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This paper presents a novel nonlinear observer-design approach to one-sided Lipschitz nonlinear systems in the presence of output
delays.The crux of the approach is to overcome the practical consequences of time delays, encountered due to distant sensor position
and time lag inmeasurement, for estimation of physical and engineering nonlinear system states. A Lyapunov-Krasovskii functional
is employed, the time derivative of which is solved using Jensen’s inequality, one-sided Lipschitz condition, and quadratic inner-
boundedness, and, accordingly, design conditions for delay-range-dependent nonlinear observer for delayed one-sided Lipschitz
systems are derived. Further, novel solutions to the problems of delay-dependent observer synthesis of one-sided Lipschitz models
and delay-range-dependent state estimation of linear and Lipschitz nonlinear systems are deduced from the present delay-range-
dependent technique. An observer formulation methodology for retrieval of one-sided Lipschitz nonlinear-system states, which
is robust against 𝐿

2
norm-bounded perturbations, is devised. The resultant design conditions, in contrast to the conventional

procedures, can be solved via less conservative linear matrix inequality- (LMI-) based routines that succeed by virtue of additional
LMI variables, meaningful transformations, and cone complementary linearization algorithm. Numerical examples are worked out
to illustrate the effectiveness of the proposed observer-synthesis approach for delayed one-sided Lipschitz systems.

1. Introduction

State estimation using an observer is a methodology widely
employed in physical, biomedical, and engineering fields
owing to its multitude of applications in road-gradient and
vehicle-mass estimation, coestimation for lithium-polymer
battery cells, online monitoring of nonlinear bioprocesses,
identification and analysis of vascular tumor growth, detec-
tion and reconstruction of sensor faults, robust control of
stochastic systems under disturbances, and cylinder-pressure
reconstruction [1–7]. Observer synthesis for nonlinear sys-
tems has received considerable attention within the control
field over the past few decades, as it makes possible the appli-
cation of state estimation to control design, energy system
analysis, fault diagnosis, chaos-based secure communica-
tions, synchronization studies, and unknown input recovery
[8–11]. Notable work in this regard has been concentrated
on continuous-time systems, while a certain quantity of

research has been devoted to discrete-time and time-delay
dynamical models [12–15]. For the nonlinear systems, the
observer design remains a challenging research problem:
no generalized or widely applicable solution has yet been
reported or even explored. Nonlinear observer design in the
presence of time delays is thought-provoking, particularly as
sensor technologies, conditioning units, and measurement
systems often introduce unavoidable time delays that can
sabotage the practicality of a monitoring or a control system
[16–18].

In the literature, two broad andwidely employedmethod-
ologies for observer design of nonlinear systems are nonlin-
ear state transformation, for which the state-estimation error
dynamics are transformed into linear ones [19, 20], and the
direct method, based on the original system, by which the
estimation error dynamics are obtained in nonlinear form
[21–23].Thus far, for the class of nonlinear systems observing
the Lipschitz condition (see, e.g., [24] and references therein),
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multiple observer designs based on the direct method have
been presented to address the existence condition for full-
order and reduced-order observers, robustness in observer
design subject to disturbances, robust sensor fault recon-
struction, and observer synthesis for discrete-time systems
[25–28]. The Lipschitz condition in numerical analysis and
mathematics, found to be conservative and region based, is
now being replaced by a more spacious and less conservative
one-sided Lipschitz condition. Observer-design schemes,
based on characteristics of Lipschitz functions, ensure stabil-
ity of state-estimation error only for small values of Lipschitz
constants and result into infeasibility if the aforesaid constant
is large. These facts escalate the demand of the one-sided
Lipschitz constant for approximating an upper bound on
nonlinear component of a dynamical system to accomplish
viable estimation of the full state vector.

In recent years, several observer-design problems for
one-sided Lipschitz nonlinear systems have been investi-
gated [29–32]. For example, a state observer-design scheme
for discrete-time systems with mathematical artifacts on
the Lyapunov function for obtainment of simple linear
matrix inequality (LMI) conditions for asymptotic stability
of state-estimation error was carried out [29]. Full-order
and reduced-order observer designs for one-sided Lipschitz
systems using the Riccati equation approach demonstrating
less conservatism than the Lipschitz counterpart also have
been studied [30]. Further, a methodology applicable to
monotonic and Lipschitz as well as one-sided Lipschitz non-
linearities was presented, by which the observer gain matrix
is determined by solving LMIs [31]. In another approach, the
analysis and deduction problem in a unified LMI framework,
which provides the condition for existence of a nonlinear
state observer, is addressed by incorporating the concept of
quadratic inner-boundedness [32]. Still, however, for delayed
one-sided Lipschitz nonlinear systems, asymptotic stability
conditions to the observer-design dilemma remain elusive
owing to the twofold involvement of time delays and one-
sided Lipschitz dynamics. In this regard, the presence of
output delays in practical systems, unavoidable due to the
distant sensor position, digital processor computations, and
measurement system processing, can result in oscillations,
lags, and even instability, making the traditional observer-
design approaches like [29–32] infeasible for state estima-
tion. Moreover, the one-sided Lipschitz constant is either
significantly smaller than or at most equal to the traditional
Lipschitz constant, which fact facilitates a more suitable
observer construction of nonlinear time-delay systems by
reckoning the influence of nonlinear and delayed nonlinear
parts. If observer-design techniques can be developed for
delayed one-sided Lipschitz systems, these schemes can
be effectively utilized or reformulated for monitoring and
control of complex forms of engineering systems.

Time delays, varying in an interval [33] and appearing in
state, input, and output variables as well as in state derivatives,
are frequently encountered in engineering and physical sys-
tems [33–38]. In recent years, the stability analysis and control
design problems were investigated for time-variant and time-
invariant delayed systems (see, for instance, reference [39,
40]). Delay-dependent stability approach assuming that the

time delay belongs to an interval from zero to a constant value
provides less conservative results than does the conventional
delay-independent scheme [41]. Nevertheless, because the
Lyapunov function ignores the lower bound of the time delay,
conservatism remains; therefore, the lower bound should
be incorporated to establish less restricted results. Recently,
delay-range-dependent techniques addressing the problem
of conservatism have been developed (see, e.g., [33, 42–45])
for linear time-delay systems, based on various Lyapunov-
Krasovskii (LK) approaches, Jensen’s inequality, the free-
weighting matrix, Newton Leibniz, and others; however,
the field of delay-range-dependent observer synthesis for
linear and, particularly, for nonlinear time-delay systems is
still relatively immature. The beauty of such delay-range-
dependent state-estimationmethodologies lies in their appli-
cability to systems with either large or small delays; therefore,
it will be interesting to explore a state-of-the-art delay-
range-dependent observer-design strategy for the one-sided
Lipschitz nonlinear systems with measurement delays.

Motivated by the aforementioned linear delay-range-
dependent approaches and one-sided Lipschitz nonlinear
observer construction methodologies, the present study
explores the problem of a nonlinear observer design
for one-sided Lipschitz nonlinear systems under output-
measurement and processing delays. By application of an
LK functional, the time derivative of which is solved
using Jensen’s inequality, incorporating the one-sided Lips-
chitz condition and quadratic inner-boundedness, exploit-
ing the standard matrix inequality procedures and regard-
ing the nonzero lower bound of the output delay, a
delay-range-dependent Luenberger-type observer-synthesis
scheme ensuring asymptotic estimation of the states of
delayed one-sided Lipschitz nonlinear plants was established.
To the best of the authors’ knowledge, the proposed observer-
design scheme enabling time-delay one-sided Lipschitz non-
linear systems to overcome the practical limitation of sensors
and measurement systems is herein introduced for the first
time.Themore general feature of the proposed one-sidedLip-
schitz observer-synthesis treatment relative to the Lipschitz
one for the case of output delays is addressed by establishing
a relation, and no such delay-range-dependent results for
observer formulation using the Lipschitz condition have yet
been effectively reported. Furthermore, a delay-dependent
approach is deduced as a particular case of the present delay-
range-dependent observer-design methodology, by taking
the zero value of the lower bound on the time delay. A delay-
rate-independent condition, owing to its importance in the
field of full state vector estimation, is provided by application
of the proposed LK functional treatment.

