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This paper presents a state-space hemodynamic model by which any event-related hemodynamic prediction
function (i.e., the basis function of the design matrix in the general linear model) is obtained as an output of
the model. To model the actual event-related behavior during a task period (intra-activity dynamics) besides
the contrasting behavior among the different task periods and against the rest periods (inter-activity dynami-
cs), the modular system is investigated by parametric subspace-based state-space modeling of actual hemo-
dynamic response to an impulse stimulus. This model provides a simple and computationally efficient way
to generate the event-related basis function for an experiment by just convolving the developed hemodynam-
ic model with the impulse approximation of the experimental stimuli. The demonstration of the stated find-
ings is carried out by conducting finger-related experiments with slow- and fast-sampling near-infrared
spectroscopy instruments to model and validate the cortical hemodynamic responses. The generated basis
functions of the finger-related experiments are adapted from real data to validate the incorporation of
non-delayed and real-time event-related features and to effectively demonstrate a dynamic-modeling-based online
framework. The proposed method demonstrates potential in estimating event-related intra- and inter-activation
dynamics and thereby outperforms the classical Gaussian approximation method.

© 2012 Elsevier Inc. All rights reserved.
Introduction

Functional near-infrared spectroscopy (fNIRS), a noninvasive optical
imagingmethod, detects brain activation bymeasuring the concentration
changes of oxygenated (oxi) and de-oxygenated (doxy) hemoglobins
(HbO and HbR, respectively) in blood corpuscles representing activity in
nearby neurons (Aqil et al., 2012; Bunce et al., 2006; Cope and Delpy,
1988; Cui et al., 2010a; Hu et al., 2010, 2011, 2012; Plichta et al., 2007,
2011). Nowadays, the general linearmodel (GLM)-based approach to sig-
nal processing in brain activation areas is common, especially for
functionalmagnetic resonance imaging (fMRI)- and fNIRS-based technol-
ogies (Cui et al., 2011; Friston et al., 2008; Ye et al., 2009), due to its
robustness even in the cases of incorrect differential path length factors
(DPF) (Zhao et al., 2002) and severe optical signal attenuation. The GLM
approach totally relies on the prediction (basis) function,which combines
with its dispersion derivatives to form the feature (activity dynamics)
extracting design matrix. The conventional approach to obtaining the
basis function convolves a canonical hemodynamic response (HR) with
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the experimental stimuli of the targeting experiment,whereas the canon-
ical HR, taken to be the response of oxi-hemoglobin to a pulsed stimulus,
is approximated as a Gaussian curve and the experimental stimuli are ap-
proximated as a box-car function (see Abdelnour and Huppert, 2009; Cui
et al., 2011; Friston et al., 2008; Ye et al., 2009 and references therein). By
utilizing a unique canonical HR or its approximation function (Gaussian
approximation) as a response for any stimuli, which is not the case in
reality (Luo and Puthusserypady, 2007), the existing method ignores
the actual event-related behavior during a task period (intra-activity
dynamics) inherent to the performing task, inserts a delay between
the modeling of the expected activity and the actual occurrence of the
event, and effectively suppresses the event-related features to be
modeled for peer recursive extraction. Hence, the method hardly
affects maximum-likelihood-based offline studies for detection of the
contrasting behavior among the different task periods and against the
rest periods (inter-activation dynamics), but is cumbersome for
real-time event-related hemodynamic studies.

Poor dynamic modeling, coupled with offline-restricted feature
extraction of associated parameters, is a bottleneck to the achieve-
ment of event-related applications, like brain–computer interface
(BCI) and brain–machine interface (BMI) systems. This obstacle
needs to be surmounted instead of avoided. Researchers paid due
attention, to some extent, to this problem. Markham et al. (2009)
carried out an offline study for blind identification of brain activity
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with optical signals; Li et al. (2010) determined nonparametric slow
drift fMRI signals by Fourier representation of the classical HR
functions with the possibilities of occurrence of false-positive errors;
and Hinds et al. (2011) recursively computed moment-to-moment
HRs by an incremental GLM. All of these methods, however, are
restricted to the detection of activated brain regions and
inter-activation dynamics. Also, dynamic-model-based investiga-
tions have been carried out to address the hemodynamic strength
for the fMRI modality (Makni et al., 2008; Penny et al., 2005), but
such methods are also limited to offline detection of the activated
brain region. In addressing event-related dynamics, Cui et al.
(2010b) and Hu et al. (2011) demonstrated the possibility of a fast
optical response, but with extensive offline processing (the averag-
ing of several sessions of a particular task) due to the too-weak sig-
nal. Rapid event-related designs, introduced to parameterize and
detect the different contrast/intensity levels of a task, provide effi-
cient ways of addressing the inter-activity task levels (see for exam-
ple Plichta et al., 2007 and references therein). Most of the
aforementioned methods impose further conditions regarding the
duration and repeatability of the same activation task to enhance
robustness.

Motor-related cortical activations are the most useful approaches
to BCI control (Matthews et al., 2008). Recently, some contributions
were reported in the capacity of online or, somehow, real-time
fNIRS-BCI applications to estimate the parameters of a GLM as coef-
ficients of a recursive least squares filter (Aqil et al., 2012) or states
of a Kalman filter (Abdelnour and Huppert, 2009; Hu et al., 2010).
However, these approaches to detection of blocks of active periods
still lack dynamical information on intra-activation blocks. These
limitations, significantly, restrict their capacity to just online meth-
odologies in addressing tasks' blocks. The event-related utilities,
like BCI and BMI applications, require an effective solution to these
problems.

