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a b s t r a c t

The ability of the auditory cortex in the brain to distinguish different sounds is important in daily life.
This study investigated whether activations in the auditory cortex caused by different sounds can be
distinguished using functional near-infrared spectroscopy (fNIRS). The hemodynamic responses (HRs) in
both hemispheres using fNIRS were measured in 18 subjects while exposing them to four sound cate-
gories (English-speech, non-English-speech, annoying sounds, and nature sounds). As features for
classifying the different signals, the mean, slope, and skewness of the oxy-hemoglobin (HbO) signal were
used. With regard to the language-related stimuli, the HRs evoked by understandable speech (English)
were observed in a broader brain region than were those evoked by non-English speech. Also, the
magnitudes of the HbO signals evoked by English-speech were higher than those of non-English speech.
The ratio of the peak values of non-English and English speech was 72.5%. Also, the brain region evoked
by annoying sounds was wider than that by nature sounds. However, the signal strength for nature
sounds was stronger than that for annoying sounds. Finally, for brain-computer interface (BCI) purposes,
the linear discriminant analysis (LDA) and support vector machine (SVM) classifiers were applied to the
four sound categories. The overall classification performance for the left hemisphere was higher than
that for the right hemisphere. Therefore, for decoding of auditory commands, the left hemisphere is
recommended. Also, in two-class classification, the annoying vs. nature sounds comparison provides a
higher classification accuracy than the English vs. non-English speech comparison. Finally, LDA performs
better than SVM.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

The aim of this study is to identify the cortical brain regions
associated with particular sounds in everyday life. Four different
sound-categories (English-speech, non-English-speech, annoying
sounds, and nature sounds) are investigated. As a means of
neuronal activity detection, the hemodynamic responses (HRs)
(Cope et al., 1988) upon various sounds measured by functional
near-infrared spectroscopy (fNIRS) are utilized. As features of HR
signals (in distinguishing different sounds), the mean, slope and
ectroscopy; HbO, oxy-hemo-
esponse; MHR, modeled HR;
r machine
echatronics Engineering and
niversity, 2 Busandaehak-ro,
skewness of the oxy-hemoglobin (HbO) signal are used in the
classification process. Two classification techniques, namely linear
discriminant analysis (LDA) and support vector machine (SVM), are
applied.

Scientists have investigated auditory responses using various
modalities such as electroencephalography (EEG) (Herrmann et al.,
2013; Kong et al., 2014; Liu et al., 2015), functional magnetic reso-
nance imaging (fMRI) (Scarff et al., 2004b; Wong et al., 2008;
Olulade et al., 2011; Alho et al., 2014; Talavage et al., 2014;
Weichenberger et al., 2015; Butler et al., 2015; Hall and Lomber,
2015), and fNIRS (Sevy et al., 2010; Pollonini et al., 2014; Dewey
and Hartley, 2015; Murata et al., 2015). These studies investigated
the complexities in the human auditory processing that is involved
for various sound categories. An fMRI study revealed that there is a
selectivity category for specific sounds within the auditory cortex
(Sharda and Singh, 2012). Staeren et al. (2009) studied two-class
classification using SVM for four sound categories (i.e., cats, fe-
male singers, acoustic guitars, and tones). The average classification

Delta:1_given name
Delta:1_surname
mailto:kshong@pusan.ac.kr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.heares.2016.01.009&domain=pdf
www.sciencedirect.com/science/journal/03785955
http://www.elsevier.com/locate/heares
http://dx.doi.org/10.1016/j.heares.2016.01.009
http://dx.doi.org/10.1016/j.heares.2016.01.009
http://dx.doi.org/10.1016/j.heares.2016.01.009


Table 1
Audio categories (M: male, F: female).

Trial Speech hearing Sound hearing

English Non-English Annoying sound Nature sound

1 M Russian (F) Baby cry River
2 F German (F) Car alarm Forest (day time)
3 M French (F) Police siren Rain
4 MFa Bulgarian (MF*) Horror sound Jungle
5 F Italian (MF) Male scream Ocean waves
6 F Japanese (F) Nuclear alarm siren Waterfall
SQb 8.6 7.0 7.8 8.1

a MF denotes male-female conversation.
b SQ stands for the subjective sound quality of each category evaluated by 7

participants (1 worst, 10 best).
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accuracies in their two-class classification problems using fMRI for
female singers vs. acoustic guitars, female singers vs. cat sounds,
and acoustic guitars vs. cat sounds were 69, 69, and 70%, respec-
tively. Zhang et al. (2015) applied four methods (three versions of
SVM, one of LDA) to decode the brain activities evoked by the
audio-stimuli of seven sound categories: In their fMRI study, an
average classification accuracy of 40% was achieved using the
multi-class support vector machine-recursive feature elimination
method (see Fig. 6 in their paper).

The mechanical noise produced in fMRI experiments, however,
is problematic for auditory cortex studies, as it can cause interfer-
ence when measuring brain activities evoked by sounds (Scarff
et al., 2004a; Fuchino et al., 2006). For this reason, fNIRS has
several advantages over fMRI in identifying cortical areas associ-
ated with specific sounds. Beside the key advantage (the silence of
the machine), others include portability, real-time applicability,
and inexpensiveness. Additionally, fNIRS offers a good trade-off
between spatial and temporal resolution compared with both
EEG and fMRI (Hu et al., 2013). Given these advantages, fNIRS has
been applied to various applications such as neurology for stroke
recovery (Liebert et al., 2005), psychiatry (Ernst et al., 2012),
experimental psychology for language studies (Kovelman et al.,
2012), and brain-computer interface (BCI) (Hu et al., 2012;
Kamran and Hong, 2014; Naseer and Hong, 2015a, 2015b; Hong
et al., 2015). Recently, Putze et al. (2014) studied a two-class clas-
sification problem (silent movie vs. audio book) in the visual and
auditory cortices using LDA and hybrid EEG-fNIRS equipment. Their
average classification accuracies were 75.8% (using HbO) and 70.9%
(using HbR), respectively. Besides the auditory cortex, Herff et al.
(2012) investigated classification of two-class problems in the
Broca's and Wernicke's areas using fNIRS and LDA. In their work,
three cases, that is, audible-speech vs. silence, audible-speech vs.
imagery-speech, and silence vs. imagery-speech, were investigated
resulting in 68, 65, and 54% classification accuracies, respectively.

fNIRS nomally uses two wavelengths to distinguish oxy-from
deoxy hemoglobin (HbR) (or additional wavelengths to distin-
guish other chromophores such as water, lipid, etc). The measure-
ment depth of NIR light penetration is almost half the emitter-
detector distance (Stothers et al., 2008; Bhutta et al., 2015). The
optimal emitter-detector distance depends on the NIR light in-
tensity and the cortical region to be investigated (Ferrari and
Quaresima, 2012; Naseer et al., 2014). Although the maximum
light penetration depth of fNIRS is only about 4 cm, it has an
acceptable spatial resolution for HR monitoring in the auditory
cortex, considering the benefits of the absence of mechanical noises
(Kovelman et al., 2009).