The scope of the resultant observer-design study for
nonlinear interval time-delay systems is extended to fast
time-varying delays, and the corresponding conditions are
detailed. In addition, robust observer-synthesis scheme in
the presence of output delays is provided against 𝐿

2
norm-

bounded perturbations and disturbances to guarantee 𝐿
2

gain reduction from unwanted signals to the state-estimation
error. Another contribution of the present work is the
formulation of a less conservative LMI-based routine com-
pared with the delay-range-dependent approaches like [46],
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obtained by introducing additional LMI variables and mean-
ingful transformations, solvable via a cone complementary
linearization algorithm. Two numerical simulation examples
are provided to illustrate the effectiveness of the proposed
observer-design methodology for delayed one-sided Lips-
chitz nonlinear systems.

The remainder of the paper is organized as follows. In
Section 2, the problem is formulated and some important
concepts are introduced. Section 3 presents the main design
conditions for the delay-range-dependence-oriented nonlin-
ear dynamical observer strategies and, further, discusses their
various modifications. Sections 4 and 5 provide simulations
and concluding remarks, respectively.

Standard notation is used throughout the paper. The
Euclidean norm of a vector 𝑥 is shown by ‖𝑥‖, and the 𝐿

2

norm of the vector by ‖𝑥‖
2
= √∫

∞

0
‖𝑥‖
2
𝑑𝑡. For vectors 𝑥

and 𝑦 of the same dimension, the notation ⟨𝑥, 𝑦⟩ represents
the inner product of the vectors. The mathematical quantity
sup
‖𝑑‖
2
̸=0
(‖𝑒‖
2
/‖𝑑‖
2
) defines the 𝐿

2
gain for a system with

an input vector 𝑑 and an output vector 𝑒. A symmetric
positive (or semipositive) definitematrix𝑋 is stated bymatrix
inequality 𝑋 > 0 (or 𝑋 ≥ 0). The transpose of a matrix 𝐴
is noted as 𝐴𝑇. The notation diag(𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
) denotes a

block diagonal matrix with entry 𝑥
𝑖
, for 𝑖 = 1, 2, . . . , 𝑛, at the

corresponding diagonal entry.

2. System Description

Consider a class of one-sided Lipschitz nonlinear dynamical
systems with time-varying output delays, given by

�̇� (𝑡) = 𝐴𝑥 (𝑡) + 𝑓 (𝑥, 𝑢) + 𝑑,

𝑦 (𝑡) = 𝐶𝑥 (𝑡 − 𝜏) ,

(1)

where 𝑥 ∈ R𝑛, 𝑢 ∈ R𝑚, 𝑦 ∈ R𝑝, and 𝑑 ∈ R𝑛 are the
state vector, the control input, the output, and the disturbance
to the system, respectively. The linear constant matrices of
the dynamical system are represented by 𝐴 and 𝐶, and the
nonlinear function is denoted by 𝑓(𝑥, 𝑢) ∈ R𝑛. A continuous
time-varying differentiable function 𝜏 refers to the time delay
at the output, satisfying

0 ≤ ℎ
1
≤ 𝜏 ≤ ℎ

2
,

̇𝜏 ≤ 𝜇.

(2)

The function 𝑓(𝑥, 𝑢) belongs to the one-sided Lipschitz
nonlinearities owing to the definition given below (see,
for instance, [29–32]). Another concept employed for the
observer design is quadratic inner-boundedness (see [30, 32,
47]).

Definition 1. A nonlinear function 𝑓(𝑥, 𝑢) is said to be one-
sided Lipschitz in a region 𝐷 enclosing the origin if there
exists a scalar 𝜌 ∈ R such that the relation

⟨𝑓 (𝑥, 𝑢) − 𝑓 (𝑥, 𝑢) , 𝑥 − 𝑥⟩ ≤ 𝜌‖𝑥 − 𝑥‖
2
, (3)

holds ∀𝑥, 𝑥 ∈ 𝐷, where 𝜌 is the one-sided Lipschitz constant.

Definition 2. A nonlinear function 𝑓(𝑥, 𝑢) is said to satisfy
the quadratic inner-boundedness condition in a defined
region𝐷, if there exist scalars 𝛽, 𝛼 ∈ R, such that

(𝑓 (𝑥, 𝑢) − 𝑓 (𝑥, 𝑢))
𝑇

(𝑓 (𝑥, 𝑢) − 𝑓 (𝑥, 𝑢))

≤ 𝛽‖𝑥 − 𝑥‖
2
+ 𝛼 ⟨𝑥 − 𝑥, 𝑓 (𝑥, 𝑢) − 𝑓 (𝑥, 𝑢)⟩

(4)

is satisfied for all 𝑥, 𝑥 ∈ 𝐷.

The one-sided Lipschitz and quadratic inner-bounded-
ness conditions extrapolate the definitive Lipschitz theory
to a more ecumenical category of nonlinear systems and
have inbuilt advantages in observer synthesis. For a given
function 𝑓(𝑥, 𝑢) satisfying (3)-(4), the Lipschitz condition
holds, whereas the reverse is not true (see details in [30,
32, 47]). Further, the one-sided Lipschitz constant 𝜌 and the
quadratic inner-boundedness parameter 𝛽 can be any real
numbers, unlike the Lipschitz constant, which needs to be
always positive.

The aim of the present study is to propose an observer-
design methodology for a dynamic one-sided Lipschitz
nonlinear system (1) subject to time-varying output delays
belonging to an interval.

3. Observer Design

Consider a Luenberger-like observer for a delayed one-sided
Lipschitz nonlinear system (1) formulated as

̇̂𝑥 (𝑡) = 𝐴𝑥 (𝑡) + 𝑓 (𝑥, 𝑢) + 𝐿 (𝑦 (𝑡) − 𝑦 (𝑡)) ,

𝑦 (𝑡) = 𝐶𝑥 (𝑡 − 𝜏) ,

(5)

where 𝐿 ∈ R𝑛×𝑚 is the observer gain matrix. The state-
estimation error is given by

𝑒 = 𝑥 − 𝑥. (6)

From (1) and (5)-(6), we have the error dynamics:

̇𝑒 (𝑡) = 𝐴𝑒 (𝑡) + 𝑓 (𝑥, 𝑢) − 𝑓 (𝑥, 𝑢) − 𝐿 (𝑦 (𝑡) − 𝑦 (𝑡)) + 𝑑,

(7)

which reduce further to

̇𝑒 (𝑡) = 𝐴𝑒 (𝑡) + Φ (𝑥, 𝑥, 𝑢) − 𝐿𝐶𝑒 (𝑡 − 𝜏) + 𝑑, (8)

by substitution of

Φ (𝑥, 𝑥, 𝑢) = 𝑓 (𝑥, 𝑢) − 𝑓 (𝑥, 𝑢) . (9)

Now, we provide an LMI-based sufficient condition to
test the state-estimation ability of an observer (5) for a given
observer gain matrix 𝐿. Note that a sophisticated guess of the
observer gain matrix can be obtained using the traditional
observer-design methodologies such as the standard high-
gain-observer approach and techniques (see, e.g., [10, 29–32],
etc.) that do not involve time delays.
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Theorem 3. Consider a one-sided Lipschitz nonlinear system
(1) satisfying the time-delay bounds given by (2), the one-sided
Lipschitz condition (3), and the quadratic inner-boundedness

criterion (4). Suppose there exist symmetric matrices 𝑃 ∈

R𝑛×𝑛, 𝑄
𝑖
∈ R𝑛×𝑛, and 𝑍

𝑗
∈ R𝑛×𝑛 for 𝑖 = 1, 2, 3, and 𝑗 = 1, 2,

and scalars 𝜀
1
and 𝜀
2
, such that the LMIs

𝑃 > 0, 𝑄
𝑖
> 0, 𝑍

𝑗
> 0, 𝜀

1
> 0, 𝜀

2
> 0, ∀𝑖 = 1, 2, 3, 𝑗 = 1, 2, (10)

[
[
[
[
[
[
[
[
[
[

[

𝑌
1
+ 𝜌𝜀
1
𝐼 + 𝛽𝜀

2
𝐼 −𝑃𝐿𝐶 𝑍

1
0 𝑃 −

𝜀
1
𝐼

2
+
𝛼𝜀
2
𝐼

2
ℎ
1
𝐴
𝑇
𝑍
1

ℎ
12
𝐴
𝑇
𝑍
2

∗ −Λ
1

𝑍
2

𝑍
2

0 −ℎ
1
𝐶
𝑇
𝐿
𝑇
𝑍
1
−ℎ
12
𝐶
𝑇
𝐿
𝑇
𝑍
2

∗ ∗ −Λ
2

0 0 0 0

∗ ∗ ∗ −Λ
3

0 ℎ
1
𝑍
1

ℎ
12
𝑍
2

∗ ∗ ∗ ∗ −𝜀
2
𝐼 ℎ

1
𝑍
1

ℎ
12
𝑍
2

∗ ∗ ∗ ∗ ∗ −𝑍
1

0

∗ ∗ ∗ ∗ ∗ ∗ −𝑍
2

]
]
]
]
]
]
]
]
]
]

]

< 0 (11)

are satisfied for a given matrix 𝐿, where

𝑌
1
= 𝑃𝐴 + 𝐴

𝑇
𝑃 +

3

∑

𝑖=1

𝑄
𝑖
− 𝑍
1
,

Λ
1
= (1 − 𝜇)𝑄

3
+ 2𝑍
2
,

Λ
2
= 𝑄
1
+ 𝑍
1
+ 𝑍
2
,

Λ
3
= 𝑄
2
+ 𝑍
2
,

ℎ
12
= ℎ
2
− ℎ
1
.

