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a b s t r a c t

In this paper, robust adaptive boundary control for a flexible marine riser with vessel dynamics is
developed to suppress the riser’s vibration. To provide an accurate and concise representation of the
riser’s dynamic behavior, the flexible marine riser with vessel dynamics is described by a distributed
parameter system with a partial differential equation (PDE) and four ordinary differential equations
(ODEs). Boundary control is proposed at the top boundary of the riser based on Lyapunov’s direct method
to regulate the riser’s vibration. Adaptive control is designed when the system parametric uncertainty
exists. With the proposed robust adaptive boundary control, uniform boundedness under the ocean
current disturbance can be achieved. The proposed control is implementable with actual instrumentation
since all the required signals in the control can be measured by sensors or calculated by a backward
difference algorithm. The state of the system is proven to converge to a small neighborhood of zero by
appropriately choosing design parameters. Simulations are provided to illustrate the applicability and
effectiveness of the proposed control.

© 2011 Elsevier Ltd. All rights reserved.
1. Introduction

With the increased focus on offshore oil and gas development in
deeper and harsher environments, vibration control of the flexible
marine risers has gained increasing attention. The marine riser is
used as a fluid-conveyed curved pipe drilling crude oil, natural
gas, hydrocarbons, petroleum materials, mud, and other undersea
economic resources, and then transporting those resources in the
ocean floor to the production vessel or platform on the ocean
surface (Kaewunruen, Chiravatchradj, & Chucheepsakul, 2005). A
drilling riser is used for drilling pipe protection and transportation
of the drilling mud, while a production riser is a pipe used for oil
transportation (How, Ge, & Choo, 2009). Vibration and deformation
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of the riser due to the ocean current disturbance and tension
exerted at the top can produce premature fatigue problems, which
require inspections and costly repairs. Recent advance in computer
and electronics technology have allowed the development of
complex electromechanical control systems to suppress the riser’s
vibration.

For the purpose of dynamic analysis, the riser is modeled as an
Euler–Bernoulli beam structure with PDEs since the diameter-to-
length of the riser is small. Based on the distributed parameter
model, various kinds of control methods integrating computer
software and hardware with sensors and actuators have been
investigated to suppress the riser’s vibration. In Do and Pan
(2008), boundary control for the flexiblemarine riserwith actuator
dynamics is designed based on Lyapunov’s direct method and the
backstepping technique. In How et al. (2009), a torque actuator is
introduced at the top boundary of the riser to reduce the angle
and transverse vibration of the riser with guaranteed closed-
loop stability. In Ge, He, How, and Choo (2010), boundary control
for a coupled nonlinear flexible marine riser with two actuators
in transverse and longitudinal directions has been designed to
suppress the riser’s vibration. However, in these works, only the
riser dynamics is considered and the coupling between riser and
vessel is neglected, which can influence the dynamic response of
the riser system and lead to an imprecise model.
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Mathematically, the flexible marine riser with vessel dynamics
is represented by a set of infinite dimensional equations (i.e.,
PDEs describing the dynamics of the flexible riser) coupled with
a set of finite dimensional equations (i.e., ODEs describing the
vessel dynamics). The dynamics of the flexible mechanical system
modeled by a set of PDEs is difficult to control due to the
infinite dimensionality of the system. The modal control method
for the control design of PDEs is based on truncated finite
dimensional modes of the system, which are derived from the
finite element method, the Galerkin’s method or the assumed
modes method (Armaou & Christofides, 2000; Balas, 1978b;
Christofides & Armaou, 2000; Ge, Lee, & Zhu, 1997; Sakawa,
Matsuno, & Fukushima, 1985; Vandegrift, Lewis, & Zhu, 1994). The
truncated models are obtained via the model analysis or spatial
discretization, in which the flexibility is represented by a finite
number of modes by neglecting the higher frequency modes. The
problems from the truncation procedure in the modeling need to
be carefully treated in practical applications. A potential drawback
in the above control design approaches is that the control can
cause the actual system to become unstable due to excitation
of the unmodeled, high-frequency vibration modes (i.e., spillover
effects) Ge, Lee, and Zhu (1998). Spillover effects which result in
instability of the system have been investigated in Balas (1978a);
Meirovitch and Baruh (1983) when the control of the truncated
system is restricted to a few criticalmodes. The control order needs
to be increased with the number of flexible modes considered to
achieve high accuracy of performance and the control may also be
difficult to implement from the engineering point of view since full
state measurements or observers are often required. In an attempt
to overcome the above shortcomings of the truncated model
based control, boundary control has been developed for different
infinite dimensional systems (Endo, Matsuno, & Kawasaki, 2009;
Ge, Lee, & Wang, 2001; Ge, Lee, & Zhu, 1996; Ge, Lee, Zhu,
& Hong, 2001; Geniele, Patel, & Khorasani, 1997; How, Ge, &
Choo, 2010; Karafyllis, Christofides, & Daoutidis, 1999; Krstic &
Smyshlyaev, 2008; Lee, Ge, & Wang, 2001; Li, Hou, & Li, 2008;
Morgul, 1992; Nguyen & Hong, 2010; Smyshlyaev, Guo, & Krstic,
2009; Yang, Hong, & Matsuno, 2004, 2005a,b; Zhu & Ge, 1998).
In these papers, system dynamics analysis and control design
are carried out directly based on the PDEs of the system. In
contrast, boundary control where the actuation and sensing are
applied only through the boundary of the system utilizes the
distributed parameter model with PDEs to avoid control spillover
instabilities.