In order to overcome these limitations while deriving an
event-related hemodynamic prediction function, we investigate a new
approach, as per our knowledge, involving dynamic modeling of the
HR, stimulus input vs. hemodynamic output (Aqil et al., 2011b). The
demonstration of the stated findings is carried out by conducting
finger-related experiments with slow- and fast-sampling fNIRS instru-
ments to model and validate the cortical hemodynamic responses.
Parametric subspace-based state-space modeling is performed to avoid
most of the a priori parameterization. The method is advantageous in
providing a dynamic model directly in the form of state-space matrices
with optimally conditioned and uniquely determined bases (thereby
avoiding the identifiability problem) (Ljung, 2008; Overschee and
Moor, 1994; Viberg, 2002). The proposed hemodynamic model
facilitates the obtainment of basis functions, incorporating the
event-related intra-activation dynamics, for any experiment related to
the modeled brain region by convolving the proposed model with the
impulse approximation of the experimental stimuli. The proposed
hemodynamic-model-based approach provides better results than the
classical method, due to its dynamic behavior for both fast- and
slow-switching stimuli. The proposed model utilizes the skills learned
for activation behavior (start, stop, and peaking) of the impulse HR in-
stead of using a unique HR or its approximating function. A comparative
analysis against the classical method is performed, involving demon-
stration of the typical steps for designing experimental stimuli and
obtaining the basis functions for two validating experiments. The exper-
iments are designed to test the applicability of the proposed strategy for
i) the motor cortex regions, ii) the variability of the tasking pace, iii) the
null-control events, iv) the slow- and fast-sampled datasets, and v) test-
ing the periodic repeated consistency (to signify the robustness of the
statistical testing) of a regional brain task. The proposed method is
found to outperform the classical method by preserving information
on the event-related brain activity (intra-activation dynamics) in addi-
tion to that on the brain activity status (inter-activation dynamics).
The proposed basis function with respect to the capacity to address
non-delayed event-related features is further validated by utilizing
recursive least-square (RLS)- and Kalman filtering (KF)-based
adaptive frameworks from our previous papers (Aqil et al., 2012;
Hu et al., 2010), respectively, to effectively demonstrate the
dynamic-modeling-based online platform. The statistical signifi-
cance of the experimental results is evaluated with t-statistics and
interpolated brain activation maps are drawn to localize the activity
region. The method can be utilized to model any brain region. The
main contributions of this paper are the following: i) a dynamic
model is proposed to address the event-related hemodynamic re-
sponse. ii) The proposed model provides, for any experiment, the sim-
ple and computationally efficient means of generating a basis function
and of incorporating the event-related intra- and inter-activation dy-
namics for a cortical brain task. iii) The generated basis function avoids
modeling delay, and effectively enhances the event-related features
that are to be extracted recursively during event-related applications,
like BCI and BMI systems.

This paper is organized as follows. The Theory section describes
the computational approach to dynamic modeling of the cortical
HR and to obtaining the basis function for targeting validation ex-
periments followed by the description of RLS- and KF-based adap-
tive frameworks. The Method section details experimental
protocol for obtaining the cortical HR for the peer modeling pro-
cess, and for validation of the model's capability of generating
the event-related hemodynamic basis. The Results and discussion
section demonstrates and discusses the effectiveness of the
modeling-based approach to obtaining event-related basis func-
tions for the targeting physiological experiments verified by esti-
mating the predicted features from the real data with adaptive
frameworks. Finally, concluding remarks are provided in the
Conclusions section.

Theory

Identification model for cortical hemodynamic response

A multivariable system can conveniently be described, in terms
of state-space representation (Aqil et al., 2011a; Rehan et al.,
2011), as

z kþ 1ð Þ ¼ Az kð Þ þ Bu kð Þ þw kð Þ;
x kð Þ ¼ Cz kð Þ þ Du kð Þ þ ε kð Þ; ð1Þ

where z(k) denotes the modeling states, x(k) is the desired hemody-
namic output, u(k) is the stimulus input, w(k) is the unobservable
disturbance input, ε(k) is the additive noise, k is the discrete time
index, and A∈Rp�p, B∈Rp�1, C∈R1�p, and D∈R1�1 represent the
coefficient matrices with p as the number of modular states to be
chosen optimally.

To model the hemodynamic response, subspace-based state-space
modeling is performed for an impulse–response dataset {u(k),x(k)}
consisting of the input impulse stimuli and the resulting cortical
hemodynamic response. For γ successive samples of the impulse–
response dataset of form Ψx kð Þ ¼ x kð Þ x kþ 1ð Þ ⋯ x kþ γ−1ð Þ½ �
and Ψu kð Þ ¼ u kð Þ u kþ 1ð Þ ⋯ u kþ γ−1ð Þ½ � with γ>p, the alge-
braic formulation (1) can be rewritten as (Ljung, 2008; Overschee
and Moor, 1994; Viberg, 2002)

Ψx kð Þ ¼ Γz kð Þ þΦΨu kð Þ þ n kð Þ; ð2Þ

where Γ∈Rγ�p is the extended observability matrix,Φ∈Rγ�γ is a block
lower triangular Toeplitz matrix containing impulse–response coeffi-
cients, and n(k) represents the noise contribution, which is supposed
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to be white Gaussian with zero mean. The extended observability ma-
trix and block triangular Toeplitz matrix have the forms