Classification is a process for distinguishing data classes (Duda
et al., 2001) and involves selection of features and execution of a
classifier (Liu and Yu, 2005). As features for distinguishing different
stimuli, the mean, slope, and skewness (Tai and Chau, 2009; Naseer
and Hong, 2013; Khan et al., 2014) values of HbO signals for indi-
vidual trials over all channels are adopted. As classification algo-
rithms, the LDA and SVM techniques have been widely utilized in
various fNIRS applications involving the detection of drowsiness
(Khan and Hong, 2015), mental workload (Herff et al., 2014) and
speaking modes (i.e., audible-, silent-, and imagery-speech) (Herff
et al., 2012) as well as in a hybrid BCI application using fNIRS and
EEG (Putze et al., 2014). Whereas LDA separates the data into two or
more classes (Fukunaga, 1990), SVM maximizes the margins of the
selected hyperplanes (Burges, 1998). The usability of these algo-
rithms has beenwell established in the literature; see, for example,
relevant review papers (Lotte et al., 2007; Pereira et al., 2009) and
multi-class problems (Garrett et al., 2003; Schlogl et al., 2005).

In this study, fNIRS is utilized to investigate the HRs evoked in
hearing the audio-stimuli of four different sound-categories,
namely English-speech, non-English-speech, annoying sounds
and nature sounds, as presented in a pseudo-randomized order to
18 healthy subjects. Pre-processing techniques of noise removal
and statistical analysis are used to enhance classification accuracy.
Then, the HbO signals are decoded via the multi-class classifiers
LDA and SVM using the mean, slope, and skewness values as fea-
tures to distinguish the different sounds.
2. Materials and methods

2.1. Subjects

A total of 18 subjects (age: 28.11 ± 4.32 years; 6 females; 3 left-
handed) participated in the experiment. All of them had normal
hearing and no previous history of any neurological disorder. All
were informed about the purpose of the experiment before
providing their written informed consent. Theywere asked to avoid
body motion and to remain relaxed with their eyes closed during
the experiment. As selective attention is influential to the activation
pattern of the auditory cortex (Jancke et al., 1999), the subjects were
asked to listen to the audio-stimuli attentively and to guess, for
each stimulus, the category. After the experiment, all of the subjects
reported whether they were able to distinguish the individual
audio-stimuli accurately or not. The experimental procedure was
conducted in accordance with the ethical standards encoded in the
latest Declaration of Helsinki and the guidelines approved by the
Institutional Review Board of Pusan National University.
2.2. Audio-stimuli

The stimuli consist of 4 different sound categories including two
languages (English, non-English) and two types of sound. The
speech samples were selected based on a language proficiency test,
and the sound categories (annoying sounds, nature sounds)
selected from the youtube website (http://www.youtube.com).
Each category consists of 6 different sounds. In one experiment, the
participants were exposed to 24 audio-stimuli (10 s stimulus fol-
lowed by 20 s resting; see Table 1) presented diotically in a pseudo-
randomized order. Besides the 24 stimuli, one pre- and one post-
trial (music, Canon in D by Pachelbel) were added though not
included in the analysis. The entire fNIRS recording duration was
13 min. Regarding the speech hearing, none of the subjects
recognized any language except English. These audio-stimuli were
digitally mixed using Adobe Audition software (MP3-format file:
16-bit quantification, 44.1 kHz sampling, stereo channel) and
normalized to the same intensity level. An active noise-cancellation
earbud (Sony MDR-NC100D) was used, at the same sound-level
setting, for all of the subjects.

To evaluate the overall sound quality (i.e., accuracy, enjoyability,

http://www.youtube.com
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fidelity, etc.) in advance, a pre-questionnaire on audio-stimuli was
given to 7 persons who did not participate in the acquisition of
fNIRS data. They were asked to listen to the audio-stimuli of four
sound-categories and to score them on a scale of 1 (the worst) to 10
(the best). Additionally, for each audio-stimulus, they were
instructed to guess the specific sound as well as its category. The
last row in Table 1 shows that the average score of each category fell
within the 7.0e8.6 range, indicating the suitability of the employed
audio-stimuli for the testing purposes. Furthermore, all of the
subjects reported an ability to distinguish each sound accurately, in
every trial, for all sound-categories.

2.3. fNIRS data

All HR data from the auditory cortex were acquired with the
continuous-wave fNIRS system (DYNOT: DYnamic Near-infrared
Optical Tomography; NIRx Medical Technologies, Brooklyn, NY).
The emitter-detector distance was 23 mm (see Fig. 1), and the
sampling rate was set to 1.81 Hz. The data were measured simul-
taneously at two wavelengths (760 and 830 nm) for two 22-
channel sets, that is, one set (i.e., channels 1e22) for the left
hemisphere and another (i.e., channels 23e44) for the right
hemisphere, including the auditory cortex, respectively. The optode
configuration in Fig.1 shows two sets of 3� 5 arrays (8 emitters and
7 detectors), one in each hemisphere. The optodes in the left
hemisphere were positioned to cover the Broca's area and Wer-
nicke's area as well as the auditory cortex. Accordingly, Chs. 16 and
38 corresponded to the T3 and T4 locations, respectively, in the
international 10e20 system. Finally, during the experiment, all of
the lights in the room were switched off to minimize signal
Fig. 1. Optodes configuration: Numbers represent the measurement channels. The
channel number 16 (and 38) coincide with the T3 (and T4) location in the International
10e20 System (Santosa et al., 2014).
contamination.
The measured intensity data of the two wavelengths were

converted to relative HbO and HbR concentration changes using the
modified BeereLambert law (Cope et al., 1988; Kamran and Hong,
2013; Hong and Nguyen, 2014). Subsequently, the open-source
software NIRS-SPM (Ye et al., 2009) was utilized in the authors'
own Matlab™ (Math-works, Natick, MA) code. In this study, con-
stant values of differential path-length factor (i.e., d ¼ 7.15 for
l ¼ 760 nm and d ¼ 5.98 for l ¼ 830 nm) were used for all of the
channels. Since HbO signals are more direct to the given stimuli
than HbR signals (i.e., the signal-to-noise ratio of HbO is higher than
that of HbR) (Wolf et al., 2002; Schecklmann et al., 2008; Holper
et al., 2009), the mean, slope, and skewness only of the HbO con-
centration changes were used in the subsequent analysis.