Boundary control is considered to bemore practical in a number
of research fields including vibration control of flexible structures,
fluid dynamics and heat transfer, which requires relatively few
sensors and actuators. The relevant applications for this approach
inmechanical flexible structures consist of second order structures
(strings and cables) and fourth order structures (beams and
plates) (Rahn, 2001). In Qu (2001), robust and adaptive boundary
control laws are developed to reduce the vibration of a stretched
string on a moving transporter. In Yang et al. (2004), adaptive
boundary control is designed for an axially moving string with a
spatiotemporally varying tension, where the system is proved to
be asymptotically stable. In Fung and Tseng (1999), a boundary
control law based on the Lyapunov method with sliding mode is
employed to guarantee the asymptotic and exponential stability
of an axially moving string. In Rahn, Zhang, Joshi, and Dawson
(1999), boundary control for a linear gantry crane model with a
flexible cable is developed and experimentally implemented. In
Krstic and Smyshlyaev (2008), a backstepping boundary controller
and observer are designed to stabilize the string and beam
model respectively. In Baz (1997), boundary control is presented
to stabilize beams by using active constrained layer damping.
In Fard and Sagatun (2001), nonlinear boundary control is
Fig. 1. A typical flexible marine riser system.

constructed to exponentially stabilize a free transversely vibrating
beam.

In this paper, we design the boundary control law based on the
distributed parameter model of the flexible riser system. Both the
dynamics of the vessel and the vibration of the riser are considered
in the dynamic analysis. The stability analysis of the closed-loop
system is based on Lyapunov’s direct method without resorting to
semigroup theory or functional analysis.

The remainder of the paper is organized as follows. The
governing equation (PDE) and boundary conditions (ODEs) of the
flexible riser system are introduced by use of Hamilton’s principle
in Section 2. The boundary control design via Lyapunov’s direct
method is discussed separately for both the exact model case and
the system parametric uncertainty case in Section 3, where it is
shown that the uniform boundedness of the closed-loop system
can be achieved by the proposed control. Simulations are carried
out to illustrate performance of the proposed control in Section 4.
The conclusion of this paper is shown in Section 5.

2. Problem formulation and preliminaries

A typical marine riser system for crude oil transportation
depicted in Fig. 1 is the connection between a production vessel
on the ocean surface and a well head on the ocean floor. As shown
in Fig. 1, the control is implemented from the actuator in the vessel,
i.e., the top boundary of the riser. In this paper, we assume that the
original position of the vessel is directly above the subseawell head
with no horizontal offset and the riser is filled with seawater.

Remark 1. For clarity, the notations,w′(x, t) =
∂w(x,t)
∂x , w′′(x, t) =

∂2w(x,t)
∂x2

, w′′′(x, t) =
∂3w(x,t)
∂x3

, w′′′′(x, t) =
∂4w(x,t)
∂x4

, ẇ(x, t) =

∂w(x,t)
∂t , and ẅ(x, t) =

∂2w(x,t)
∂t2

are introduced throughout the paper.