(12)

Then, there exists a Luenberger-type observer (5) such that the
state-estimation error 𝑒 asymptotically converges to the origin.

Proof. Define an LK functional candidate (see, for instance,
[43]) as

𝑉 (𝑒, 𝑡) = 𝑒
𝑇
𝑃𝑒 +

2

∑

𝑖=1

∫

𝑡

𝑡−ℎ
𝑖

𝑒
𝑇
(𝛼)𝑄
𝑖
𝑒 (𝛼) 𝑑𝛼

+ ∫

𝑡

𝑡−𝜏

𝑒
𝑇
(𝛼)𝑄
3
𝑒 (𝛼) 𝑑𝛼

+ ∫

0

−ℎ
1

∫

𝑡

𝑡+𝑠

ℎ
1
̇𝑒
𝑇
(𝛼) 𝑍
1
̇𝑒 (𝛼) 𝑑𝛼 𝑑𝑠

+ ∫

−ℎ
1

−ℎ
2

∫

𝑡

𝑡+𝑠

ℎ
12

̇𝑒
𝑇
(𝛼) 𝑍
2
̇𝑒 (𝛼) 𝑑𝛼 𝑑𝑠.

(13)

Acquiring the time derivative of (13) yields

�̇� (𝑒, 𝑡) = 2𝑒
𝑇
𝑃 ̇𝑒 +

2

∑

𝑖=1

{𝑒
𝑇
𝑄
𝑖
𝑒 − 𝑒
𝑇
(𝑡 − ℎ

𝑖
) 𝑄
𝑖
𝑒 (𝑡 − ℎ

𝑖
)}

+ 𝑒
𝑇
𝑄
3
𝑒 − (1 − 𝜇) 𝑒

𝑇
(𝑡 − 𝜏)𝑄

3
𝑒 (𝑡 − 𝜏)

+ ̇𝑒
𝑇
(ℎ
2

1
𝑍
1
+ ℎ
2

12
𝑍
2
) ̇𝑒 − ∫

𝑡

𝑡−ℎ
1

ℎ
1
̇𝑒
𝑇
(𝛼) 𝑍
1
̇𝑒 (𝛼) 𝑑𝛼

− ∫

𝑡−ℎ
1

𝑡−ℎ
2

ℎ
12

̇𝑒
𝑇
(𝛼) 𝑍
2
̇𝑒 (𝛼) 𝑑𝛼.

(14)

Employing (8) and (14) and rearranging the terms, the upper
bound on �̇�(𝑒, 𝑡) is obtained as

�̇� (𝑒, 𝑡) ≤ 2𝑒
𝑇
𝑃 (𝐴𝑒 + Φ (𝑥, 𝑥, 𝑢) + 𝑑 − 𝐿𝐶𝑒 (𝑡 − 𝜏))

+

3

∑

𝑖=1

𝑒
𝑇
𝑄
𝑖
𝑒 −

2

∑

𝑖=1

𝑒
𝑇
(𝑡 − ℎ

𝑖
) 𝑄
𝑖
𝑒 (𝑡 − ℎ

𝑖
)

− (1 − 𝜇) 𝑒
𝑇
(𝑡 − 𝜏)𝑄

3
𝑒 (𝑡 − 𝜏)

− ∫

𝑡

𝑡−ℎ
1

ℎ
1
̇𝑒
𝑇
(𝛼) 𝑍
1
̇𝑒 (𝛼) 𝑑𝛼

+ (𝐴𝑒 + Φ (𝑥, 𝑥, 𝑢) + 𝑑 − 𝐿𝐶𝑒 (𝑡 − 𝜏))
𝑇

× (ℎ
2

1
𝑍
1
+ ℎ
2

12
𝑍
2
)

× (𝐴𝑒 + Φ (𝑥, 𝑥, 𝑢) + 𝑑 − 𝐿𝐶𝑒 (𝑡 − 𝜏))

− ∫

𝑡−ℎ
1

𝑡−ℎ
2

ℎ
12

̇𝑒
𝑇
(𝛼) 𝑍
2
̇𝑒 (𝛼) 𝑑𝛼.

(15)

Applying Jensen’s inequality reveals

− ∫

𝑡

𝑡−ℎ
1

ℎ
1
̇𝑒
𝑇
(𝛼) 𝑍
1
̇𝑒 (𝛼) 𝑑𝛼

≤ −(∫

𝑡

𝑡−ℎ
1

̇𝑒 (𝛼) 𝑑𝛼)

𝑇

𝑍
1
(∫

𝑡

𝑡−ℎ
1

̇𝑒 (𝛼) 𝑑𝛼)

≤ −(𝑒 (𝑡) − 𝑒 (𝑡 − ℎ
1
))
𝑇

𝑍
1
(𝑒 (𝑡) − 𝑒 (𝑡 − ℎ

1
)) .

(16)

Similarly, we have

− ∫

𝑡−ℎ
1

𝑡−ℎ
2

ℎ
12

̇𝑒
𝑇
(𝛼) 𝑍
2
̇𝑒 (𝛼) 𝑑𝛼

= −∫

𝑡−𝜏

𝑡−ℎ
2

ℎ
12

̇𝑒
𝑇
(𝛼) 𝑍
2
̇𝑒 (𝛼) 𝑑𝛼

− ∫

𝑡−ℎ
1

𝑡−𝜏

ℎ
12

̇𝑒
𝑇
(𝛼) 𝑍
2
̇𝑒 (𝛼) 𝑑𝛼,
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− ∫

𝑡−ℎ
1

𝑡−ℎ
2

ℎ
12

̇𝑒
𝑇
(𝛼) 𝑍
2
̇𝑒 (𝛼) 𝑑𝛼

≤ −(∫

𝑡−𝜏

𝑡−ℎ
2

̇𝑒 (𝛼) 𝑑𝛼)

𝑇

𝑍
2
(∫

𝑡−𝜏

𝑡−ℎ
2

̇𝑒 (𝛼) 𝑑𝛼)

− (∫

𝑡−ℎ
1

𝑡−𝜏

̇𝑒 (𝛼) 𝑑𝛼)

𝑇

𝑍
2
(∫

𝑡−ℎ
1

𝑡−𝜏

̇𝑒 (𝛼) 𝑑𝛼) ,

− ∫

𝑡−ℎ
1

𝑡−ℎ
2

ℎ
12

̇𝑒
𝑇
(𝛼) 𝑍
2
̇𝑒 (𝛼) 𝑑𝛼

≤ − (𝑒 (𝑡 − 𝜏) − 𝑒 (𝑡 − ℎ
2
))
𝑇

𝑍
2
(𝑒 (𝑡 − 𝜏) − 𝑒 (𝑡 − ℎ

2
))

− (𝑒 (𝑡 − ℎ
1
) − 𝑒 (𝑡 − 𝜏))

𝑇

𝑍
2
(𝑒 (𝑡 − ℎ

1
) − 𝑒 (𝑡 − 𝜏)) .