2.4. Pre-processing

Pre-processing of fNIRS data is an important step, the purpose of
which is to remove physiological noises and to minimize signal
variations. It can be split into two stages: spectral filtering and
scatter correction (Rinnan et al., 2009). Spectral filtering removes
both additive and multiplicative effects in the spectra, after which
scatter correction (e.g., normalization or rescaling) reduces the
variability among samples due to scatter. In this study, filtering,
detrending, and rescaling were applied in the pre-processing pro-
cess. Since an auditory stimulus of 10 s was followed by a 20 s
resting period, the stimulation frequency was approximately
0.033 Hz (i.e., 1/30). First, the physiological noises of respiratory
(about 0.3 Hz) and cardiac signals (about 1 Hz) contained in the HRs
were removed using a 0.15 Hz low-pass filter (Santosa et al., 2013).
Second, the trend of the signal (e.g., a low-frequency drift) was
removed from the time-series data by the detrending technique
(Tanabe et al., 2002), according to which the detrend function in
Matlab™ subtracts the best fit line (or mean) from the data. In the
third step, due to the wide variation in the classification stage, the
rescaling method (Naseer and Hong, 2015a, 2015b) by which the
Mat2gray function in Matlab™ re-scales the data within the 0e1
range was applied.

2.5. Activation maps

Verification of cortical activation is the most important step in
fNIRS data analysis. Hu et al. (2010) showed that activation can be
estimated by fitting the measured HR to a regression model using
the recursive least squares algorithm. The modeled (or ideal) HR is
that which is expected for a given stimulus: In Fig. 2, it is repre-
sented by the dotted (red) line computed by convolving the
Fig. 2. Features defined for classification: Mean, slope, and skewness values of the HbO
signal (solid blue curve). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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stimulus pattern (i.e., 10 s activation and 20 s rest) and the ca-
nonical HR function (HRF) available in the SPM 8 software (Well-
come Trust Center for Neuroimaging, London, UK) (http://www.fil.
ion.ucl.ac.uk/spm/software/spm8/). The profile of the canonical
HRF used in this study is as follows. Delay of response from onset:
6 s, delay of undershoot: 16 s, dispersion of response: 1 s, dispersion
of undershoot: 1 s, ratio of peak to undershoot: 6, length of kernel:
21 s, see (Hong and Nguyen, 2014) for the impulse HRF.

The t-value is defined as the ratio of the weighting coefficient to
the modeled HR (in the process of fitting the measured stimulus-
evoked HR to the modeled one), and its standard error (Friston
et al., 2008). A high t-value indicates that the signal is highly
correlated with the modeled HR. In this study, the t-values were
calculated for individual trials using the robustfit function available
in Matlab™, which has been described in detail in (Santosa et al.,
2014; see Eqs. (3)e(5)). Specifically, the HbO signal in an experi-
ment (i.e., 1320 data points for 24 trials) was segmented to 55 data
points per trial. As seen in Figs. 3A and 4A, the obtained t-values
were displayed as a map in order to illustrate the activation in the
covered brain region; the intermediate values were interpolated
with the Matlab function interp2 using the 22 t-values from 22
channels. On these t-maps, the numbers, the color in a pixel, and
the color bar in the lower-right corner indicate the channel
numbers, signal intensity, and color scale of the t-value of that
pixel, respectively. Fig. 3 is an activation map of Sub. 11 (chosen
because he had no hair)'s HbO data for four audio-stimuli in the left
and right hemispheres, each t-value being the average of six trials
for each sound category. Fig. 4 shows the activation map averaged
over the 18 subjects, thus demonstrating the overall trends.
2.6. Regions of interest

The regions-of-interest (ROIs) of four audio-stimuli are investi-
gated: The ROIs denote the brain areas where the t-values are
higher than the critical t-value (tcrt). In this study, tcrt was set as
1.6736, as computed from the degree of freedom of the data
(N e 1 ¼ 54) and the statistical significance level (a ¼ 0.05 for one-
Fig. 3. HbO in the left and right auditory cortices evoked by four different sound-catego
tailed test). The ROIs were found to differ for the respective sound
categories. The signals from each ROI were used for further analysis
in feature selection and classification, because using the signals
only from the associated ROI (rather than from all of the channels)
had improved the classification accuracy. In the case of Subject 11,
Chs. 1, 2, 5, 6, 8 (in the left hemisphere) and 24, 27, 28, 29, 33, 36, 37
(in the right hemisphere) for English-speech hearing, and Chs. 9,10,
22 (in the left hemisphere) and 27, 41 (in the right hemisphere) for
non-English-speech hearing, showed that t > tcrt. These channels
are marked as crosses, plus-signs, triangles and circles, respectively,
in Fig. 3B. To observe the trends over 18 subjects, the respective
signals were averaged (see Fig. 4A), the ROIs from which are
identified in Fig. 4B. If the number of channels showing t > tcrt is less
than two (i.e., the number of channels in an ROI is too small), more
than two channels with high t-values can be included. Fortunately,
such a case was not encountered in our experiment.
2.7. Feature selection and classification

The signals from the ROI of a given sound stimulus were aver-
aged first. Then, the mean, slope, and skewness values of the
averaged HbO signal were used as features for classification. The
mean (for 0.5e15 s) differentiates the occurrence of an activation
from the resting state; the slope (during 0.5e10 s) indicates the
speediness of the occurrence of the response; the skewness is a
measure of the asymmetry of a signal in terms of the probability
distribution around its mean relative to a normal distribution, and
therefore can differentiate the shapes of HbO signals. For example,
from the solid (blue) curve in Fig. 2 (which is the averaged HbO of
the 18 subjects' English-speech hearing in the left hemisphere), the
mean, the slope, and the skewness values are 0.0517, 0.0037,
and �0.6790, respectively. In this study, the mean, polyfit, and
skewness functions available in Matlab™ were used.