2.1. Dynamic analysis

The kinetic energy of the riser system Ek can be represented as

Ek =
1
2
Ms[ẇ(L, t)]2 +

1
2
ρ

∫ L

0
[ẇ(x, t)]2dx, (1)

where x and t represent the independent spatial and time variables
respectively, Ms denotes the mass of the surface vessel, w(L, t)
and ẇ(L, t) are the position and velocity of the vessel respectively,
w(x, t) is the displacement of the riser at the position x for time t ,
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ρ > 0 is the uniform mass per unit length of the riser, and L is the
length of the riser.

The potential energy Ep of the riser system can be obtained from

Ep =
1
2
EI

∫ L

0
[w′′(x, t)]2dx +

1
2
T

∫ L

0
[w′(x, t)]2dx, (2)

where EI is the bending stiffness of the riser and T is the tension of
the riser. The first term of Eq. (2) is due to the bending, the second
term is due to the strain energy of the riser.

The virtual work done by the ocean current disturbance on the
riser and the vessel is given by

δWf =

∫ L

0
f (x, t)δw(x, t)dx + d(t)δw(L, t), (3)

where f (x, t) is the distributed transverse load on the riser due to
the hydrodynamic effects of the ocean current, and d(t) denotes
the environmental disturbances on the vessel. The virtual work
done by damping on the riser and the vessel is represented by

δWd = −

∫ L

0
cẇ(x, t)δw(x, t)dx − dsẇ(L, t)δw(L, t), (4)

where c is the damping coefficient of the riser, and ds denotes
the damping coefficient of the vessel. We introduce the boundary
control u from the actuator in the vessel, i.e., the top boundary of
the riser, to produce a transverse force for vibration suppression.
The virtual work done by the boundary control is written as

δWm = u(t)δw(L, t). (5)

Then, we have the total virtual work done on the system as

δW = δWf + δWd + δWm

=

∫ L

0
[f (x, t)− cẇ(x, t)] δw(x, t)dx

+ [u(t)+ d(t)− dsẇ(L, t)] δw(L, t). (6)

Based on the property of the Euler–Bernoulli beam for small
displacement, Hamilton’s principle permits the derivation of
equations of motion from energy quantities in a variational form.
Hamilton’s principle (Goldstein, 1951) is represented by∫ t2

t1
δ(Ek − Ep + W )dt = 0, (7)

where t1 and t2 are two time instants, t1 < t < t2 is the
operating interval and δ denotes the variational operator, Ek and Ep
are the kinetic and potential energies of the system respectively,
W denotes the virtual work done by nonconservative force
acting on the system, including control force, damping and ocean
disturbance. The principle states that the variation of the kinetic
and potential energy plus the variation of work done by loads
during any time interval [t1, t2] must be equal to zero. Applying
the variation operator and integrating Eqs. (1), (2) and (6) by parts
respectively and substituting δw(x, t) = 0 at t = t1, t2, we obtain∫ t2

t1
δEkdt = −Ms

∫ t2

t1
ẅ(L, t)δw(L, t)dt

− ρ

∫ t2

t1

∫ L

0
ẅδwdxdt. (8)
Following the same procedure as in the previous equation, we
have∫ t2

t1
δEpdt

=

∫ t2

t1

[
EIw′′δw′

|
L
0 −EIw′′′δw |

L
0

+

∫ L

0
EIw′′′′δwdx + Tw′δw

L
0
−

∫ L

0
Tw′′δwdx

]
dt, (9)∫ t2

t1
δWdt =

∫ t2

t1

∫ L

0
(f − cẇ) δwdxdt

+

∫ t2

t1

[u(t)+ d(t)− dsẇ(L, t)] δw(L, t)dt. (10)

Substituting Eqs. (8)–(10) into the Hamilton’s principle Eq. (7),
we obtain the governing equations of the system as

ρẅ(x, t)+ EIw′′′′(x, t)− Tw′′(x, t)− f (x, t)+ cẇ(x, t) = 0, (11)

∀(x, t) ∈ (0, L) × [0,∞), and the boundary conditions of the
system as

w′(0, t) = 0, (12)

w′′(L, t) = 0, (13)
w(0, t) = 0, (14)
−EIw′′′(L, t)+ Tw′(L, t)

= u(t)+ d(t)− dsẇ(L, t)− Msẅ(L, t), ∀t ∈ [0,∞). (15)