Γ ¼ C CA ⋯ CAγ−1
h iT ð3Þ

and

Φ ¼

D 0 ⋯ 0 0
CB D ⋱ 0 0
⋮ ⋱ ⋱ 0 0
⋮ ⋮

CAγ−2B CAγ−3B ⋯ CB D

2
66664

3
77775: ð4Þ

The superscript T is the transpose operator. The extended observ-
ability matrix spans the signal subspace, and is extracted from the
impulse–response dataset. There are many ways to extract subspace
system identification. The projection method, like the least-square
method, is followed to estimate the extended observability matrix by
correlating both sides of Eq. (2) with quantities that eliminate the
term Ψu(k), and making the noise influence n(k) disappear
asymptotically (Ljung, 2008; Overschee and Moor, 1994; Viberg,
2002). Once Γ is estimated, matrix C is projected directly from the first
block row, and the A matrix is found by exploiting the shift-invariance
structure of the extended observability relation (3). The remainingma-
trices B and D are then calculated by a linear least squares from

x kð Þ ¼ C qI−Að Þ−1Bu kð Þ þ Du kð Þ; ð5Þ

where q is the eigenvalue of the state matrix A. It is worth noting that
subspace-based state-space modeling is performed to avoid most of
the a priori parameterization. Themethod is advantageous in provid-
ing the dynamic model directly as full state-space matrices on an op-
timally conditioned and uniquely determined basis (thereby
avoiding the identifiability problem). Thus, the issue of unknown ob-
servability (or controllability) indices can be addressed equally well.
Furthermore, the absence of any nonlinear optimizing component
makes it, unlike other algorithms, undisruptive in the face of disad-
vantages such as local minima, unsure convergence, and sensitivity
to initial estimates. Also, it is insensitive to initial states, even zero
initial states (Overschee and Moor, 1994).

Estimation of prediction (basis) function

The potential output response to an input, of course, can be esti-
mated by exciting (convolving) the identified impulse–response
model with the input. It is here proposed, therefore, that the
event-related basis function for any experiment can be obtained as
x(k) simply by exciting (convolving) the investigated dynamic HR
model with the pulse-train representation of the experimental stim-
uli as u(k). The proposed hemodynamic-model-based approach of
obtaining the basis function requires matrix (having minimal
order) manipulations instead of dealing with the entries of long
canonical-HR vector (containing the sampled version of the canoni-
cal HR). Despite using the convolution process, the proposed
model-based estimation can be realized efficiently through the Con-
trol System Toolbox of MATLAB®, either with script-m-file or with
the Simulink approach, to simulate the time responses of the dynam-
ic model to arbitrary inputs. Thus, the proposed approach is simple.
Moreover, the proposed methodology is computationally efficient
as it requires fewer computations and memory space than the ca-
nonical HR-based convolution.

The Results and discussion section below will demonstrate the
proposed basis estimation method in the light of two targeting exper-
iments, and then will detail its validation by adaptive frameworks
with experimental data from fNIRS instruments.
Brain activation model

Measurement model for fNIRS: modified Beer–Lambert law (MBLL)
The concentration changes of HbX (i.e., HbO and HbR), ΔcHbX in

μM, using the MBLL (Cope and Delpy, 1988) are given by

Δϕi
HbO tð Þ

Δϕi
HbR tð Þ

" #
¼ aHbO λ1ð Þ aHbR λ1ð Þ

aHbO λ2ð Þ aHbR λ2ð Þ
� �−1 Δϕi t; λ1ð Þ

Δϕi t; λ2ð Þ

" #
; ð6aÞ

ΔciHbX tð Þ ¼ Δϕi
HbX tð Þ
dili

; ð6bÞ

where the superscript i (i=1, 2,…, M) denotes the i-th measuring
channel of the source and detector pair, M denotes the total number
of channels, ΔϕHbX

i (t) is the optical density variation of HbX in
μM·mm at the i-th channel, Δϕi(t;λj) (j=1,2) is the unitless total op-
tical density variation of the light source of wavelength λj, aHbX(λj) is
the extinction coefficient of HbX in μM−1·mm−1, di is the unitless
DPF, and li is the distance (in millimeters) between the source and
the detector at the i-th channel. The formulated MBLL (Eqs. (6a)
and (6b)) is equally applicable for continuous-wave (CW) and
frequency-domain (FD) fNIRS instruments once the absorption pa-
rameter is determined by their respective theories. It is worth noting
that FD-fNIRS provides concentrations of HbO and HbR i) on the abso-
lute scale by solving Boltzmann's transport equation for absorption
and reduced-scattering coefficients, if utilized in multi-distance con-
figuration (Fantini et al., 1999); and ii) on a relative scale (similar to
CW-fNIRS), if utilized in spatially distributed source–detector config-
uration (Gallagher et al., 2008; Machado et al., 2011; Stankovic et al.,
1999). The second configuration is followed in this study to cover a
wide measuring range.

Activation model
In this section, a linear model to identify the area of activation for a

targeting experiment is introduced. For the measured HbO concentra-
tion yi tð Þ¼Δ ΔciHbO kð Þ, the proposed discrete linear model is defined as

yi kð Þ ¼ x1 kð Þβi
1 kð Þ þ x2 kð Þβi

2 kð Þ þ ⋯þ xm kð Þβi
m kð Þ þ vi kð Þ

¼ XT kð Þβi kð Þ þ vi kð Þ; ð7Þ

where X kð Þ ¼ x1 kð Þ x2 kð Þ ⋯ xm kð Þ½ �T is the k-th sample vector
of m regression (prediction or basis) functions, βi kð Þ ¼
βi
1 kð Þ βi

2 kð Þ ⋯ βi
m kð Þ

h iT
is the slowly varying parameters

representing the activity strength corresponding to the m re-
gression functions at channel i (to be estimated), and v(k)~(0,R)
denotes the observation noise at channel i.