For classification, we used the LDA and SVM classifiers to verify
the individual HbO signals. The two classifiers were compared in
order to ensure that the HR can be classified from different sound-
categories. The classify and multisvm functions available in
ries (Subject 11): Active channels appear differently upon different auditory stimuli.
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Fig. 4. The averaged HbO (over 18 subjects) in the left and right auditory cortices upon four different sound-categories: The ROIs for individual categories are specified.
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Matlab™were used as the LDA and SVM classifiers, respectively. To
determine the classification accuracy, we used 4-runs of 4-fold
cross-validation. This method entails the following steps: i)
randomly break the data into 4 sets (i.e., 24/4 ¼ 6); ii) train on 3
datasets and test on 1; iii) repeat 4 times and take the mean ac-
curacy. We ran the cross-validation two times to obtain the average
and standard deviation for every subject.

3. Results

Fig. 5 presents Subject 11's three-dimensional (3D) plot of the
mean, slope, and skewness values of HbO (x-, y-, and z-axes,
respectively) from the left and right hemispheres. It displays data
for a total of 24 trials (six trials for each of four categories), which
are marked by crosses (�, red) for English, plus-signs (þ, black) for
non-English, upward-pointing triangles (D, blue) for annoying
sounds, and circles (B, green) for nature sounds. It can be seen that
the sets of nature sounds and annoying sounds are clearly distin-
guishable due to the difference in their mean values.

Fig. 6 compares the average HbO signals and the standard de-
viations over the 18 subjects for English and non-English hearing in
the left and right hemispheres, while Fig. 7 compares those of the
annoying and nature sounds. The averaging was performed on 108
data points (i.e., 18 subjects� 6 trials) for each category. The shaded
areas along the mean values represent their standard errors. The
numbers inside Figs. 6 and 7 indicate the peak values of the indi-
vidual HbO responses. For example, 0.1890 and 0.0888 in Fig. 7 are
the peak values for nature and annoying sounds in the left
hemisphere, respectively.
To determine whether the classification accuracies were

consistent across the subjects, a cross-subject analysis was per-
formed. Fig. 8 shows the individual subjects' classification accu-
racies for the four audio categories using LDA and SVM in the left
and right hemispheres. More specifically, it compares the means of
the classification accuracies for the individual subjects with their
standard deviations, while Fig. 9 depicts those of the two-class
classification problems. In Figs. 8 and 9, the first bar (wide down-
ward diagonal), second bar (dashed horizontal), third bar (light
horizontal), and fourth bar (wide upward diagonal) indicate the
classification accuracies using LDA (green color) and SVM (red co-
lor) for the left and right hemispheres, respectively, where the
chance level is indicated by the horizontal (blue) line. As for the
results variance across the subjects, Subject 5 showed the lowest
accuracies. The last bars (Avrg) in both figures are the averages over
the 18 subjects: using LDA, the accuracies for four-class classifica-
tion were 46.17 ± 6.25% (left) and 40.28 ± 6.00 (right), and using
SVM theywere 38.35 ± 5.39% (left) and 36.99 ± 4.23% (right). It was
found that the LDA accuracies were higher than those of SVM, and
that the accuracies in the left hemisphere were higher in general
than those in the right hemisphere.

Next, to investigate language-related classification capability,
two-class classification problems were performed. Fig. 9A and B
plot the classification results for speech hearing (English vs. Non-
English) and sound hearing (annoying sounds vs. natural sounds),
respectively. In both cases, as can be seen, the classification per-
formance was significantly above the chance (i.e., 50%) level. As



Fig. 5. Example of 3D scatter plot of the mean, slope, and skewness values of the HbOs upon 24 trials (Subject 11).

Fig. 6. The averaged HbOs (over 18 subjects) and their standard deviations for English and non-English speech.
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shown in Fig. 9A (speech hearing), the average classification accu-
racies using LDAwere 71.03 ± 8.72% (left) and 70.03 ± 8.97% (right)
and those by SVM, 68.18 ± 8.30% (left) and 68.07 ± 7.59% (right). As
shown in Fig. 9B (sound hearing), the average classification accu-
racies using LDAwere 74.97± 11.74% (left) and 71.80± 9.89% (right),
and those by SVM, 72.34 ± 9.72% (left) and 72.15 ± 9.77% (right),
respectively. The overall-averaged classification accuracies were
70.53 ± 8.79% (LDA) and 68.11 ± 7.90% (SVM) for speech hearing
and 73.39 ± 10.82% (LDA) and 72.24 ± 9.61% (SVM) for sound
hearing.

4. Discussion

The authors used the fNIRS technique because of its crucial
advantages for analysis of sound-evoked brain activation: non-
invasiveness and silence. Along with this, fNIRS has a high poten-
tial as a neuroimaging tool, because it can demonstrate real-time
imaging in everyday life. To compare brain activities, two types of
information (spatial and temporal) were examined. The t-map (see
Figs. 3 and 4) depicts the spatial distribution of activation in terms
of the correlation level of the measured HR with the expected HR
for a given stimulus. However, it cannot reveal the signal strength
in the given location. Therefore, to determine the intensity of brain
activity, the temporal magnitude of the HR (Figs. 6 and 7) should be
examined together with the activation map. In this study, four
audio categories (English-speech, non-English-speech, annoying
sounds, and nature sounds) were investigated. The detection area
in the left hemisphere (see Fig. 1) includes the Wernicke's and
Broca's areas, both of which are related to language processing (see
Fig. 4B). The obtained results will be discussed in two aspects:
asymmetry and classification.

Asymmetry in the functional responses in the left and right
hemispheres was observed (Toga and Thompson, 2003). The left
hemisphere is known to be responsible for language, math, and



Fig. 7. The averaged HbOs (over 18 subjects) and their standard deviations for annoying and nature sounds.