2.2. Ocean current disturbance

The effects of a time-varying ocean current U(x, t) on a riser is
modeled as a distributed load (Blevins, 1977; Faltinsen, 1990). The
distributed load on the flexible riser f (x, t) can be expressed as a
combination of a mean drag and an oscillating drag modeled as

f (x, t) =
1
2
ρsCD(x, t)U(x, t)2D + AD cos(4π fvt + θ), (16)

where ρs is the sea water density, CD(x, t) is the drag coefficient,
D is the pipe outer diameter, fv is the shedding frequency, θ is the
phase angle, and AD is the amplitude of the oscillatory part of the
drag force, typically 20% of the first term in f (x, t) (Faltinsen, 1990).
The non-dimensional vortex shedding frequency can be expressed
as

fv =
StU(x, t)

D
, (17)

where St is the Strouhal number.

Assumption 1. For the distributed load f (x, t) on the riser and
the environmental disturbance d(t) on the vessel, we assume that
there exist constants f̄ ∈ R+ and d̄ ∈ R+, such that |f (x, t)| ≤

f̄ , ∀(x, t) ∈ [0, L] × [0,∞) and |d(t)| ≤ d̄, ∀(t) ∈ [0,∞).
This is a reasonable assumption as the time-varying disturbances
f (x, t) and d(t) have finite energy and hence are bounded, i.e.,
f (x, t) ∈ L∞([0, L]) and d(t) ∈ L∞.

Remark 2. For control design in Section 3, only the assertion that
there exists an upper bound on the disturbance in Assumption 1,
|f (x, t)| < f̄ and |d(t)| ≤ d̄, is necessary. The knowledge of
the exact values for f (x, t) and d(t) is not required. As such,
different distributed load models up to various levels of fidelity,
such as those found in Blevins (1977), Chakrabarti and Frampton
(1982), Meneghini et al. (2004), Wanderley and Levi (2005) and
Yamamoto, Meneghini, Saltara, Fregonesi, and Ferrari (2004) can
be applied without affecting the control design or analysis.
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2.3. Preliminaries

For the convenience of stability analysis, we present the
following lemmas and properties for the subsequent development.

Lemma 1 (Rahn, 2001). Let φ1(x, t), φ2(x, t) ∈ R, the following
inequalities hold:

φ1φ2 ≤ |φ1φ2| ≤ φ2
1 + φ2

2 , ∀φ1, φ2 ∈ R. (18)

Lemma 2 (Rahn, 2001). Let φ1(x, t), φ2(x, t) ∈ R, the following
inequalities hold:

|φ1φ2| =

 1
√
δ
φ1


(
√
δφ2)

 ≤
1
δ
φ2
1 + δφ2

2 ,

∀φ1, φ2 ∈ R and δ > 0. (19)

Lemma 3 (Hardy, Littlewood, & Polya, 1959). Let φ(x, t) ∈ R be
a function defined on x ∈ [0, L] and t ∈ [0,∞) that satisfies the
boundary condition

φ(0, t) = 0, ∀t ∈ [0,∞), (20)

then the following inequalities hold:

φ2
≤ L

∫ L

0
[φ′

]
2dx. (21)

Property 1 (Queiroz, Dawson, Nagarkatti, & Zhang, 2000). If the
kinetic energy of the system (11)–(15), given by Eq. (1) is bounded
∀t ∈ [0,∞), then ẇ(x, t), ẇ′(x, t), ẇ′′(x, t) and ẇ′′′(x, t) are
bounded ∀(x, t) ∈ [0, L] × [0,∞).

Property 2 (Queiroz et al., 2000). If the potential energy of the
system (11)–(15), given by Eq. (2) is bounded ∀t ∈ [0,∞), then
w′′(x, t), w′′′(x, t) and w′′′′(x, t) are bounded ∀(x, t) ∈ [0, L] ×

[0,∞).

3. Control design

The control objective is to suppress the vibration of the riser
and stabilize the riser at the small neighborhood of its original
position in the presence of the time-varying distributed load f (x, t)
and the disturbance d(t) due to the ocean current. In this section,
Lyapunov’s direct method is used to construct a boundary control
law u(t) at the top boundary of the riser and to analyze the closed-
loop stability of the system.