There aremanyways of designing the predicting regressor functions
(like parametric or factorialmodels) to evaluate the appropriate tests of
interests. A parametric regression modeling (expected HR as linear and
continuous functions of the stimuli pattern) is followed to address i) the
relationship of the levels (contrast) of the activity events (Friston et al.,
2008), ii) the recursive assessment of statistical significance by testing
the null hypothesis for both activity and null control by means of re-
peatedmeasurements, and iii) the real-time treatment of each subject's
scan (within-subject testing) independently to demonstrate the poten-
tial for BCI/BMI applications. Although the actual HRmodel is developed
independently for each subject, the first and second temporal deriva-
tives of the HR are included as the regressor functions to address the
time varying HR's latency and dispersion (Friston et al., 2008; Plichta
et al., 2007). A separate no-stimulus regressor is included to test the
null control (Plichta et al., 2007). The no-stimulus regressor is obtained
by convolving the no-stimulus pattern, having a value of 1 during the
no-stimulus periods (including the null control and rest periods) and
0 otherwise (Friston et al., 2008).

Thus, the proposed regressor vector X(k) in this study consists of
the sampled version of the proposed linear parametric activity



Fig. 1. Channel configuration (single source, fast sampling) for cortical HR investiga-
tion: Six channels with one source (circle # 1) and six detectors (circles # 2–# 7).
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prediction function x(k) as x1(k), its two derivatives Δx(k) and Δ2x(k)
as x2(k) and x3(k), respectively, a null control regressor as x4(k), and
an offset. The activity strength vector at all channels, βi(k), can be
adapted recursively for a run-time platform.

Recursive least-squares (RLS) estimation: This estimator computes the
temporal statistics directly at each time-step to determine the opti-
mal filter coefficients by minimizing the square of the error of the
estimated and model responses (Haykin, 2002). The RLS estimation
of the single-channel activity model (7) translates into finding the
parameter vector β̂

i
kð Þ as (Aqil et al., 2012)

ei kð Þ ¼ yi kð Þ−ŷi kð Þ; ð8Þ

β̂ i kð Þ ¼ β̂ i k−1ð Þ þ K kð Þei kð Þ; ð9Þ
Fig. 2. The experimentally obtained hemodynamic response (dotted curve) vs.
K kð Þ ¼ P k−1ð ÞX kð Þ 1þ XT kð ÞP k−1ð ÞX kð Þ
� �−1

; ð10Þ

P kð Þ ¼ I−K kð ÞXT kð Þ
� �

P k−1ð Þ; ð11Þ

where ei(k) is the estimation error, ŷi kð Þ ¼ XT kð Þβ̂ i k−1ð Þ is the
estimated sample of the modeled event-related output, K kð Þ∈R5�1

is the weighting vector for parameter updating, and P kð Þ∈R5�5 is
the input covariance matrix at sample-time k. In the present study,
the state vector βi(k) and the input covariance matrix P(k) are initial-
ized to zero and δI, δ=10, respectively.

Kalman filter (KF): The Kalman filter estimates the state of the process
using an updated regularized linear inversion routine (Haykin, 2002;
Hu et al., 2010). In the present study, the KF is used to recursively es-
timate the coefficients βi(k) of the brain activation model (7). For this
formulation, the single-channel transition equation can be described
in the form

βi kð Þ ¼ β̂ i k−1ð Þ þ η kð Þ; ð12Þ

where the state matrix is considered as an identity matrix, and the
process noise as η(k)~(0,Q) to follow a random walk with zero drift
over time. The KF based iterative state estimation (12) of the
single-channel activity model (7) translates into

Θ− kð Þ ¼ Θ k−1ð Þ þ Q ; ð13Þ

K kð Þ ¼ Θ− kð ÞX kð ÞE−1 kð Þ; ð14Þ

β̂ i kð Þ ¼ β̂ i k−1ð Þ þ K kð Þei kð Þ; ð15Þ

Θ kð Þ ¼ I−K kð ÞXT kð Þ
� �

Θ− kð Þ; ð16Þ

where the superscript (−) refers to the intermediate prediction of
the quantities before being updated by the measured data, E(k)=
XT(k)Θ−(k)X(k)+R, ei kð Þ ¼ y kð Þ−ŷi kð Þ as defined in Eq. (8),
K kð Þ∈R5�1 is again the weighting vector (called Kalman gain here)
for parameter updating, and Θ kð Þ∈R5�5 is the updated error
covariance matrix. In the present study, the state vector βi(k) is ini-
tialized to zero, and the a priori process and observation noise covari-
ances (Q and R) are found to be (1%/s)2 and (0.5 μM/s)2, respectively.
the impulse response of the proposed state-space model (1) (solid curve).

image of Fig.�2
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Activation mapping
Although the MBLL formulation (Eqs. (6a) and (6b)) is used exten-

sively, this is merely a first-order approximation of diffusive light scat-
tering (see for example the photon path described in Boas et al.,
1997). The Rytov approximation by O'Leary et al. (1995) provides a
solution for estimating the HbX changes at any position r within the
measuring range by the interpolation relation