Fig. 8. Classification accuracies of 4 sound-categories (from the left and right hemispheres) and the overall average over 18 subjects: LDA vs. SVM (the bar on top represents the
standard deviation of the obtained mean value).
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logic, while the right hemisphere is responsible for spatial abilities,
visual imagery, music, etc. Particularly, the auditory cortex in the
left hemisphere is known to be dominant in the hearing of pho-
nemic (~12e50 Hz) transitions in speech, while right lateralization
occurs in hearing the syllabic (~3e7 Hz) transition in speech
(Poelmans et al., 2012).

Comparing the first and second rows in Fig. 4A, it can be seen
that the brain is more activated when hearing understandable
language (English) than non-understandable language (non-En-
glish). The same phenomenon was found in Fig. 6, in which the
peak values of the HRwhen hearing English-speech are higher than
those when hearing non-English speech in both hemispheres. If the
peak magnitudes are compared, the percentile ratio of the peak
value of non-English hearing to that of English hearing is 85% (i.e.,
01568/0.1844) in the left hemisphere and is 60% (i.e., 0.1223/
0.2022) in the right hemisphere.
In the presence of left lateralization in language processing, such

a phenomenon did not occur in our case (i.e., in English-speech
hearing). As seen in the first row of Fig. 4A, the color in the right
side is more red (i.e., highly correlated) when hearing English-
speech. This means that in this case, right lateralization exists.
This is seen also in Fig. 6: when hearing English-speech, the peak
value on the right side (i.e., 0.2022) was higher than that on the left
side (i.e., 0.1844). The authors believe that this was due to the fact
that segmented speech-stimuli data were used in the experiment
(i.e., 10 s speech and 20 s rest; 0.033 Hz). Also the dominant fre-
quency in the speech stimuli was close to 4 Hz, which belongs to
the frequency band of syllables in speech. This might be congruent
with Abrams et al. (2008) in that right lateralization occurs for slow
and syllabic-rate modulation in the auditory cortex.



Fig. 9. Classification accuracies of two sound-categories: (a) Speech hearing (English vs. non-English), (b) sound hearing (annoying vs. natural).
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Asymmetry in hearing non-language sounds was observed as
well. First, as seen in Fig. 4AeC, annoying sounds prevailed in a
broader brain region than did nature sounds. Comparing the third
and fourth rows in Fig. 4, the color of the t-map for annoying
sounds is more yellow throughout the region than that of nature
sounds. Additionally, since the signal strength cannot be seen in
this t-map, the temporal HR data of both sound categories were
examined as well: In Fig. 7, the peak values of the HRs for annoying
sounds are 0.0888 (left) and 0.1006 (right), whereas those of nature
sounds are 0.1890 (left) and 0.1702 (right). This reflects the fact that
humans respond more profoundly to nature sounds than to
annoying sounds. This result is congruent with Plichta et al. (2011)
in that the HR to pleasant sounds increases as compared with that
to unpleasant sounds.

The average classification accuracies using the HbO signals from
the left hemisphere were higher than those from the right hemi-
sphere (see Table 2). In the two-class classification problems, the
average performance in the left hemisphere was 73.0 ± 10.23%,
while that in the right hemisphere was 70.9 ± 11.05%. In the four-
class cases, the accuracy in the left hemisphere was
46.17 ± 6.25%, while that in the right hemisphere was 40.28 ± 6.0%.
Therefore, if only one side of the brain is to be chosen for BCI
purposes, the left hemisphere is recommended.

Regarding the classifiers' performances (see Fig. 9), the overall
two-class classification accuracies of LDA were 70.53 ± 8.79%
(speech hearing) and 73.39 ± 10.82% (sound hearing), whereas
those of SVM were 68.11 ± 7.90% (speech hearing) and
72.24 ± 9.61% (sound hearing), respectively. Therefore, it was
concluded that LDA performs better than SVM in classifying the HR
signals evoked by audio stimuli.

Variations in signal strength and, therefore, classification accu-
racy are due to several factors. i) Skull and scalp thicknesses
(Lynnerup et al., 2005) and hair darkness. In the present study for
example, the subject with the best experimental conditions was
Subject 11, who had no hair; the data for Subject 11, therefore, were
used in illustrating the activationmap and scatter plot in Figs. 3 and



Table 2
Comparison of classification accuracies.

Left (%) Right (%) Average (%)

A) LDA
Two-class classification Speech 71.03 ± 8.72 70.03 ± 8.97 70.53 ± 8.79

Sound 74.97 ± 11.74 71.80 ± 13.13 73.39 ± 10.82
Four-class classification 46.17 ± 6.25 40.28 ± 6.00 43.22 ± 6.72

B) SVM
Two-class classification Speech 68.16 ± 8.30 68.07 ± 7.59 68.11 ± 7.90

Sound 72.34 ± 9.72 72.15 ± 9.77 72.24 ± 9.61
Four-class classification 38.35 ± 5.39 36.99 ± 4.23 37.67 ± 4.82
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5, respectively. ii) A subject's concentration level. In the current
experiment, some of the participants reported difficulty in focusing
due to fatigue; minimizing such subject-wise variation, then, is
another important factor to consider. iii) The size of a data set. A
larger amount of data for cross-validation would yield a better
result, but it would also consume more experimental time, thus
leading to subject fatigue. It should be noted too, that to make the
HR return to the baseline, at least 20 s is needed. Finally, a possible
reduction of variation in classification accuracy can be accom-
plished by using the optimum activation period to increase the
number of trials with good environmental conditions.

5. Conclusions

This study investigated the use of functional near-infrared
spectroscopy to decode the hemodynamic responses evoked by
audio-stimuli from four different sound categories (English-speech,
non-English-speech, annoying sounds, and nature sounds). To ac-
count for and handle the large variations of data in the multi-class
offline classification problem, three data processing steps including
pre-processing, feature-selection, and classifier selection were
examined. As features for classification, the mean, slope, and
skewness values of HbO were used. Interestingly, the classification
accuracies were higher in the left hemisphere than in the right
hemisphere. Further, we demonstrated that the HR differs from
those different sound-categories, which fact reflects the reported
hemispheric lateralization in the auditory cortex areas. Finally, we
concluded that the fNIRS signals of the HR, as evoked by audio-
stimuli representing the four different sound-categories, are
distinguishable. The overall results suggest that it is possible to
decode the responses to different sound-categories in the auditory
cortex areas.

Conflicts of interest

There are no conflicts of interest.