In this paper, we analyze two cases for the riser system: (i) exact
model-based control, i.e., EI, T ,Ms and ds are all known; and
(ii) adaptive control for the system parametric uncertainty, i.e.,
EI, T ,Ms and ds are unknown. For the first case, robust boundary
control is introduced for the exact model of the riser system
subject to the ocean disturbance. For second casewhere the system
parameters cannot be directly measured, the adaptive control is
designed to compensate the system parametric uncertainty.

3.1. Robust boundary control based on exact model of the riser system

To stabilize the system given by governing Eq. (11) and
boundary Eqs. (12)–(15), we propose the following control law:

u = −EIw′′′(L, t)+ Tw′(L, t)− sgn(ua)d̄ + dsẇ(L, t)

− k1Msẇ
′(L, t)+ k2Msẇ

′′′(L, t)− kua, (22)
where sgn(·) denotes the signum function, k, k1, k2 are the control
gains and the auxiliary signal ua is defined as

ua = ẇ(L, t)+ k1w′(L, t)− k2w′′′(L, t). (23)
After differentiating the auxiliary signal Eq. (23), multiplying

the resulting equation byMs, and substituting Eq. (15), we obtain
Msu̇a = EIw′′′(L, t)− Tw′(L, t)+ d − dsẇ(L, t)

+ k1Msẇ
′(L, t)− k2Msẇ

′′′(L, t)+ u. (24)
Substituting Eq. (22) into Eq. (24), we have

Msu̇a = −kua + d − sgn(ua)d̄. (25)

Remark 3. All the signals in the boundary control can bemeasured
by sensors or obtained by a backward difference algorithm.w(L, t)
can be sensed by a laser displacement sensor at the top boundary
of the riser, w′(L, t) can be measured by an inclinometer and
w′′′(L, t) can be obtained by a shear force sensor. In practice,
the effect of measurement noise from sensors is unavoidable,
which will affect the control implementation, especially when the
high order differentiating terms with respect to time exist. In our
proposed control (22), ẇ(L, t), ẇ′(L, t) and ẇ′′′(L, t) with only
differentiating once with respect to time can be calculated with
a backward difference algorithm. It is noted that differentiating
twice and thrice the position w(L, t) with respect to time to get
ẅ(L, t) and

...
w(L, t) respectively, are undesirable in practice due to

noise amplification. For these cases, observers are needed to design
to estimate the states values according to the boundary conditions.

Remark 4. The control design is based on the distributed pa-
rameter model Eqs. (11)–(15), and the spillover problems associ-
ated with traditional truncated model-based approaches caused
by ignoring high-frequency modes in controller and observer de-
sign are avoided. For results on model-based control of a dis-
tributed parameter system which is helpful in avoiding spillover
effects, the readers can refer toArmaou andChristofides (2000) and
Christofides and Armaou (2000).

Consider the Lyapunov function candidate
V = V1 + V2 + V3, (26)
where the energy term V1 and an auxiliary term V2 and a small
crossing term V3 are defined as

V1 =
βk2
2
ρ

∫ L

0
[ẇ]

2dx +
βk2
2

EI
∫ L

0
[w′′

]
2dx

+
βk2
2

T
∫ L

0
[w′

]
2dx, (27)

V2 =
1
2
Msu2

a, (28)

V3 = αρ

∫ L

0
xẇw′dx, (29)

where k2 is the control gain, and α, β are the two positive
weighting constants.

Lemma 4. The Lyapunov function candidate given by (26) is upper
and lower bounded as

0 ≤ λ1(V1 + V2) ≤ V ≤ λ2(V1 + V2), (30)

where λ1 and λ2 are two positive constants defined as

λ1 = 1 −
2αρL

min(βρk2, βTk2)
, (31)

λ2 = 1 +
2αρL

min(βρk2, βTk2)
. (32)

Proof. See Appendix A. �
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Lemma 5. The time derivative of the Lyapunov function candi-
date (26) is upper bounded with

V̇ ≤ −λV + ε, (33)

where λ and ε are defined in Appendix B.

Proof. See Appendix B. �

With the above lemmas, the exact model-based control design
for riser system subjected to the ocean current disturbance can be
summarized in the following theorem.