(17)

Combining the results of (15)–(17), we have

�̇� (𝑒, 𝑡)

≤ 𝑒
𝑇
[𝑃𝐴 + 𝐴

𝑇
𝑃 +

3

∑

𝑖=1

𝑄
𝑖
+ 𝐴
𝑇
(ℎ
2

1
𝑍
1
+ ℎ
2

12
𝑍
2
)𝐴 − 𝑍

1
] 𝑒

− 2𝑒
𝑇
[𝑃𝐿𝐶 + 𝐴

𝑇
(ℎ
2

1
𝑍
1
+ ℎ
2

12
𝑍
2
) 𝐿𝐶] 𝑒 (𝑡 − 𝜏)

+ 2𝑒
𝑇
𝑍
1
𝑒 (𝑡 − ℎ

1
) + 𝑒
𝑇
(𝑡 − 𝜏)

× [− (1 − 𝜇)𝑄
3
− 2𝑍
2
+ 𝐶
𝑇
𝐿
𝑇
(ℎ
2

1
𝑍
1
+ ℎ
2

12
𝑍
2
) 𝐿𝐶]

× 𝑒 (𝑡 − 𝜏) + 2𝑒
𝑇
(𝑡 − 𝜏) 𝑍

2
𝑒 (𝑡 − ℎ

1
) + 2𝑒

𝑇
(𝑡 − 𝜏)

× 𝑍
2
𝑒 (𝑡 − ℎ

2
) + 𝑒
𝑇
(𝑡 − ℎ

1
) (−𝑄

1
− 𝑍
1
− 𝑍
2
) 𝑒 (𝑡 − ℎ

1
)

+ 𝑒
𝑇
(𝑡 − ℎ

2
) (−𝑄

2
− 𝑍
2
) 𝑒 (𝑡 − ℎ

2
)

+ 2𝑒
𝑇
[𝑃 + 𝐴

𝑇
(ℎ
2

1
𝑍
1
+ ℎ
2

12
𝑍
2
)]Φ (𝑥, 𝑥, 𝑢)

+ 2𝑒
𝑇
[𝑃 + 𝐴

𝑇
(ℎ
2

1
𝑍
1
+ ℎ
2

12
𝑍
2
)] 𝑑 + Φ

𝑇
(𝑥, 𝑥, 𝑢)

× (ℎ
2

1
𝑍
1
+ ℎ
2

12
𝑍
2
)Φ (𝑥, 𝑥, 𝑢) + 2Φ

𝑇
(𝑥, 𝑥, 𝑢)

× (ℎ
2

1
𝑍
1
+ ℎ
2

12
𝑍
2
) 𝑑 + 𝑑

𝑇
(ℎ
2

1
𝑍
1
+ ℎ
2

12
𝑍
2
) 𝑑

− 2𝑑
𝑇
(ℎ
2

1
𝑍
1
+ ℎ
2

12
𝑍
2
) 𝐿𝐶𝑒 (𝑡 − 𝜏)

− 2𝑒
𝑇
(𝑡 − 𝜏) (𝐶

𝑇
𝐿
𝑇
(ℎ
2

1
𝑍
1
+ ℎ
2

12
𝑍
2
))Φ (𝑥, 𝑥, 𝑢) .

(18)

Under 𝑑 = 0, (18) implies

�̇� (𝑒, 𝑡) ≤ Ψ
𝑇

1
Υ
1
Ψ
1
, (19)

where

Ψ
𝑇

1
= [𝑒
𝑇
𝑒
𝑇
(𝑡 − 𝜏) 𝑒

𝑇
(𝑡 − ℎ

1
) 𝑒
𝑇
(𝑡 − ℎ

2
) Φ
𝑇
(𝑥, 𝑥, 𝑢)] , (20)

Υ
1
=

[
[
[
[
[

[

𝑌
1
+ 𝐴
𝑇
𝑌
4
𝐴 −𝑃𝐿𝐶 − 𝐴

𝑇
𝑌
4
𝐿𝐶 𝑍

1
0 𝑌

2

∗ − (1 − 𝜇)𝑄
3
− 2𝑍
2
+ 𝑌
3
𝐿𝐶 𝑍

2
𝑍
2

−𝑌
3

∗ ∗ −𝑄
1
− 𝑍
1
− 𝑍
2

0 0

∗ ∗ ∗ −𝑄
2
− 𝑍
2

0

∗ ∗ ∗ ∗ 𝑌
4

]
]
]
]
]

]

< 0, (21)

𝑌
2
= 𝑃 + 𝐴

𝑇
(ℎ
2

1
𝑍
1
+ ℎ
2

12
𝑍
2
) ,

𝑌
3
= 𝐶
𝑇
𝐿
𝑇
(ℎ
2

1
𝑍
1
+ ℎ
2

12
𝑍
2
) ,

𝑌
4
= (ℎ
2

1
𝑍
1
+ ℎ
2

12
𝑍
2
) .

(22)

The one-sided Lipschitz condition given by (3) is equivalent
to 𝜌𝑒𝑇𝑒 − 𝑒𝑇Φ ≥ 0. For a positive scalar 𝜀

1
, the expression can

be written as

Ψ
𝑇

1

[
[
[
[
[
[
[
[

[

𝜌𝜀
1
𝐼 0 0 0

−𝜀
1
𝐼

2
0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

−𝜀
1
𝐼

2
0 0 0 0

]
]
]
]
]
]
]
]

]

Ψ
1
≥ 0. (23)

The quadratic inner-boundedness condition implies Φ𝑇Φ ≤

𝛽𝑒
𝑇
𝑒 + 𝛼𝑒

𝑇
Φ, which for a positive scalar 𝜀

2
results in

Ψ
𝑇

1

[
[
[
[
[
[
[
[

[

𝛽𝜀
2
𝐼 0 0 0

𝛼𝜀
2
𝐼

2
0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

𝛼𝜀
2
𝐼

2
0 0 0 −𝜀

2
𝐼

]
]
]
]
]
]
]
]

]

Ψ
1
≥ 0. (24)
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Merging (21), (23), and (24) using the 𝑆-procedure entails

[
[
[
[
[
[
[
[
[

[

(
𝑌
1
+ 𝐴
𝑇
𝑌
4
𝐴

+𝜌𝜀
1
𝐼 + 𝛽𝜀

2
𝐼
) −𝑃𝐿𝐶 − 𝐴

𝑇
𝑌
4
𝐿𝐶 𝑍

1
0 𝑌

2
−
𝜀
1
𝐼

2
+
𝛼𝜀
2
𝐼

2

∗ − (1 − 𝜇)𝑄
3
− 2𝑍
2
+ 𝑌
3
𝐿𝐶 𝑍

2
𝑍
2

−𝑌
3

∗ ∗ −𝑄
1
− 𝑍
1
− 𝑍
2

0 0

∗ ∗ ∗ −𝑄
1
− 𝑍
2

0

∗ ∗ ∗ ∗ −𝜀
2
𝐼 + 𝑌
4

]
]
]
]
]
]
]
]
]

]

< 0. (25)

Applying the Schur complement (see, e.g., [35]) to (25)
produces (11), which implies that �̇�(𝑒, 𝑡) ≤ Ψ

𝑇

1
Υ
1
Ψ
1
< 0; that

is, the error 𝑒 asymptotically converges to the origin. This
finishes the proof of Theorem 3.

Theorem 3 ensures state estimation by means of an
observer for a given gain matrix 𝐿. If a guess for the observer
gain matrix 𝐿 is unobtainable, the following Theorem 4
provides a solution.

Theorem 4. Consider a one-sided Lipschitz nonlinear system
(1) satisfying the time-delay bounds given by (2), the one-sided
Lipschitz condition (3), and the quadratic inner-boundedness
criterion (4). Suppose there exist symmetric matrices 𝑃 ∈

R𝑛×𝑛, 𝑄
𝑖
∈ R𝑛×𝑛, and 𝑍

𝑗
∈ R𝑛×𝑛 for 𝑖 = 1, 2, 3, and

𝑗 = 1, 2, matrix 𝑋 ∈ R𝑛×𝑚, and scalars 𝜀
1
and 𝜀
2
, such that

the inequalities (10) and

[
[
[
[
[
[
[
[
[
[
[
[

[

𝑌
1
+ 𝜌𝜀
1
𝐼 + 𝛽𝜀

2
𝐼 −𝑋𝐶 𝑍

1
0 𝑃 −

𝜀
1
𝐼

2
+
𝛼𝜀
2
𝐼

2
ℎ
1
𝐴
𝑇
𝑃 ℎ

12
𝐴
𝑇
𝑃

∗ −Λ
1

𝑍
2

𝑍
2

0 −ℎ
1
𝐶
𝑇
𝑋
𝑇
−ℎ
12
𝐶
𝑇
𝑋
𝑇

∗ ∗ −Λ
2

0 0 0 0

∗ ∗ ∗ −Λ
3

0 ℎ
1
𝑃 ℎ

12
𝑃

∗ ∗ ∗ ∗ −𝜀
2
𝐼 ℎ

1
𝑃 ℎ

12
𝑃

∗ ∗ ∗ ∗ ∗ −𝑇
1

0

∗ ∗ ∗ ∗ ∗ ∗ −𝑇
2

]
]
]
]
]
]
]
]
]
]
]
]

]

< 0 (26)

are satisfied, where 𝑇
1
= 𝑃𝑍

−1

1
𝑃 and 𝑇

2
= 𝑃𝑍

−1

2
𝑃. Then,

there exists a Luenberger-type observer (5) such that the state-
estimation error 𝑒 asymptotically converges to the origin.