Acknowledgments

This work was supported by the National Research Foundation
of Korea under the auspices of the Ministry of Science, ICT and
Future Planning, Korea (grant no. NRF-2014-R1A2A1A10049727).
The authors are grateful for the anonymous reviewers andMelissa J.
Hong at FIRST 5 Santa Clara County, 4000 Moorpark Ave., San Jose,
CA 95117, USA, for their constructive comments on the manuscript.

References

Abrams, D.A., Nicol, T., Zecker, S., Kraus, N., 2008. Right-hemisphere auditory cortex
is dominant for coding syllable patterns in speech. J. Neurosci. 28, 3958e3965.

Alho, K., Rinne, T., Herron, T.J., Woods, D.L., 2014. Stimulus-dependent activations
and attention-related modulations in the auditory cortex: a meta-analysis of
fMRI studies. Hear. Res. 307, 29e41.
Bhutta, M.R., Hong, M.J., Kim, Y.-H., Hong, K.-S., 2015. Single-trial lie detection using
a combined fNIRS-polygraph system. Front. Psychol. 6, 709.

Burges, C.J.C., 1998. A tutorial on support vector machines for pattern recognition.
Data Min. Knowl. Disc. 2, 121e167.

Butler, B.E., Hall, A.J., Lomber, S.G., 2015. High-field functional imaging of pitch
processing in auditory cortex of the cat. PLoS One 10, e0134362.

Cope, M., Delpy, D.T., Reynolds, E.O., Wray, S., Wyatt, J., van der Zee, P., 1988.
Methods of quantitating cerebral near infrared spectroscopy data. Adv. Exp.
Med. Biol. 215, 183e189.

Dewey, R.S., Hartley, D.E.H., 2015. Cortical cross-modal plasticity following deafness
measured using functional near-infrared spectroscopy. Hear. Res. 325, 55e63.

Duda, R.O., Hart, P.E., Stork, D.G., 2001. Pattern Classification, second ed. Wiley-
Interscience, New York.

Ernst, L.H., Schneider, S., Ehlis, A.C., Fallgatter, A.J., 2012. Functional near infrared
spectroscopy in psychiatry: a critical review. J. Near Infrared Spec. 20, 93e105.

Ferrari, M., Quaresima, V., 2012. A brief review on the history of human functional
near-infrared spectroscopy (fNIRS) development and fields of application.
NeuroImage 63, 921e935.

Friston, K.J., Ashburner, J.T., Kiebel, K.E., Nichols, T.E., Penny, W.D., 2008. Statistical
parametric mapping: the analysis of functional brain images. Academic Press,
San Diego.

Fuchino, Y., Sato, H., Maki, A., Yamamoto, Y., Katura, T., Obata, A., Koizumi, H.,
Yoro, T., 2006. Effect of fMRI acoustic noise on sensorimotor activation exam-
ined using optical topography. NeuroImage 32, 771e777.

Fukunaga, K., 1990. Introduction to Statistical Pattern Recognition, second ed. Ac-
ademic Press, New York.

Garrett, D., Peterson, D.A., Anderson, C.W., Thaut, M.H., 2003. Comparison of linear,
nonlinear, and feature selection methods for EEG signal classification. IEEE
Trans. Neur. Sys. Rehab. 11, 141e144.

Hall, A.J., Lomber, S.G., 2015. High-field fMRI reveals tonotopically-organized and
core auditory cortex in the cat. Hear. Res. 325, 1e11.

Herff, C., Heger, D., Fortmann, O., Hennrich, J., Putze, F., Schultz, T., 2014. Mental
workload during n-back task-quantified in the prefrontal cortex using fNIRS.
Front. Hum. Neurosci. 7, 935.

Herff, C., Heger, D., Putze, F., Guan, C.T., Schultz, T., 2012. Cross-subject classification
of speaking modes using fNIRS. Neural Inf. Process. 7664, 417e424.

Herrmann, B., Henry, M.J., Scharinger, M., Obleser, J., 2013. Auditory filter width
affects response magnitude but not frequency specificity in auditory cortex.
Hear. Res. 304, 128e136.

Holper, L., Biallas, M., Wolf, M., 2009. Task complexity relates to activation of
cortical motor areas during uni- and bimanual performance: a functional NIRS
study. NeuroImage 46, 1105e1113.

Hong, K.-S., Naseer, N., Kim, Y.-H., 2015. Classification of prefrontal and motor cortex
signals for three-class fNIRS-BCI. Neurosci. Lett. 587, 87e92.

Hong, K.-S., Nguyen, H.-D., 2014. State-space models of impulse hemodynamic re-
sponses over motor, somatosensory, and visual cortices. Biomed. Opt. Express 5,
1778e1798.

Hu, X.-S., Hong, K.-S., Ge, S.S., Jeong, M.-Y., 2010. Kalman estimator- and general
linear model-based on-line brain activation mapping by near-infrared spec-
troscopy. Biomed. Eng. Online 9, 82.

Hu, X.-S., Hong, K.-S., Ge, S.S., 2012. fNIRS-based online deception decoding.
J. Neural Eng. 9, 026012.

Hu, X.-S., Hong, K.-S., Ge, S.S., 2013. Reduction of trial-to-trial variability in func-
tional near-infrared spectroscopy signals by accounting for resting-state func-
tional connectivity. J. Biomed. Opt. 18, 017003.

Jancke, L., Mirzazade, S., Shah, N.J., 1999. Attention modulates activity in the pri-
mary and the secondary auditory cortex: a functional magnetic resonance
imaging study in human subjects. Neurosci. Lett. 266, 125e128.

Kamran, M.A., Hong, K.-S., 2013. Linear parameter-varying model and adaptive
filtering technique for detecting neuronal activities: an fNIRS study. J. Neural
Eng. 10, 056002.

Kamran, M.A., Hong, K.-S., 2014. Reduction of physiological effects in fNIRS wave-
forms for efficient brain-state decoding. Neurosci. Lett. 580, 130e136.

Khan, M.J., Hong, K.-S., 2015. Passive BCI based on drowsiness detection: an fNIRS
study. Biomed. Opt. Express 6, 4063e4078.