ΔcHbX t; rð Þ ¼
XM
i¼1

bi rð ÞΔϕi
HbX tð Þ; ð17Þ

where bi(r) corresponds to the interpolation kernel derived from the
diffusion equation (i.e., the spatial correlation with the adjacent chan-
nels' hemoglobin status) (Boas et al., 1997). The interpolated activity
strength α̂ k; rð Þ at time k is obtained as

α̂ k; rð Þ ¼ BT rð Þ⊗I5
� �

β̂ kð Þ ð18Þ

where B(r) is the stacking vector of interpolation kernels given by

B rð Þ ¼ b1 rð Þ b2 rð Þ ⋯ bM rð Þ
h i

ð19Þ
and ⊗ is the Kronecker product. The corresponding error covariance is

Cα̂ k; rð Þ ¼ BT rð ÞΣB rð Þ
� �

⊗ XþΛXþT
� �

; ð20Þ

where Σ=diag(σ1
2(k),σ2

2(k),⋯,σM
2 ) with σi

2 being the residual
sum-of-squares divided by the appropriate degrees of freedom at
channel i, the superscript + denotes the pseudo inverse operator,
X is the stacking form of the regressor vector X(k), and Λ is the com-
mon temporal correlation matrix for all the channels (Λ= I is used
in this paper).

Statistical significance
The statistical significance of the estimated activity parameter β̂

i
kð Þ,

test of the null hypothesis cT β̂
i
kð Þ ¼ 0, is evaluated by one-tailed t-test

(t-statistics) at time-step k and location r as (Aqil et al., 2012)

tβ̂ r; kð Þ ¼ cT α̂ r; kð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BT rð ÞΣB rð Þ� �

cTXþΛXþTc
� �q ; ð21Þ

where c represents a contrast vector for selecting the parameter(s) of
interest. Thus, the null hypothesis is assessed by a t-distribution with
k−L degrees of freedom,where L is the number of regressors. It is note-
worthy that the statistical significance of the activity parameter is
ensuring the statistical significance of the modeled event-related
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output, which is estimated as ŷi kð Þ ¼ XT kð Þβ̂ i k−1ð Þ from a real dataset
by RLS and KF estimators.

Method

Since a finger task, covering the dominant area of the motor cortex,
is known to elicit a robust hemodynamic response, finger-related tasks
are preferred. The experimental protocols for obtaining the cortical HR
for the peer modeling process and for validation of the model's
capability of generating the event-related hemodynamic basis are as
follows.

Investigation of cortical HR to impulse stimulus

Behavioral experiments are conducted using the fNIRS modality to
obtain actual hemodynamic activity at the cortical surface against an
impulse stimulus. A two-wavelength (760 nm and 830 nm) CW-
fNIRS instrument (DYNOT; NIRx Medical Technologies, USA) is used
in the single-source fast-run configuration. The fast run (fast sam-
pling) configuration is chosen in order to incorporate the fast dynam-
ics for event-related modeling, large frequency band for an
appropriate filtering process, and large data points for a precise and
smoothmodel identification process. Six measuring channels are con-
figured with one source and six detectors, as shown in Fig. 1. The spe-
cific behavioral protocol of the experiment consisted of an initial 20 s
for signal equilibrium followed by three sessions of 40 s duration
each. The subjects are instructed to perform right-index finger
tapping (RIFT) once at the start of each session, which is followed
by a rest period. For each subject, the time series of active channels
are preprocessed (low-pass filter with Gaussian function having a
FWHM of 1.5 s, high-pass filter with discrete-cosine transform having
a cutoff of 128 s, and the baseline is corrected to initial time) and then
averaged over the experiments and over the task sessions to obtain
the actual HR for an impulse stimulus. A schematic diagram illustrat-
ing the comprehensive HR-modeling framework is provided in Fig. 2.
The dotted curve shows the experimentally investigated cortical HR
(averaged) of subject 1 to a single RIFT stimulus. For intra-activity dy-
namics modeling, the mathematical form of the single-tap stimulus is
approximated as an impulse function, shown at the bottom left of
Fig. 2, to effectively attain an impulse–stimulus HR dataset {u(k),x(k)}.

The Results and discussion section will outline the stated theoret-
ical steps in obtaining the dynamic-HR model by utilizing this actual
HR dataset followed by its validation. To appreciate the model's po-
tential for obtaining the basis function for targeting experiments
and in addressing the event-related dynamics of brain tasks, we con-
sider the behavioral protocol of validating experiments and configu-
rations of the fNIRSmeasuring instruments in the following subsection.
Variable-pace RIFT experiment