Proof. Employing the congruence transform using diag(𝐼, 𝐼,
𝐼, 𝐼, 𝐼, 𝑃𝑍

−1

1
, 𝑃𝑍
−1

2
) to the inequality (11) and defining𝑋 = 𝑃𝐿

and 𝑇
𝑖
= 𝑃𝑍

−1

𝑖
𝑃 for 𝑖 = 1, 2, we obtain (26). This completes

the proof of Theorem 4.

Remark 5. One-sided Lipschitz nonlinear observer designs
for output-delay systems are presented in Theorems 3 and
4 by incorporating the quadratic inner-boundedness con-
dition and the one-sided Lipschitz constraint. It should be
emphasized that the proposed approach, in contrast to the
approaches in [29–32] considering the delay free systems,
fills the research gap in observer synthesis for one-sided
Lipschitz nonlinear output-delay systems. It is also notable
that the estimation results for the full state vector of the one-
sided Lipschitz nonlinear systems, in any form of time delay,
are lacking in the literature. The presented approach in the
present study can be further unfolded to the state estimation
of nonlinear dynamic systems under delays in the states.

Remark 6. The projected observer-design methodology pro-
vided in Theorems 3 and 4 can be applied to a broad

category of nonlinear systems for two reasons. First, it
leads to a more general feature of one-sided Lipschitz non-
linearity compared with the Lipschitz one that guarantees
state estimation for a relatively larger category of nonlinear
systems. Second, the proposed observer scheme has been
inferred for time-varying time-delay systems that satisfy
the interval 0 ≤ ℎ

1
≤ 𝜏 ≤ ℎ

2
, which commonly

is not addressed. Consequently, the presented delay-range-
dependent observer-synthesis methodology is less conserva-
tive andmore pragmatic than the traditional approaches such
as [16, 17, 23–32, 34].

The proposed delay-range-dependent nonlinear observ-
er-design scheme renders constructive linear results, as in a
particular case 𝑓(𝑥, 𝑢) = 𝐵𝑢 below (see Corollary 7). The
novel delay-range-dependent Lipschitz observer-synthesis
scheme can also be deduced from the one-sided Lipschitz
case (see Corollary 8) by taking a specific form of the
quadratic inner-boundedness constants given by 𝛽 = 𝑙

2 and
𝛼 = 0, where 𝑙 is the Lipschitz constant for 𝑓(𝑥, 𝑢).

Corollary 7. Consider a linear system (1) with 𝑓(𝑥, 𝑢) =

𝐵𝑢 (where 𝐵 is a constant input matrix of an appropriate
dimension) satisfying the time-delay bounds given by (2).
Suppose there exist symmetric matrices 𝑃 ∈ R𝑛×𝑛, 𝑄

𝑖
∈ R𝑛×𝑛,
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and 𝑍
𝑗
∈ R𝑛×𝑛 for 𝑖 = 1, 2, 3, and 𝑗 = 1, 2, and a matrix

𝑋 ∈ R𝑛×𝑚 such that the inequalities

𝑃 > 0, 𝑄
𝑖
> 0, 𝑍

𝑗
> 0, ∀𝑖 = 1, 2, 3, 𝑗 = 1, 2,

[
[
[
[
[
[
[
[
[
[

[

𝑌
1
−𝑋𝐶 𝑍

1
0 ℎ

1
𝐴
𝑇
𝑃 ℎ

12
𝐴
𝑇
𝑃

∗ −Λ
1

𝑍
2

𝑍
2

−ℎ
1
𝐶
𝑇
𝑋
𝑇
−ℎ
12
𝐶
𝑇
𝑋
𝑇

∗ ∗ −Λ
2

0 0 0

∗ ∗ ∗ −Λ
3

0 0

∗ ∗ ∗ ∗ −𝑇
1

0

∗ ∗ ∗ ∗ ∗ −𝑇
2

]
]
]
]
]
]
]
]
]
]

]

< 0

(27)

are satisfied. Then, there exists a Luenberger-type observer (5)
for 𝑓(𝑥, 𝑢) = 𝐵𝑢 with observer gain matrix 𝐿 = 𝑃

−1
𝑋 such

that the state-estimation error 𝑒 asymptotically converges to the
origin.

Corollary 8. Consider a Lipschitz nonlinear system (1) satisfy-
ing the time-delay bounds given by (2) and the quadratic inner-
boundedness criterion (4) for 𝛽 = 𝑙

2 and 𝛼 = 0, where 𝑙 is the
Lipschitz constant for 𝑓(𝑥, 𝑢). Suppose there exist symmetric
matrices 𝑃 ∈ R𝑛×𝑛, 𝑄

𝑖
∈ R𝑛×𝑛, and 𝑍

𝑗
∈ R𝑛×𝑛 for 𝑖 = 1, 2, 3,

and 𝑗 = 1, 2, matrix 𝑋 ∈ R𝑛×𝑚, and a scalar 𝜀
2
, such that the

inequalities (27), 𝜀
2
> 0, and

[
[
[
[
[
[
[
[
[

[

𝑌
1
+ 𝜀
2
𝑙
2
𝐼 −𝑋𝐶 𝑍

1
0 𝑃 ℎ

1
𝐴
𝑇
𝑃 ℎ

12
𝐴
𝑇
𝑃

∗ −Λ
1

𝑍
2

𝑍
2

0 −ℎ
1
𝐶
𝑇
𝑋
𝑇
−ℎ
12
𝐶
𝑇
𝑋
𝑇

∗ ∗ −Λ
2

0 0 0 0

∗ ∗ ∗ −Λ
3

0 ℎ
1
𝑃 ℎ

12
𝑃

∗ ∗ ∗ ∗ −𝜀
2
𝐼 ℎ

1
𝑃 ℎ

12
𝑃

∗ ∗ ∗ ∗ ∗ −𝑇
1

0

∗ ∗ ∗ ∗ ∗ ∗ −𝑇
2

]
]
]
]
]
]
]
]
]

]

< 0 (28)

are satisfied. Then, there exists a Luenberger-type observer (5)
with observer gain matrix 𝐿 = 𝑃

−1
𝑋 such that the state-

estimation error 𝑒 asymptotically converges to the origin.

Remark 9. The outcomes of Corollaries 7 and 8 demonstrate
that the derived results in Theorems 3 and 4 are applicable
even for linear (see, e.g., [13]) and, particularly, for Lipschitz
nonlinear systems, and such linear or Lipschitz nonlinear
delay-range-dependent results for the case of measurement
delays have not been fully explored so far.The deduced linear
results introduce flexibility in the estimation of state vector
under the influence of measurement or output delays. The
introduced Lipschitz constant extracts the aftermath of the

nonlinear term and facilitates the solution of the optimization
problem without complexity.

While ℎ
1

= 0, Theorem 3 reduces to the following
corollary, which provides the delay-dependent observer-
design approach.