Khan, M.J., Hong, M.J., Hong, K.-S., 2014. Decoding of four movement directions
using hybrid NIRS-EEG brain-computer interface. Front. Hum. Neurosci. 8, 244.

http://refhub.elsevier.com/S0378-5955(15)30012-5/sref1
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref1
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref1
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref2
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref2
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref2
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref2
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref3
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref3
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref4
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref4
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref4
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref5
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref5
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref6
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref6
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref6
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref6
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref7
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref7
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref7
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref8
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref8
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref9
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref9
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref9
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref10
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref10
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref10
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref10
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref11
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref11
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref11
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref12
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref12
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref12
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref12
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref13
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref13
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref14
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref14
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref14
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref14
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref15
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref15
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref15
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref16
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref16
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref16
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref17
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref17
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref17
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref18
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref18
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref18
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref18
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref19
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref19
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref19
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref19
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref20
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref20
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref20
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref21
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref21
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref21
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref21
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref22
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref22
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref22
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref23
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref23
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref24
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref24
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref24
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref25
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref25
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref25
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref25
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref26
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref26
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref26
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref27
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref27
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref27
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref28
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref28
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref28
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref29
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref29


K.-S. Hong, H. Santosa / Hearing Research 333 (2016) 157e166166
Kong, Y.Y., Mullangi, A., Ding, N., 2014. Differential modulation of auditory re-
sponses to attended and unattended speech in different listening conditions.
Hear. Res. 316, 73e81.

Kovelman, I., Mascho, K., Millott, L., Mastic, A., Moiseff, B., Shalinsky, M.H., 2012. At
the rhythm of language: brain bases of language-related frequency perception
in children. NeuroImage 60, 673e682.

Kovelman, I., Shalinsky, M.H., White, K.S., Schmitt, S.N., Berens, M.S., Paymer, N.,
Petitto, L.A., 2009. Dual language use in sign-speech bimodal bilinguals: fNIRS
brain-imaging evidence. Brain Lang. 109, 112e123.

Liebert, A., Wabnitz, H., Steinbrink, J., Moller, M., Macdonald, R., Rinneberg, H.,
Villringer, A., Obrig, H., 2005. Bed-side assessment of cerebral perfusion in
stroke patients based on optical monitoring of a dye bolus by time-resolved
diffuse reflectance. NeuroImage 24, 426e435.

Liu, F., Maggu, A.R., Lau, J.C.Y., Wong, P.C.M., 2015. Brainstem encoding of speech and
musical stimuli in congenital amusia: evidence from Cantonese speakers. Front.
Hum. Neurosci. 8, 1029.

Liu, H., Yu, L., 2005. Toward integrating feature selection algorithms for classifica-
tion and clustering. IEEE Trans. Knowl. Data Eng. 17, 491e502.

Lotte, F., Congedo, M., Lecuyer, A., Lamarche, F., Arnaldi, B., 2007. A review of
classification algorithms for EEG-based brain-computer interfaces. J. Neural
Eng. 4, R1eR13.

Lynnerup, N., Astrup, J.G., Sejrsen, B., 2005. Thickness of the human cranial diploe in
relation to age, sex and general body build. Head. Face. Med. 1, 13.

Murata, A., Park, J., Kovelman, I., Hu, X.-S., 2015. Culturally non-preferred cognitive
tasks require compensatory attention: a functional near infrared spectroscopy
(fNIRS) investigation. Cult. Brain 3, 53e67.

Naseer, N., Hong, K.-S., 2015a. Decoding answers to four-choice questions using
functional near-infrared spectroscopy. J. Near Infrared Spec. 23, 23e31.

Naseer, N., Hong, K.-S., 2013. Classification of functional near-infrared spectroscopy
signals corresponding to the right- and left-wrist motor imagery for develop-
ment of a brain-computer interface. Neurosci. Lett. 553, 84e89.

Naseer, N., Hong, K.S., 2015b. fNIRS-based brain-computer interfaces: a review.
Front. Hum. Neurosci. 9, 3.

Naseer, N., Hong, M.J., Hong, K.-S., 2014. Online binary decision decoding using
functional near-infrared spectroscopy for the development of brain-computer
interface. Exp. Brain Res. 232, 555e564.

Olulade, O., Hu, S., Gonzalez-Castillo, J., Tamer, G.G., Luh, W.M., Ulmer, J.L.,
Talavage, T.M., 2011. Assessment of temporal state-dependent interactions be-
tween auditory fMRI responses to desired and undesired acoustic sources. Hear.
Res. 277, 67e77.

Pereira, F., Mitchell, T., Botvinick, M., 2009. Machine learning classifiers and fMRI: a
tutorial overview. NeuroImage 45, S199eS209.

Plichta, M.M., Gerdes, A.B.M., Alpers, G.W., Harnisch, W., Brill, S., Wieser, M.J.,
Fallgatter, A.J., 2011. Auditory cortex activation is modulated by emotion: a
functional near-infrared spectroscopy (fNIRS) study. NeuroImage 55,
1200e1207.

Pollonini, L., Olds, C., Abaya, H., Bortfeld, H., Beauchamp, M.S., Oghalai, J.S., 2014.
Auditory cortex activation to natural speech and simulated cochlear implant
speech measured with functional near-infrared spectroscopy. Hear. Res. 309,
84e93.

Poelmans, H., Luts, H., Vandermosten, M., Ghesquiere, P., Wouters, J., 2012. Hemi-
spheric asymmetry of auditory steady-state responses to monaural and diotic
stimulation. Jaro J. Assoc. Res. Oto. 13, 867e876.

Putze, F., Hesslinger, S., Tse, C.-Y., Huang, Y.Y., Herff, C., Guan, C.T., Schultz, T., 2014.
Hybrid fNIRS-EEG based classification of auditory and visual perception
processes. Front. Hum. Neurosci. 8, 373.
Rinnan, A., van den Berg, F., Engelsen, S.B., 2009. Review of the most common pre-

processing techniques for near-infrared spectra. Trac-Trend Anal. Chem. 28,
1201e1222.

Santosa, H., Hong, M.J., Hong, K.-S., 2014. Lateralization of music processing audi-
tory cortex: an fNIRS study. Front. Behav. Neurosci. 8, 418.

Santosa, H., Hong, M.J., Kim, S.P., Hong, K.-S., 2013. Noise reduction in functional
near-infrared spectroscopy signals by independent component analysis. Rev.
Sci. Instrum. 84, 073106.