A variable-pace RIFT experiment is designed to test the applicability
of the proposed strategy in terms of i) the motor cortex activity, ii) the
variability of the tasking pace, iii) the null-control events, and iv) the
slow- and fast-sampled datasets. The behavioral protocol consists of a
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Fig. 5. Comparison of three basis functions, x1(k), for the variable-pace RIFT experiment (plotted with the actual HR y(k) measured at an active channel).
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20 s initial rest for signal stability, followed by twelve sessions of 40 s
duration each. One of the three differently paced (1-, 5-, and
10-tapping) RIFT task stimuli or a null control stimuli is presented
during the first 20 s of a session. The three predefined paced tapping
tasks enable us to validate the modeling of the intra activity dynamics
of the performing tasks. Each of the four (three differently paced tap-
ping and a null control) stimuli sessions is presented three times in a
predetermined pseudorandom order (consistency of the same stimuli
is avoided). The subjects are instructed to tap once during the 1-tap ses-
sions, five times during the 5-tap sessions, and ten times during the
10-tap sessions, all at the specific times commanded through the
animated- and parallel-port-interrupted-GUI. The center fixation cross
was constantly presented during the whole experiment (with the ex-
ception of the commanded tap events during the three tapping tasks)
to avoid subjects' concentration/focus and motion artifacts. Since the
occurrence of three different tapping contrast and null-control sessions
is unpredictable for a subject, the rest period is varying (21 to 79 s, av-
erage: 50 s) in nature which avoids the subject' adaptability to a higher
extent. The predetermined randomized impulse representation of the
behavioral protocol is plotted in Fig. 3(a) along with its rich frequency
spectrum, shown in Fig. 3(b), consisting of three kinds of infinite pulses
separated by 1/40, 5/20, and 10/20 Hz, as per the tapping frequencies.
The session frequency is also 1/40 Hz.
CW-fNIRS instrument
The two-wavelength (760 nm and 830 nm) CW-fNIRS (DYNOT;

NIRx Medical Technologies, USA) instrument is configured for twenty
measuring channels with sixteen optodes (co-located source–
detector pairs) to cover the left motor cortex, as shown in Fig. 3(c).
The sampling rate is 2.86 Hz. The experiment is carried out twice
for three male subjects of age 28±3 years, and the detected optical
density variations are converted to concentration changes of oxi and
doxy hemoglobins by utilizing the MBLL, and then preprocessed
(low-pass filter with Gaussian function having a FWHM of 1.5 s,
high-pass filter with discrete-cosine transform having a cutoff of
128 s, and baseline is corrected to initial time).

FD-fNIRS instrument
A two-wavelength (690 nm and 830 nm) FD-fNIRS instrument

(Imagent; ISS, Inc., USA) with sensor-pad channel configuration (six-
teen measuring channels) to cover the left motor cortex, see Fig. 3(d),
is employed to probe the optical density variations due to oxi and
doxi hemoglobin concentration changes over the left motor cortex.
The sampling rate is 15.625 Hz. Again, the experiment is carried out
twice for three male subjects of age 28±3 years. The detected optical
density variations are converted to concentration changes of oxi and
doxy hemoglobins, and then preprocessed in a similar way for
comparison.

Multi-cortex finger-grasping experiment

The multi-cortex finger-grasping (MCFG) experiment is designed
to further validate the method for two different regions of a brain
(left and right motor cortexes) by means of periodic repeated consis-
tency (to signify the robustness of the statistical testing) of a regional
task over time besides testing the applicability in terms of i) motor
cortex activity, ii) the event related task, and iii) the null-control
events. The experiment consists of a 40 s signal equilibrium period
followed by four sessions of 50 s each. All sessions comprise a 30 s
task and a 20 s rest period. The subjects are instructed to perform
the finger grasping task five times with the specified hand during
the task periods at time instants specified via a GUI. The first two ses-
sions correspond to the consistent right hand's grasping task (to acti-
vate the left motor cortex) and, simultaneously, serve as the
consistent null control sessions of the left hand task. Similarly, the
last two sessions correspond to the left hand's grasping task (to acti-
vate the right motor cortex) and, simultaneously, serve as the null
control sessions of the right hand task. Fig. 4(a) shows the stimuli
pattern for left and right motor cortexes as uL and uR, respectively.
The frequency spectrum of the stimuli, plotted in Fig. 4(b), consists
of two kinds of infinite pulses separated by 1/50 and 5/30 Hz as per
the tapping and session frequencies. Fig. 4(c) shows the channel con-
figuration of CW-NIRS instrument to measure signals from the left
and right motor cortexes. The experiment is carried out twice for
three male subjects of age 28±3 years. The optical density variations,
detected at a sampling rate of 2.86 Hz, are converted to concentration
changes of oxi and doxy hemoglobins by utilizing the MBLL, and then
preprocessed in a similar way for comparison.

Results and discussion

Identification of dynamic HR model

Parameter matrices of the proposed state-space model (1) are
adapted by minimizing the prediction error cost function and the
state sequences are determined by the projection of the obtained
input–output dataset, which is plotted in Fig. 2 (dotted curve).
Order six is found to be optimal in modeling the cortical HR, the
impulse excitation of which approximately replicates the practically
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investigated HR, as shown in Fig. 2 (solid curve). This completes the
first task: modeling of cortical HR for fNIRS modality.

Validation results via RIFT experiment

Basis function for validating experiment
Classical approach: The basis function obtained by the classical