Theorem 1. For the system dynamics described by (11) and bound-
ary conditions (12)–(15), under Assumption 1, and the control
law (22), given that the initial conditions are bounded, we can con-
clude that uniform boundedness (UB): the state of the closed loop sys-
temw(x, t) will remain in the compact set Ω defined by

Ω := {w(x, t) ∈ R| |w(x, t)| ≤ D1,∀(x, t) ∈ [0, L] × [0,∞)} ,

(34)

where constant D1 =


2L

βTλ1k2


V (0)+

ε
λ


.

Proof. Multiplying Eq. (33) by eλt yields

∂

∂t
(Veλt) ≤ εeλt . (35)

Integration of the above inequality, we obtain

V ≤


V (0)−

ε

λ


e−λt

+
ε

λ
≤ V (0)e−λt

+
ε

λ
∈ L∞, (36)

which implies V is bounded. Utilizing Ineq. (21) and Eq. (27), we
have

βk2
2L

Tw2(x, t) ≤
βk2
2

T
∫ L

0
[w′(x, t)]2dx ≤ V1

≤ V1 + V2 ≤
1
λ1

V ∈ L∞. (37)

Appropriately rearranging the terms of the above inequality, we
obtainw(x, t) is uniformly bounded as follows:

|w(x, t)| ≤


2L

βTλ1k2


V (0)e−λt +

ε

λ


≤


2L

βTλ1k2


V (0)+

ε

λ


,

∀(x, t) ∈ [0, L] × [0,∞). � (38)

Remark 5. By choosing the proper values ofα andβ in Appendix B,
it is shown that the increase in the control gain k will result
in a larger σ4, which will lead to a greater λ3. Then the
value of λ will increase, which will reduce the size of Ω and
produce a better vibration suppression performance. We can
conclude that the bound of the system state w(x, t) can be made
arbitrarily small provided that the design control parameters are
appropriately selected. However, increasing kwill bring a high gain
control problem. Therefore, in practical applications, the design
parameters should be adjusted carefully for achieving suitable
transient performance and control action.

Remark 6. From Eq. (37), we can state that V1 is bounded ∀t ∈

[0,∞). Since V1 is bounded, ẇ(x, t), w′′(x, t) and w′(x, t) are
bounded ∀(x, t) ∈ [0, L] × [0,∞). From Eq. (1), the kinetic
energy of the system is bounded and using Property 1, ẇ′(x, t)
and ẇ′′′(x, t) are also bounded ∀(x, t) ∈ [0, L] × [0,∞). From
the boundedness of the potential energy Eq. (2), we can use
Property 2 to obtain that w′′′(x, t) and w′′′′(x, t) are bounded.
Using Assumption 1, Eq. (11) and the above statements, we can
state that ẅ(x, t) is also bounded ∀(x, t) ∈ [0, L] × [0,∞).
From the above information, it is shown that the proposed
control Eq. (22) ensures all internal system signals including
w(x, t), w′(x, t), ẇ(x, t), ẇ′(x, t), ẅ(x, t), w′′′(x, t), ẇ′′′(x, t) and
w′′′′(x, t) are uniformly bounded. Since ẇ(x, t), w′(x, t), ẇ′(x, t),
w′′′(x, t) and ẇ′′′(x, t) are all bounded ∀(x, t) ∈ [0, L] × [0,∞),
andwe can conclude the boundary control Eq. (22) is also bounded
∀t ∈ [0,∞).

Remark 7. For the system dynamics described by Eq. (11) and
boundary conditions (12)–(15), if f (x, t) = 0, the exponential
stability can be achieved with the proposed boundary control (22)
as follows:

|w(x, t)| ≤


2L

βTλ1k2
V (0)e−λt , ∀(x, t) ∈ [0, L] × [0,∞). (39)

3.2. Adaptive boundary control for parametric uncertainty

In Section 3.1, the exact model-based boundary control Eq.
(22) requires the exact knowledge of the riser system. Adaptive
boundary control is designed to improve the performance of the
system via parameter estimation when there are some unknown
parameters. The exact model-based boundary control provides a
stepping stone towards adaptive control, which is designed to
deal with the system parametric uncertainty. In this section, the
boundary control Eq. (22) is redesigned by using adaptive control
since EI, T , ds and Ms are unknown. We rewrite Eq. (24) in the
following form