Scarff, C.J., Dort, J.C., Eggermont, J.J., Goodyear, B.G., 2004a. The effect of MR scanner
noise on auditory cortex activity using fMRI. Hum. Brain Mapp. 22, 341e349.

Scarff, C.J., Reynolds, A., Goodyear, B.G., Ponton, C.W., Dort, J.C., Eggermont, J.J.,
2004b. Simultaneous 3-T fMRI and high-density recording of human auditory
evoked potentials. NeuroImage 23, 1129e1142.

Schecklmann, M., Ehlis, A.C., Plichta, M.M., Fallgatter, A.J., 2008. Functional near-
infrared spectroscopy: a long-term reliable tool for measuring brain activity
during verbal fluency. NeuroImage 43, 147e155.

Schlogl, A., Lee, F., Bischof, H., Pfurtscheller, G., 2005. Characterization of four-class
motor imagery EEG data for the BCI-competition 2005. J. Neural Eng. 2,
L14eL22.

Sevy, A.B.G., Bortfeld, H., Huppert, T.J., Beauchamp, M.S., Tonini, R.E., Oghalai, J.S.,
2010. Neuroimaging with near-infrared spectroscopy demonstrates speech-
evoked activity in the auditory cortex of deaf children following cochlear im-
plantation. Hear. Res. 270, 39e47.

Sharda, M., Singh, N.C., 2012. Auditory perception of natural sound categories - an
fMRI study. Neuroscience 214, 49e58.

Staeren, N., Renvall, H., De Martino, F., Goebel, R., Formisano, E., 2009. Sound cat-
egories are represented as distributed patterns in the human auditory cortex.
Curr. Biol. 19, 498e502.

Stothers, L., Shadgan, B., Macnab, A., 2008. Urological applications of near infrared
spectroscopy. Can. J. Urol. 15, 4399e4409.

Tai, K., Chau, T., 2009. Single-trial classification of NIRS signals during emotional
induction tasks: towards a corporeal machine interface. J. Neuroeng. Rehabil. 6,
39.

Talavage, T.M., Gonzalez-Castillo, J., Scott, S.K., 2014. Auditory neuroimaging with
fMRI and PET. Hear. Res. 307, 4e15.

Tanabe, J., Miller, D., Tregellas, J., Freedman, R., Meyer, F.G., 2002. Comparison of
detrending methods for optimal fMRI preprocessing. NeuroImage 15, 902e907.

Toga, A.W., Thompson, P.M., 2003. Mapping brain asymmetry. Nat. Rev. Neurosci. 4,
37e48.

Weichenberger, M., Kuhler, R., Bauer, M., Hensel, J., Bruhl, R., Ihlenfeld, A.,
Ittermann, B., Gallinant, J., Koch, C., Sander, T., Kuhn, S., 2015. Brief bursts of
infrasound may improve cognitive function e an fMRI study. Hear. Res. 328,
87e93.

Wolf, M., Wolf, U., Toronov, V., Michalos, A., Paunescu, L.A., Choi, J.H., Gratton, E.,
2002. Different time evolution of oxyhemoglobin and deoxyhemoglobin con-
centration changes in the visual and motor cortices during functional stimu-
lation: a near-infrared spectroscopy study. NeuroImage 16, 704e712.

Wong, P.C.M., Uppunda, A.K., Parrish, T.B., Dhar, S., 2008. Cortical mechanisms of
speech perception in noise. J. Speech Lang. Hear. Res. 51, 1026e1041.

Ye, J.C., Tak, S., Jang, K.E., Jung, J., Jang, J., 2009. NIRS-SPM: statistical parametric
mapping for near-infrared spectroscopy. NeuroImage 44, 428e447.

Zhang, F.Q., Wang, J.P., Kim, J., Parrish, T., Wong, P.C.M., 2015. Decoding multiple
sound categories in the human temporal cortex using high resolution fMRI.
PLoS One 10, e0117303.

http://refhub.elsevier.com/S0378-5955(15)30012-5/sref30
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref30
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref30
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref30
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref31
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref31
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref31
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref31
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref32
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref32
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref32
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref32
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref33
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref33
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref33
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref33
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref33
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref34
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref34
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref34
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref35
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref35
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref35
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref36
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref36
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref36
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref36
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref37
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref37
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref38
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref38
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref38
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref38
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref39
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref39
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref39
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref40
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref40
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref40
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref40
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref41
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref41
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref42
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref42
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref42
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref42
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref43
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref43
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref43
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref43
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref43
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref44
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref44
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref44
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref45
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref45
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref45
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref45
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref45
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref46
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref46
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref46
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref46
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref46
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref47
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref47
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref47
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref47
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref48
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref48
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref48
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref49
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref49
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref49
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref49
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref50
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref50
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref51
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref51
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref51
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref52
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref52
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref52
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref53
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref53
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref53
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref53
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref54
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref54
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref54
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref54
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref55
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref55
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref55
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref55
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref56
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref56
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref56
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref56
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref56
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref57
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref57
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref57
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref58
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref58
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref58
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref58
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref59
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref59
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref59
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref60
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref60
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref60
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref61
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref61
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref61
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref62
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref62
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref62
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref63
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref63
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref63
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref64
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref64
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref64
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref64
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref64
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref64
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref65
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref65
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref65
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref65
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref65
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref66
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref66
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref66
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref67
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref67
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref67
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref68
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref68
http://refhub.elsevier.com/S0378-5955(15)30012-5/sref68

	Decoding four different sound-categories in the auditory cortex using functional near-infrared spectroscopy
	1. Introduction
	2. Materials and methods
	2.1. Subjects
	2.2. Audio-stimuli
	2.3. fNIRS data
	2.4. Pre-processing
	2.5. Activation maps
	2.6. Regions of interest
	2.7. Feature selection and classification

	3. Results
	4. Discussion
	5. Conclusions
	Conflicts of interest
	Acknowledgments
	References