method, that is, by convolving the experiment's stimuli with the
Gaussian-approximated HR vector, is shown in Fig. 5(a) along with the
actual HR signal y(k)measured at an active channel. As per themethod's
requirements, the stimulus input is approximated as a box-car function
(a constant step-value during the whole tasking period, 20 s here), and
the sampling rate is altered to ten times faster than the actual sampling
frequency of the conducting experiment. It is clear from the plot that the
conventional method does not provide the dynamic information on the
event-related hemodynamic activity. Unlike a box-car approximation of
the experimental stimulus, an impulse-train approximation is found to
be useless (see Fig. 5(b)) for indicating the activity dynamics (there is
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no intra-activity-block information), and is corrupted by a delayed indi-
cation of the activity blocks (delayed inter-activity-block information).
In both cases, only the task sessions' frequency is detectable, unsurpris-
ingly, due to its periodicity with the rest sessions, which is shown by the
frequency responses (Figs. 5(d–e)). Hence, it is clear that the classical
method does not inscribe the intra-activity dynamics of a brain task, it
rather treats the pace (intra-activity) information as the task intensity
information by means of amplitude coding, and thus is of only limited
use in applications stressing the activation strength in different brain
regions during performance of a task.
Proposed dynamic-model-based approach: The basis function of the
targeting variable-pace RIFT experiment obtained by the proposed
strategy, plotted in Figs. 5(c,f), addresses the intra-activity dynamics
in terms of the superimposed event-related ringing signals (marking
the intra-dynamics' frequencies exactly at the targeted tasking fre-
quencies 1/40, 5/20, and 10/20) on top of the low-frequency
inter-activation-block signal. On the other hand, though the amplitude
of the actually observed HR signal is influenced by different noise
sources, the tasking frequencies still can be observed in the frequency
spectrums, shown in Fig. 6, of appropriate active channels measured
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with the CW-fNIRS and FD-NIRS instruments during the experiment.
Thus, advantageously, the proposed basis function incorporates the
exact stimulation spectrum for potential real-time applications.

It is noteworthy that the proposed hemodynamic model based ap-
proach of generating the basis function is simple as compared to the
traditional methods. Our method requires matrix (with maximum
order p, e.g. p=6 was found optimal for the shown validating exper-
iment) manipulations instead of dealing with the entries of long
HR-vector (containing the sampled version of the canonical HR). Ad-
ditionally, the proposed methodology (manipulating model (1) of
order 6) is computationally efficient as well because it requires
fewer computations and memory space than the conventional ap-
proach (handling a canonical HR-vector of order 1032).

Extraction of event-related dynamics from real data
To examine the potential of the proposed basis function in ad-

dressing the actual event-related dynamics for validating RIFT exper-
imental datasets, the activity parameter β̂

i
kð Þ and the event-related

output ŷi kð Þ are estimated by the stated RLS- (Eqs. (8)–(11)) and
KF-based (Eqs. (13)–(16)) adaptive online frameworks. The activity
strength of themodeled HRbasis function β̂ i

1 kð Þ is analyzed by selecting
the contrast vector as c ¼ 1 0 0 0 0½ �T . Figs. 7(a) and (b) illus-
trate the event-related dynamics ŷi kð Þ (dash–dot and solid curves by
RLS and KF methods, respectively) and corresponding activity strength
β̂1 kð Þ (circled and dashed curves by RLS and KF methods, respectively)
corresponding to an active and an inactive channel, respectively, for the
CW-fNIRS instrument. These results are found statistically significant as
evaluated by one-tailed t-test (Eq. (21)) of the activity parameter β̂1 kð Þ
(tβ̂1

kð Þ; dash–dot and dashed curves by RLS and KF methods, respec-
tively) which is plotted in Figs. 7(c–d) along with the real data yi(k) at
the channel i. The interpolated brain activation maps are drawn after
the convergence of the activity parameter β̂1 kð Þ estimated by RLS and
KF methods as shown in Figs. 7(e–f). Similarly, Figs. 8(a) and (b)
demonstrate the event-related dynamics, estimated by RLS and KF
methods, corresponding to an active and an inactive channel, respec-
tively, for the FD-fNIRS instrument. Figs. 8(c–d) show the statistical sig-
nificance of the results obtained with FD-fNIRS instrument plotted
alongwith the real data yi(k) at the channel i. The interpolated brain ac-
tivation maps over the range of the FD-NIRS sensors are drawn in Figs.
8(e–f) after the convergence of the activity parameter. The classical
basis function based brain activation maps over the full range of mea-
suring channels (obtained with both the fNIRS instruments) are
drawn in Fig. 9 for comparison. Note that the t-values from the pro-
posed HR model based basis function are higher than the t-values
obtained with the classical basis functions. The reason is that the pro-
posed HR is a better predictor of the actual HR even for varying tasking
dynamics.

It should be noted that the first three sessions (single tap periods)
verified the experiment's control (the cortical HR, obtained with dif-
ferent experiments, modeled for the prediction function of this
experiment) for subject 1. The null control is analyzed by selecting
the contrast vector as c ¼ 0 0 0 1 0½ �T . Figs. 10(a) and (b) illus-
trate the null control parameters β̂4 kð Þ (circled and dashed curves by
RLS and KF methods, respectively) and respective insignificant
t-value ( tβ̂4

kð Þ; dash–dot and solid curves by RLS and KF methods,
respectively) corresponding to an active and an inactive channel, re-
spectively, for the CW-fNIRS instrument. Similarly, Figs. 10(c) and (d)
demonstrate the null control parameters and respective insignificant
t-values, estimated by RLS and KF methods, corresponding to an active
and an inactive channel, respectively, for the FD-fNIRS instrument.

