocols, in contrast to the
approaches in Theorems 3.1–3.2, can deal with perturba-
tions by ensuring stability against disturbances.

By taking f (xi) = 0, the following results are obtained
from Theorem 4.1(a) and 4.1(b).

Corollary 4.1: (a) Consider the nonlinear agents in (3)
satisfying Assumptions 2.1–2.2 and f (xi) = 0 under pro-
tocol (5). Suppose there exist scalars α̃ ≥ 1, κ1 > 0, σ1 > 0
and σ2 > 0 as well as symmetric matrices Q̄ > 0 and Q >

0 such that for a given matrix F, the matrix inequality

⎡
⎢⎢⎢⎢⎣

1
2	1

1
2 Q̄BF

1
2 Q̄D2 0n×n In

∗ 1
2	2 0n×n

1
2QD2 0n×n

∗ ∗ −σ1I 0n×n 0n×n
∗ ∗ ∗ −σ2In 0n×n
∗ ∗ ∗ ∗ −κ1In

⎤
⎥⎥⎥⎥⎦ < 0 (50)

holds, where L = −Q−1CT . Then, an asymptotic consensus
of the agents using protocol (5) can be achieved if di = 0.
Additionally, the L2 gain from d̃ to ex remains bounded by√

κ1(σ1 + σ2).
(b) A necessary and sufficient condition for solving the

constraints in Corollary 4.1(a) is that there exist scalars

κ1 > 0, σ1 > 0 and σ3 > 0 as well as symmetric matrices
Q̄ > 0 and Q1 such that the following inequalities hold:

⎡
⎣ 1

2 [AS + BV + SAT +VTBT ] 1
2D2 S

∗ −σ1In 0n×n
∗ ∗ −κ1In

⎤
⎦ < 0.

(51)[ 1
2

[
Q1A + ATQ1 − 2α̃CTC

] 1
2Q1D2

∗ −σ3In

]
< 0. (52)

The gain matrices F and L of the proposed consensus pro-
tocol (5) can be computed by evaluating F = VS−1 and
L = −Q1

−1CT , respectively.

Remark 4.2: Specific results of Theorem 4.1(a) and
4.1(b) for robust adaptive distributed consensus of linear
multi-agents are provided in Corollary 4.1. It should be
noted that the robustness, requiring substantial research
attention, is an important issue for consensus control
of linear multi-agents when disturbances from several
sources are acting on all of the agents. Compared with
the approach in Li et al. (2013), the approach provided in
Corollary 4.1 is more practicable for dealing with pertur-
bations. Another distinctive feature of the proposed con-
sensus control approach, in contrast to in Li et al. (2013),
is that the inequalities (51)–(52) are shown to be both
necessary and sufficient (rather than only sufficient) for
obtainment of a solution from (50).

The results developed in the present study addresses
distributed adaptive protocol design for the nonlin-
ear multi-agent systems in the absence or presence of
disturbances for undirected communication topologies
between the multi-agents. Some exceptional works like
Chu, Cai, and Zhang (2015) and Sun, Geng, and Lv
(2016) can be found in the literature, which consid-
ers the directed communication topologies to formulate
the adaptive consensus protocols. These control method-
ologies can be applied to the undirected communica-
tion topologies as a special case and are useful to the
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control of linear or nonlinear multi-agents. However,
additional adaptation laws, parametric estimation and
nonlinearities are applied in these approaches for deal-
ing with the directed communication topologies for the
adaptive consensus control, which factor complicates
their application due to the requirement of additional
hardware and software resources. Utilisation of these
adaptive consensus control techniques to the directed
communication topologies is interesting and practicable;
however, application of such control protocols for the case
of undirected communication topologies is not recom-
mended due to the additional complexity. Consequently,
the present approach can be applied for the case of undi-
rected communication topologies with simple adaptation
law for implementation of the adaptive consensus proto-
cols. Adaptive output feedback consensus control of the
Lipschitz nonlinear multi-agent systems can be studied
in future for the case of directed communication topolo-
gies to avoid the global information of the eigenvalues of
Laplacian matrix.

5. Simulation results

Consider a network of single-link robots with revo-
lute joints (see Rajamani & Cho, 1998). The state-space
dynamics of the ith robot is described by (3) with

xi =

⎡
⎢⎢⎣
xi1
xi2
xi3
xi4

⎤
⎥⎥⎦ ,A =

⎡
⎢⎢⎢⎣

0 1 0 0
−ks
Jm

−llink
Jm

ks
Jm

0
0 0 0 1
qks
Jl

0 q−ks
Jl

0

⎤
⎥⎥⎥⎦ ,B =

⎡
⎢⎢⎣

0
kτ

Jm
0
0

⎤
⎥⎥⎦ ,

C = [
1 0 0 0

]
, f (xi) =

[
0 0 0 −q(mgh)

Jl
sin(xi3)

]T
,

D1 = I4,

where xi1 and xi2 denote the angular rotation and angu-
lar velocity of the motor, respectively, xi3 and xi4 repre-
sent the angular position and angular velocity of the link,
respectively, for the ith robot, q = 0.1 is the transforma-
tion coefficient, ks stands for the torsional spring con-
stant having a numerical value of 0.18Nmrad−1, Jm =
0.0037Kgm2 represents the inertia of the motor, Jl =
0.0093Kgm2 denotes the inertia of the link, llink = 0.31m
represents the length of the link, kτ = 0.08NmV−1 is the
amplifier gain, m = 0.139Kg is the point mass of the
arm, g = 9.8m/s2 denotes the gravity constant and h is
the centre of gravity height having a numerical value of
0.015m. For the design of the consensus protocol, γ =
0.22 is fixed. The communication between the robots is
subjected to the undirected graph topology G shown in
Figure 1.
Case 1 (D2 = 0): First, we fix thematrixD2 = 0 to verify
the proposed methodologies in Theorems 3.1–3.2 in the