Corollary 10. Consider a one-sided Lipschitz nonlinear system
(1) satisfying the time-delay bounds given by (2) (with ℎ

1
= 0,

i.e., 0 ≤ 𝜏 ≤ ℎ
2
) and the one-sided Lipschitz condition (3) along

with the quadratic inner-boundedness criterion (4). Suppose
there exist symmetric matrices 𝑃 ∈ R𝑛×𝑛, 𝑄

𝑖
∈ R𝑛×𝑛, and

𝑍
𝑗
∈ R𝑛×𝑛 for 𝑖 = 2, 3, and 𝑗 = 2, a matrix 𝑋 ∈ 𝑅

𝑛×𝑚, and
scalars 𝜀

1
and 𝜀
2
, such that the inequalities

𝑃 > 0, 𝑄
𝑖
> 0, 𝑍

𝑗
> 0, 𝜀

1
> 0, 𝜀

2
> 0, ∀𝑖 = 2, 3, 𝑗 = 2,

[
[
[
[
[
[
[

[

(
𝑃𝐴 + 𝐴

𝑇
𝑃 + 𝑄

2
+ 𝑄
3

−𝑍
2
+ 𝜌𝜀
1
𝐼 + 𝛽𝜀

2
𝐼
) −𝑋𝐶 + 𝑍

2
0 𝑃 −

𝜀
1
𝐼

2
+
𝛼𝜀
2
𝐼

2
ℎ
2
𝐴
𝑇
𝑃

∗ −Λ
1

𝑍
2

0 −ℎ
2
𝐶
𝑇
𝑋
𝑇

∗ ∗ −Λ
3

0 0

∗ ∗ ∗ −𝜀
2
𝐼 ℎ

2
𝑃

∗ ∗ ∗ ∗ −𝑇
2

]
]
]
]
]
]
]

]

< 0,

(29)

are affirmed. Then, there exists a Luenberger-type observer (5)
with observer gain matrix 𝐿 = 𝑃

−1
𝑋 such that the state-

estimation error 𝑒 asymptotically converges to the origin.

Remark 11. Theorems 3 and 4 provide delay-range-depend-
ent observer-design schemes for one-sided Lipschitz non-
linear systems such that the delay satisfies an interval
0 ≤ ℎ
1
≤ 𝜏 ≤ ℎ

2
; whereas, in Corollary 10, the traditional

delay-dependent approach, assuming the lower bound

as zero, is used to obtain interesting and novel delay-
dependent results as a special category. Hence, the pro-
posed derivation in Theorems 3 and 4, employing an
advance delay-range-dependent concept, can be less con-
servative and more appropriate than the traditionalis-
tic delay-dependent approaches. It is worth mention-
ing that an advanced delay-range-dependent rather than
delay-dependent approach has been exploited in the present
work to establish state-estimation strategies.
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By taking 𝑄
3
= 0, Theorem 4 reduces to the following

delay-rate-independent approach for the fast time-varying
delay case.
Corollary 12. Consider a one-sided Lipschitz nonlinear system
(1) satisfying the time-delay bound given by (2) with ̇𝜏 ≥ 1,

a one-sided Lipschitz condition (3), and the quadratic inner-
boundedness criterion (4). Suppose there exist symmetric
matrices 𝑃 ∈ R𝑛×𝑛, 𝑄

𝑖
∈ R𝑛×𝑛, and 𝑍

𝑗
∈ R𝑛×𝑛 for 𝑖 = 1, 2,

and 𝑗 = 1, 2, a matrix 𝑋 ∈ R𝑛×𝑚, and scalars 𝜀
1
and 𝜀
2
, such

that the inequalities

𝑃 > 0, 𝑄
𝑖
> 0, 𝑍

𝑗
> 0, 𝜀

1
> 0, 𝜀

2
> 0, ∀𝑖 = 1, 2, 𝑗 = 1, 2,

[
[
[
[
[
[
[
[
[
[
[
[

[

(
𝑃𝐴 + 𝐴

𝑇
𝑃 + 𝑄

1
+ 𝑄
2

−𝑍
1
+ 𝜌𝜀
1
𝐼 + 𝛽𝜀

2
𝐼
) −𝑋𝐶 𝑍

1
0 𝑃 −

𝜀
1
𝐼

2
+
𝛼𝜀
2
𝐼

2
ℎ
1
𝐴
𝑇
𝑃 ℎ

12
𝐴
𝑇
𝑃

∗ −2𝑍
2

𝑍
2

𝑍
2

0 −ℎ
1
𝐶
𝑇
𝑋
𝑇
−ℎ
12
𝐶
𝑇
𝑋
𝑇

∗ ∗ −Λ
2

0 0 0 0

∗ ∗ ∗ −Λ
3

0 ℎ
1
𝑃 ℎ

12
𝑃

∗ ∗ ∗ ∗ −𝜀
2
𝐼 ℎ

1
𝑃 ℎ

12
𝑃

∗ ∗ ∗ ∗ ∗ −𝑇
1

0

∗ ∗ ∗ ∗ ∗ ∗ −𝑇
2

]
]
]
]
]
]
]
]
]
]
]
]

]

< 0,

(30)

are satisfied. Then, there exists a Luenberger-type observer (5)
with observer gain matrix 𝐿 = 𝑃

−1
𝑋 such that the state-

estimation error 𝑒 asymptotically converges to the origin.

Remark 13. Corollary 12 provides a delay-range-dependent
stability criterion for the estimation error dynamics (8) under
fast time-varying delays. If 𝜇 ≥ 1, Corollary 12, instead of
Theorem 4, can be effectively utilized to design an observer;
consequently, a delay-rate-independent transformation of the
delay-range-dependent scheme of Theorem 4 for observer
synthesis is operable. Such results as in Corollary 12 are
applicable to the nonlinear systems with fast varying delays
and are detailed to provide a plausible solution to the
observer-design dilemma.

While designing an observer for a nonlinear system (1),
a major issue emerged with unknown rapidly varying

quantities such as external disturbances (for disturbance
rejection see e.g., [48]), due to the fact that a small pertur-
bation can cause the parametric estimates to drift towards
infinity. Consequently, an observer for which the state-
estimation error can diverge for a small-degree of perturba-
tion is considered as fragile (see, e.g., [49]). Therefore, the
scope of Theorem 4 is broadened in Theorem 14 to address
the matter of robustness for observer formulation.

Theorem 14. Consider a one-sided Lipschitz nonlinear system
(1) satisfying the time-delay bounds given by (2) and a one-
sided Lipschitz condition (3) along with the quadratic inner-
boundedness criterion (4). Suppose there exist symmetric
matrices 𝑃 ∈ R𝑛×𝑛, 𝑄

𝑖
∈ R𝑛×𝑛, and 𝑍

𝑗
∈ R𝑛×𝑛 for 𝑖 = 1, 2, 3,

and 𝑗 = 1, 2, a matrix𝑋 ∈ 𝑅
𝑛×𝑚, and scalars 𝛾, 𝜀

1
, and 𝜀

2
, such

that the inequalities (10), 𝛾 > 0, and

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

(
𝑌
1
+ 𝜌𝜀
1
𝐼

+𝛽𝜀
2
𝐼
) −𝑋𝐶 𝑍

1
0 (

𝑃 −
𝜀
1
𝐼

2

+
𝛼𝜀
2
𝐼

2

) 𝑃 𝐼 ℎ
1
𝐴
𝑇
𝑃 ℎ

12
𝐴
𝑇
𝑃

∗ −Λ
1

𝑍
2

𝑍
2

0 0 0 −ℎ
1
𝐶
𝑇
𝑋
𝑇
−ℎ
12
𝐶
𝑇
𝑋
𝑇

∗ ∗ −Λ
2

0 0 0 0 0 0

∗ ∗ ∗ −Λ
3

0 0 0 0 0

∗ ∗ ∗ ∗ −𝜀
2
𝐼 0 0 0 0

∗ ∗ ∗ ∗ ∗ −𝛾𝐼 0 ℎ
1
𝑃 ℎ

12
𝑃

∗ ∗ ∗ ∗ ∗ ∗ −𝛾𝐼 ℎ
1
𝑃 ℎ

12
𝑃

∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝑇
1

0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝑇
2

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0
(31)

are satisfied. Then, there exists a Luenberger-type observer (5)
with observer gain matrix 𝐿 = 𝑃

−1
𝑋 such that the state-

estimation error 𝑒 asymptotically converges to the origin, if
𝑑 = 0, and, if 𝑑 ̸= 0, the 𝐿

2
gain of the state-estimation error 𝑒

with regard to the disturbance 𝑑 is bounded by 𝛾.