The variable-pace RIFT datasets conducted with the CW-fNIRS
instrument are further utilized for group analysis. The global
alignment‐based (between the interpolated maps onto the brain tem-
plate) group analysis is performed, i.e., the summary statistics of indi-
vidual subjects is obtained and interpolated first on the global
template followed by the across group analysis (Ye et al., 2009).
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Fig. 11 shows the activationmaps found by the group analysis using the
classical and proposed basis functions regressed with the RLS method.
Although there is not much significant difference in time-averaged
group activationmaps drawnwith classical and proposed basis functions,
the proposed basis function provides further information (intra-activity
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a) By using classical HR function b

Fig. 11. Activation maps obtained by the group analysis of the variable-pace RIFT experimen
the classical basis function, (b) group activation map investigated with the proposed basis
behavior) about the performing task. The mesh portrait of the proposed
basis function based estimated outputs ( ŷi kð Þ here), if drawn over all
the channels at each time step k, can provide real-time event-related
intra-activation pattern, which cannot be obtained with the classical
basis function.
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t, 3 datasets (conducted with the CW-fNIRS only): (a) group activation map found with
function. The basis functions are regressed with the RLS method.
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Validation results via MCFG experiment

For this experiment, the basis functions generated by the classical
method and by the proposed method are drawn in Fig. 12 along with
the two real responses yL(k) and yR(k)which are observed as active chan-
nels at primary left and primary right motor cortexes, respectively. The
observed response yL(k) approximately follows the proposed activity pat-
tern in the first two (right finger grasping) sessions and the observed
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response yR(k) approximately follows the proposed activity pattern in the
last two (left finger grasping) sessions. Thus, it is apparent again that con-
trary to the classical approach, the proposed model based approach ad-
dresses the inter- and intra-activity dynamics of the hemodynamic
response. Figs. 13(a) and (b) illustrate the event-related dynamics ŷi kð Þ
and the activity strength β̂1 kð Þ corresponding to the two appropriate ac-
tive channels' responses yL(k) and yR(k). The statistical significance of
these results, plotted in Figs. 13(c–d), demonstrates the effectiveness of
the proposed methodology in obtaining the event-related hemodynamic
response to neuroactivation. The insignificant values of activity pa-
rameters and t-values, estimated with the generalized basis func-
tions, of the nonfunctional cortex's channels reveals the validity for
null control. The interpolated brain activation maps are drawn in
Figs. 13(e–f) accordingly.
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Similar results are obtained with all three subjects with the varia-
tions of (i) active channel location and (ii) activity strengths. Channel
misalignment during sensor fixation, varied attentiveness, biological-
and anatomical-differences, and noise factors are the major sources of
these discrepancies. These results demonstrate the effectiveness of
the proposed dynamic model (and accordingly the generated basis
function for the cortical fNIRS signals) for provision of event-related
cortical brain activity along with activity-strength information. This
performance, significantly, is superior to that of the classical approach.
The crux behind the discrepancy is the dynamic behavior of the proposed
HR model for both fast- and slow-switching stimuli. The model utilizes
the skills learned for the activation start, stop, and peaking behaviors of
the impulse HR instead of using a unique HR or its approximating
function.

For demonstration simplicity, the HRF related to HbO is consid-
ered and the MBLL is used (but is not restricted to be used) as mea-
surement model (measured photon density to HbO concentration).
The proposed method can work equally well with other photon prop-
agation models of HRF measurement, e.g. radiative transfer equation
(RTE), diffusion approximation to RTE. The interpolation function
B(r) in Eq. (19) is supposed to be three-dimensional in a real
measurement scenario (see for example Flexman et al., 2011). But,
for optode-coverage manifold of current fNIRS probing, the
two-dimensional interpolation function was found to be sufficient
to represent the interpolated topographic maps (Abdelnour et al.,
2009; Aqil et al., 2012; Ye et al., 2009). The brain-mapping template
(left lateral and dorsal views) was depicted using the open-source
software SPM8 (Wellcome Department of Cognitive Neurology,
London, UK) (Friston et al., 2008). Such t-mapping can be drawn
to any brain template by proper channel registration with refer-
ence points. The experimental data are utilized sample-by-sample
to demonstrate the targeted potential for event-related online ap-
plications. A real-time framework can be obtained by implementing a
recursive framework on parallel processing hardware, like
field-programmable gate array (FPGA).

Since the developed model for the demonstration is identified for
the primary left motor cortex, the event-related activity detected at
the left motor cortex is more prominently detected as compared to
the one at the right motor cortex during the MCFG experiment. This
is due to the voxel-to-voxel variation of the hemodynamic response
to neuroactivation. The proposed method has the potential to investi-
gate precise activity behavior, in that it can address the inter-channel,
inter-voxel, and inter-subject variability of hemodynamic behavior by
modeling hemodynamic behaviors at all voxels for all the subjects. In
this case, the model needs to periodically adapt the subject's
intra-channel and intra-voxel hemodynamic variability. Further-
more, the proposed method can be extended to obtain a coupled
hemodynamic model to address a broader range of hemodynamic
phenomena (like vascular steal, oxygen supply–demand imbal-
ance, cerebral blood flow, cerebral blood volume, and oxygen
saturation).

Conclusions

A dynamic model of cortical hemodynamic response was
investigated for an impulse RIFT stimulus in order to effectively ad-
dress the event-related hemodynamic response in addition to
inter-activation-block information pertaining to mental tasks. The
developed model provides the simple and computationally efficient
means of generating the prediction (basis) function for any cortical
hemodynamic activation experiment. The variable-pace RIFT and
MCFG experiments were conducted with two fNIRS modalities to
synthesize the potential of the proposed mechanism. The method
was found to outperform the classical method, specifically by pre-
serving the information related to the event-related hemodynamic
activity (intra-activation dynamics) in addition to the brain activity
status (inter-activation dynamics). Furthermore, the event-related
hemodynamic features were extracted by utilizing online algorithms
so as to demonstrate the effectiveness of the modeling-based online
platforms.
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