1 2

4

65

3

Figure . Undirected communication topology of robots.
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Figure . Consensus between angular rotations of motors of
multi-agent robots.

absence of disturbances. Let ηi j = 1 for i, j = 1, . . . , 6,
� = [ 1 −1

−1 1 ], and ci j(0) = c ji(0) be randomly chosen in
(5). By solving LMIs (25) and (26), we obtain the follow-
ing gain matrices:

F = [−0.5718 − 0.7601 − 0.4776 − 0.9670]

L = [−2.9427 − 19.8481 − 3.4632 − 0.4772]T .

The proposed consensus control protocol (5) is applied
for the gain matrices obtained from Theorem 3.2. The
responses of the six robots are shown in Figures 2, 3,
4 and 5. The adaptive coupling weights are plotted in
Figure 6. Figures 2 and 3 demonstrate that the angular
rotations and velocities of all of the motors are converg-
ing. Similarly, as shown in Figures 4 and 5, the angu-
lar positions and velocities of all of the six links associ-
ated with the six robots acquire the same time profile as
time increases. The coupling weights converge to con-
stant values, as depicted by Figure 6. Hence, by using
the information of the outputs, the proposed distributed
adaptive control methodology in Theorem 3.2 can be
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Figure . Consensus between angular velocities of motors of
multi-agent robots.
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Figure . Consensus between angular positions of links of multi-
agent robots.
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Figure . Consensus between angular velocities of links of multi-
agent robots.
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Figure . Adaptation of coupling weights for consensus control.

applied with the undirected graph topology to attain con-
sensus between multiple nonlinear agents.

Case 2 (D2 = I4): Now we suppose that the network of
single-link flexible-joint robots is subjected to external
disturbances. To evaluate the performance of the pro-
posed consensus methodology in Theorem 4.1(a) and
4.1(b), we select D2 = I4. The disturbances are taken to
be

d1 = [
2.5 sin 30t 4 sin 38t 3 sin 25t 3.5 sin 30t

]T
,

d2 = [
5 sin 27t 3.5 sin 45t 5 sin 30t 2.5 sin 29t

]T
,

d3 = [
1.5 sin 43t 4.5 sin 27t 5 sin 20t 3 sin 25t

]T
,

d4 = [
2 sin 25t 2.5 sin 35t 3.5 sin 42t 1.5 sin 29t

]T
,

d5 = [
3.5 sin 30t 5.5 sin 49t 4.5 sin 36t 3.8 sin 28t

]T
,

d6 = [
4.5 sin 28t 3.5 sin 18t 5.5 sin 28t 2.7 sin 37.8t

]T
.

To illustrae Theorem 4.1(b), the same communica-
tion graph as shown in Figure 1 is used. Again taking
ηi j = 1 , i, j = 1, . . . , 6, � = [ 1 −1

−1 1 ] and ci j(0) = c ji(0)
and solving the LMIs (36) and (37), we obtain the gain
matrices as

F = [−28.3764 − 2.367519.5314 − 45.5614] ,

L = [−0.0408 − 0.2495 − 0.0446 − 0.0016]T .

Figure 7 shows the responses obtained using the pro-
posed robust adaptive consensus protocol. Figures 7(a),
(b), (c) and (d) plot the states trajectories of multi-agent
nonlinear robots under external disturbances; while the
coupling weights of the communication topology are
plotted in Figure 7(e). By application of the proposed
consensus protocol (5), all of the respective states of the
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Figure . Distributed robust adaptive consensus of six robots under external disturbances: (a) consensus between angular rotations of
motors, (b) consensus between angular velocities of motors, (c) consensus between angular positions of links, (d) consensus between
angular velocities of links, and (e) adaptation of coupling weights.

multi-agent systems attain to common values. Mean-
while, it is observed that robustness against disturbances
also is achieved. Moreover, the adaptive weights are con-
verging to achieve consensus against disturbances and

unknown information of the graph topology. Hence,
the proposed method developed in Theorem 4.1(a) and
4.1(b) can be effectively utilised for fully distributed
robust adaptive consensus protocol design for nonlinear
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agents under perturbations and unknown information on
the connections between agents in the case of an undi-
rected communication graph.

6. Conclusions

In this paper, the distributed adaptive consensus prob-
lem for Lipschitz nonlinear multi-agent systems was
addressed. Detailed stability analysis for consensus pro-
tocol design was carried out for the cases of the absence
and presence of external disturbances. Sufficient con-
ditions were derived in the form of LMIs for dynamic
adaptive controllers using output feedback to attain con-
sensus by employment of graph theory and decoupling
techniques. In contrast to the conventional work, the
proposed methodologies consider dynamic protocols,
fully distributed controllers due to adaptive weights, and
output-feedback-based approaches for consensus control
of Lipschitz nonlinear agents. Further, decoupling tactics
were efficiently applied to the consensus control problem
for straightforward computation of the controller gains.
Simulation tests were performed for a network of single-
link flexible-joint robots to illustrate the effectiveness of
the proposed theoretical results. Future work is obliga-
tory to investigate the consensus control of more com-
plicated nonlinearmulti-agent systems containing uncer-
tainties, external disturbances, time-delays and directed
or switching communication topologies.
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