Proof. Consider the LK functional (13). Incorporating the
inequality for 𝐿

2
gain reduction

𝐽 (𝑒, 𝑡) = �̇� (𝑒, 𝑡) + 𝛾
−1
𝑒
𝑇
𝑒 − 𝛾𝑑

𝑇
𝑑 < 0 (32)
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yields

∫

𝑡

0

�̇� (𝑒, 𝑡) 𝑑𝑡 + ∫

𝑡

0

(𝛾
−1
𝑒
𝑇
𝑒) 𝑑𝑡 − ∫

𝑡

0

(𝛾𝑑
𝑇
𝑑) 𝑑𝑡 < 0,

𝑉 (𝑒, 𝑡) − 𝑉 (𝑒, 0) + ∫

𝑡

0

(𝛾
−1
𝑒
𝑇
𝑒) 𝑑𝑡 − ∫

𝑡

0

(𝛾𝑑
𝑇
𝑑) 𝑑𝑡 < 0,

(33)

which further implies

√∫

𝑡

0

(𝑒𝑇𝑒) 𝑑𝑡 < 𝛾√∫

𝑡

0

(𝑑𝑇𝑑) 𝑑𝑡. (34)

That is, ‖𝑒‖
2
< 𝛾‖𝑑‖

2
. Considering the case when 𝑑 = 0,

inequality (32) shows that the estimation error asymptotically
converges to zero. And if 𝑑 belongs to 𝐿

2
bounded perturba-

tions, (34) produces ‖𝑒‖
2
/‖𝑑‖
2
< 𝛾 (see also [50, 51]).Working

out the same procedure, under disturbance 𝑑 ̸= 0, as seen in
the proof of Theorem 3, we have 𝐽(𝑒, 𝑡) ≤ Ψ𝑇

2
Υ
2
Ψ
2
, where

Υ
2

=

[
[
[
[

[

𝑊 −𝑃𝐿𝐶− 𝐴
𝑇
𝑌4𝐿𝐶 𝑍1 0 𝑌2 −

𝜀1𝐼

2
+
𝛼𝜀2𝐼

2
𝑌2

∗ −Λ1 + 𝑌3𝐿𝐶 𝑍2 𝑍2 −𝑌3 −𝑌3
∗ ∗ −Λ2 0 0 0

∗ ∗ ∗ −Λ3 0 0

∗ ∗ ∗ ∗ −𝜀2𝐼 + 𝑌4 𝑌4
∗ ∗ ∗ ∗ ∗ −𝛾𝐼 + 𝑌4

]
]
]
]

]

,

𝑊 = 𝑌
1
+ 𝐴
𝑇
𝑌
4
𝐴 + 𝛾
−1
𝐼 + 𝜌𝜀

1
𝐼 + 𝛽𝜀

2
𝐼,

Ψ
𝑇

2
= [𝑒
𝑇
𝑒
𝑇
(𝑡 − 𝜏) 𝑒

𝑇
(𝑡 − ℎ

1
) 𝑒
𝑇
(𝑡 − ℎ

2
) Φ
𝑇
𝑑
𝑇
] .

(35)

Applying the Schur complement, employing congruence
transformation using diag(𝐼, 𝐼, 𝐼, 𝐼, 𝐼, 𝐼, 𝐼, 𝑃𝑍−1

1
, 𝑃𝑍
−1

2
), and

defining 𝑋 = 𝑃𝐿 and 𝑇
𝑖
= 𝑃𝑍

−1

𝑖
𝑃, for 𝑖 = 1, 2, yield (31),

which completes the proof.

Remark 15. Theorem 14, in contrast to Theorem 4, ensures
robustness of the observer design for one-sided Lipschitz
nonlinear systems subject to time-varying interval time
delays under 𝐿

2
norm-bounded disturbances. The results for

delay-range-dependent observer design against disturbances
are rare, and, in this regard, the proposed methodology for
robust state estimation is utilitarian. Moreover, for one-sided
Lipschitz dynamical processes, the proposed methodology
can be appealing due to its effective utilization in the envi-
ronment involving perturbations.

The constraints in Theorems 4 and 14 include nonlinear
terms contained in 𝜑 = diag(−𝑃𝑍−1

1
𝑃, −𝑃𝑍

−1

2
𝑃), which intro-

duce difficulties in determining the observer gain matrix.
The diagonal structure 𝜑 can be replaced by diag(−𝑇

1
, −𝑇
2
),

where 𝑇
1
= 𝑃𝑍
−1

1
𝑃 and 𝑇

2
= 𝑃𝑍
−1

2
𝑃, to solve the constraints

using cone complementary linearization technique [36, 52].
The original feasibility problem in Theorems 4 or 14 can be

solved by optimizingmin Trace{𝑍
1
𝑆
1
+𝑍
2
𝑆
2
+𝑇
1
𝑇
1
+𝑇
2
𝑇
2
+

𝑃𝑃} subject to

[
𝑃 𝐼

∗ 𝑃
] > 0, [

𝑍
𝑖
𝐼

∗ 𝑆
𝑖

] > 0, (36)

[
𝑇
𝑖
𝐼

∗ 𝑇
𝑖

] > 0, (37)

in addition to the constraints in Theorems 4 or 14 as seen
in [46], where 𝑆

𝑖
, 𝑇
𝑖
, and 𝑃 are employed to represent the

inverses of 𝑍
𝑖
, 𝑇
𝑖
, and 𝑃, respectively, for 𝑖 = 1, 2. Since we

have defined 𝑇
𝑖
= 𝑃𝑍
−1

𝑖
𝑃, (37) further yields

[
𝑃𝑍
−1

𝑖
𝑃 𝐼

∗ 𝑇
𝑖

] > 0, 𝑖 = 1, 2. (38)

Applying congruence transform diag(𝑃, 𝐼) and substituting
𝑆
𝑖
= 𝑍
−1

𝑖
, the inequality

[
𝑆
𝑖
𝑃

∗ 𝑇
𝑖

] > 0, 𝑖 = 1, 2, (39)

is implicitly obtained.Hence, by including constraint (39) and
using 𝑇

𝑖
= 𝑃𝑆
𝑖
𝑃 for 𝑖 = 1, 2, a more appropriate optimization

problem than [46] is obtained as

min Trace(
2

∑

𝑖=1

(𝑍
𝑖
𝑆
𝑖
+ 0.5𝑃𝑆

𝑖
𝑃𝑇
𝑖
+ 0.5𝑇

𝑖
𝑇
𝑖
) + 𝑃𝑃) ,

subject to (36) , (37) , (39) , and inequalities in the
Theorems 4 or 14.

(40)

Note that both conditions 𝑇
𝑖
= 𝑇
−1

𝑖
and 𝑃𝑍−1

𝑖
𝑃 = 𝑇

−1

𝑖
, for 𝑖 =

1, 2, are given equal weight factors in the objective function
of (40).

Remark 16. Recently, a control approach for TS fuzzy systems
based on the cone complementary linearization algorithm
was developed in [46]. A similar approach by solving
min Trace{𝑍

1
𝑆
1
+𝑍
2
𝑆
2
+ 𝑇
1
𝑇
1
+ 𝑇
2
𝑇
2
+ 𝑃𝑃} subject to (36),

(37), and the inequalities in Theorems 4 or 14 can be used
to determine observer gain matrix; however, it can lead to
conservative results.The inclusion of (39) (or (38)) alongwith
(37) and the application of the modified objective function
in optimization (40) ensure 𝑇

𝑖
= 𝑇
−1

𝑖
and 𝑃𝑍−1

𝑖
𝑃 = 𝑇

−1

𝑖
for

𝑖 = 1, 2, which, in contrast to [46], enforces the additional
condition 𝑇

𝑖
= 𝑃𝑍

−1

𝑖
𝑃 required for obtainment of unique

solutions to 𝑇
1
and 𝑇

2
matrices. Hence, constraint (39),

defined in the present case, is mandatory in order to obtain
a less conservative solution to the nonlinear optimization
problem.

Remark 17. The objective function in (40) contains highly
nonlinear terms, 𝑃𝑆

𝑖
𝑃𝑇
𝑖
for 𝑖 = 1, 2. To deal with this
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problem, linearization of the trace function is employed to
obtain
𝜓 (𝑆
𝑖
, 𝑇
𝑖
, 𝑇
𝑖
, 𝑃, 𝑃, 𝑍

𝑖
)

= Trace(
2

∑

𝑖=1

(𝑍
𝑖𝑜
𝑆
𝑖
+ 𝑍
𝑖
𝑆
𝑖𝑜
+ 0.5

× (𝑃
𝑜
𝑆
𝑖𝑜
𝑃
𝑜
𝑇
𝑖
+ 𝑃
𝑜
𝑆
𝑖𝑜
𝑃𝑇
𝑖𝑜
+ 𝑃
𝑜
𝑆
𝑖
𝑃
𝑜
𝑇
𝑖𝑜

+𝑃𝑆
𝑖𝑜
𝑃
𝑜
𝑇
𝑖𝑜
+ 𝑇
𝑖
𝑇
𝑖𝑜
+ 𝑇
𝑖𝑜
𝑇
𝑖
))

+𝑃
𝑜
𝑃 + 𝑃𝑃

𝑜
) ,

(41)

where the subscript o is used to represent the corresponding
constantmatrices of 𝑆

𝑖
,𝑇
𝑖
,𝑇
𝑖
,𝑃,𝑃, and𝑍

𝑖
, for 𝑖 = 1, 2, appear-

ing from the linearization process. By application of (41),
optimization problem (40) can be solved via available LMI-
tools and the cone complementary linearization algorithm
(see details in [36, 52]) to obtain an appropriate solution to
Theorems 4 or 14. The LMI-based proficiencies are preferred
owing to their ability in addressing large scale, complex,
multiconstraint, and multiobjective optimization problems.

Generally, cone complementary linearization algorithm
based solutions for determining controller or observer gains
require extra time and computations because of their iterative
nature in contrast to the simple LMIs. It should be noted
that the observer or controller design conditions like in
Theorem 3 for delay-range-dependent systems are hard to
convert into LMIs. Additionally, the present work provides
an offline solution for the observer gain calculation, for which
extra design computations will not affect either feasibility of
the constraints or real-time state-estimation application.

4. Simulation Results

In this section, we verify the proposed nonlinear time-
delay observer-design methodologies using two numerical
examples.

Example 18. Consider the dynamics of a nonlinear system
borrowed from [16] under delayed output, given by

�̇�
1
= 𝑐
1
𝑥
2
(𝑡) − 𝑙

1
𝑥
1
(𝑡) ,

�̇�
2
= 𝑐
2
𝑥
3
(𝑡) − 𝑙

2
𝑥
2
(𝑡) ,

�̇�
3
= 𝑐
3
𝑥
1
(𝑡) 𝑥
2
(𝑡) + 𝑐

4
cos (𝑥

2
(𝑡)) − 𝑙

3
𝑥
3
(𝑡) + 𝑐

3
𝑢 (𝑡) ,

𝑦 (𝑡) = 𝑥
1
(𝑡 − 𝜏 (𝑡)) .

(42)

Using the parametric values mentioned in [16], we come up
with the model as

𝑓 (𝑥, 𝑢) = [0 2 cos (𝑥
2
(𝑡)) + 8𝑢 (𝑡) 0]

𝑇

,

𝐴 = [

[

−1 0.9 0

0 −1 0.4

0.48 0.3 −1

]

]

, 𝐶 = [

[

1

0

0

]

]

𝑇

.

(43)

The output experiences a measurement delay 𝜏(𝑡) and the
input function is 𝑢(𝑡) = sin(0.35(𝑡)). For the state vector
estimation in the presence of output delay, the gain vector for
the observer is calculated as

𝐿 = [

[

−2.9070

3.2632

−3.0164

]

]

, (44)

from the given eigenvalues of 𝜆 = {−0.030, −0.031, −0.032}.
The parameters for quadratic inner-boundedness inequality
andone-sidedLipschitz condition are selected as𝛼 = 1.5, 𝛽 =
−1, and 𝜌 = 3, respectively. A comparison of the computed
upper bounds on delay, that is, ℎ

2
, for ℎ

1
= 0, that ensures

state estimation is listed in Table 1. It can be affirmed that
the results of the proposed observer strategy are broader and
applicable for a large range of delays in contrast to [16]. It is
also notable that the proposed approach can also be employed
for a specific interval of time delay with ℎ

1
̸= 0.

Example 19. Consider the dynamics of a moving object in
Cartesian coordinates (see [30, 32, 47]) described by

𝑓 (𝑥, 𝑢) = − (𝑥
2

1
+ 𝑥
2

2
) [
𝑥
1

𝑥
2

] ,

𝐴 = [
1 1

−1 1
] , 𝐶 = [

1

0
]

𝑇

.

(45)

The parameters of the one-sided Lipschitz condition and
quadratic inner-boundedness inequality are

𝜌 = 0, 𝛼 = −100, 𝛽 = −99. (46)

In contrast to [30, 32, 47], it is assumed that the output of the
system is subject to a measurement delay of 𝜏 = 0.12 sec, and
the output is available with 𝑦(𝑡) = 𝑥

1
(𝑡 − 𝜏). The goal is to

estimate the state vector in the presence of the output delay.
By solving the optimization problem (40) for Theorem 14
with parameters ℎ

1
= 0.05, ℎ

2
= 0.25, and 𝜇 = 0, we obtain

the observer gain matrix as

𝐿 = [
0.564

0.080
] , (47)

for 𝛾 = 450.191. The results of the proposed methodology
in the absence of disturbance are shown in Figures 1–3. It
is evident in Figures 1 and 2 that the observer states are
converging to the plant states, while, as depicted in Figure 3,
the state-estimation errors are converging to zero.

To evaluate the observer performance against distur-
bances, we select

𝑑 = [
0.2 sin (12𝑡)
0.15 cos (8𝑡)] . (48)

Figure 4 plots the state-estimation errors against perturba-
tions. It is notable that the estimation errors are converging
in a region neighboring the origin, indicating the observer’s
robustness against time-varying disturbances.
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Figure 1: Estimation of the plant state 𝑥
1
under measurement delay.
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Figure 2: Estimation of the plant state 𝑥
2
undermeasurement delay.

Table 1: Allowable upper bound of ℎ
2
for ℎ
1
= 0 s, 𝛼 = 1.5, 𝛽 = −1,

and 𝜌 = 3.

Methods Observer-design approach
in [16]

The proposed
methodology in

Theorem 3
ℎ
2 16 sec ≈1011 sec

Focusing on the conservatism of the traditional LMI
approaches, the state observer methodologies [30, 32, 47] did
not consider time delays; therefore, their applicability to time-
delay systems is doubtful. For instance, in [32], the observer
gain matrix for the delay free system (45) is found to be

𝐿 = [
0.0079

0.2661
] . (49)
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Figure 3: State-estimation errors converging to zero by application
of the proposed observer strategy against output delay.
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Figure 4: Robust state estimation using the proposed observer
against disturbances and measurement delay.

With this observer gain, the LMI condition of Theorem 3 is
found to be infeasible for a delay range between ℎ

1
= 0.05

and ℎ
2
= 0.25. Contrastingly, the proposed approach in

Theorems 3–14 can be applied for observer synthesis of one-
sided Lipschitz nonlinear systems subject to measurement
delays. It should also be pointed out that the proposed
observer gain in (47) cannot be applied for delay free systems
because it does ensure stability of error dynamics; however,
a suitable observer gain can also be calculated from the
proposed approach inTheorems 3–14 by setting ℎ

1
= ℎ
2
= 0.

To end, the proposed observer-design methodology can be
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efficaciously applied to state estimation of one-sided Lipschitz
nonlinear systems against output delays and perturbations.

5. Conclusion

A new approach to the nonlinear observer-design prob-
lem for nonlinear systems subject to delayed output mea-
surements was presented in this paper. By application of
Jensen’s inequality, LK functional, LMI tools, and appropriate
matrix transformations, the delay-range-dependent condi-
tions, solvable via the cone complementary linearization
algorithm for observer synthesis of one-sided Lipschitz non-
linear systems with time-varying output delays, were derived.
An observer construction methodology for estimation of the
states of dynamical nonlinear systems that is robust against
disturbances was formulated by application of 𝐿

2
stability

theory.Themethodology is less conventional andmore prag-
matic than the traditional approaches, due to consideration
of unavoidable output delays for observer design of one-sided
Lipschitz nonlinear systems. The additional contributions of
the present work are the incorporation of delay-range and
time-varying delays, as well as the treatment of fast time-
varying delays in the systemdynamics and nonlinear terms in
the design constraints for observer derivation. The resultant
observer-synthesis approach can be applied to the estimation
of the states of industrial nonlinear systems with output-
interval time-varying delays and disturbances. Simulation
results demonstrated the tractability and effectiveness of the
projected one-sided Lipschitz observer-design schemes for
nonlinear output-delay systems.
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