Msu̇a = PΦ + d + u, (40)

where vectors P andΦ are defined as

P = [w′′′(L, t) −w′(L, t) −ẇ(L, t) k1ẇ′(L, t)− k2ẇ′′′(L, t)],
(41)

Φ = [EI T ds Ms]
T . (42)

We propose the following adaptive boundary control law for
system

u = −PΦ̂ − kua − sgn(ua)d̄, (43)

where the parameter estimate vector Φ̂ is defined as

Φ̂ = [EI T ds Ms]
T . (44)

The adaptation law is designed as

˙̂
Φ = Γ PTua − rΓ Φ̂, (45)

where Γ ∈ R4×4 is a diagonal positive-definite matrix and r
is a positive constant. We define the maximum and minimum
eigenvalue of matrix Γ as λmax and λmin respectively. The
parameter estimate error vector Φ̃ ∈ R4 is defined as

Φ̃ = Φ − Φ̂. (46)

Substituting Eq. (43) into Eq. (40) and using Eq. (46) in Eq. (45),
we have

Msu̇a = PΦ̃ − kua + d − sgn(ua)d̄, (47)
˙̃
Φ = −Γ PTua + rΓ Φ̂. (48)

Consider the Lyapunov function candidate

Va = V +
1
2
Φ̃TΓ −1Φ̃, (49)
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where V is defined as Eq. (26), and Φ̃ is the parameter estimate
error vector.

Lemma 6. The Lyapunov function candidate given by (49) is upper
and lower bounded as

0 ≤ λ1a(V1 + V2 + ‖Φ̃‖
2) ≤ Va ≤ λ2a(V1 + V2 + ‖Φ̃‖

2), (50)

where λ1a and λ2a are two positive constants defined as

λ1a = min

1 −

2αρL
min(βρk2, βTk2)

,
1

2λmax


, (51)

λ2a = max

1 +

2αρL
min(βρk2, βTk2)

,
1

2λmin


. (52)

Proof. See Appendix C. �

Lemma 7. The time derivative of the Lyapunov function candi-
date (49) is upper bounded with

V̇a ≤ −λaVa + ψ, (53)

where λa andψ are two positive constants defined in Appendix D.

Proof. See Appendix D. �

With the above lemmas, the adaptive control design for the
riser system subjected to the ocean current disturbance can be
summarized in the following theorem.

Theorem 2. For the system dynamics described by (11) and bound-
ary conditions (12)–(15), under Assumption 1, and the control
law (43), given that the initial conditions are bounded, we can con-
clude that uniform boundedness (UB): the state of the closed loop sys-
temw(x, t) will remain in the compact set Ωa defined by

Ωa := {w(x, t) ∈ R| |w(x, t)| ≤ D2,∀(x, t) ∈ [0, L] × [0,∞)} ,

(54)

where constant D2 =


2L

βTλ1ak2


Va(0)+

ψ

λa


.

Proof. Multiplying Eq. (53) by eλat yields

∂

∂t
(Vaeλat) ≤ ψeλat . (55)

Integrating of the above inequality, we obtain

Va ≤


Va(0)−

ψ

λa


e−λat +

ψ

λa
≤ Va(0)e−λat +

ψ

λa
, (56)

which implies Va is bounded. Utilizing Ineq. (21) and Eq. (27), we
have

βk2
2L

Tw2(x, t) ≤
βk2
2

T
∫ L

0
[w′(x, t)]2dx ≤ V1 ≤ V1 + V2

≤
1
λ1a

Va ∈ L∞. (57)

Appropriately rearranging the terms of the above inequality, we
obtainw(x, t) is uniformly bounded as follows:

|w(x, t)| ≤


2L

βTλ1ak2


Va(0)e−λat +

ψ

λa



≤


2L

βTλ1ak2


Va(0)+

ψ

λa


,

∀(x, t) ∈ [0, L] × [0,∞). � (58)
Table 1
Parameters of the riser system.

Parameter Description Value

L Riser length 1000.00 m
D Riser external diameter 152.40 mm
EI Riser stiffness 1.5 × 107 N m2

Ms Vessel mass 9.60 × 106 kg
ds Vessel damping 1 × 103 N s/m
T Riser tension 8.11 × 107 N
ρ Riser mass per unit 500.00 kg/m
ρs Sea water density 1024.00 kg/m3

c Riser damping 2.00 N s/m2

Remark 8. From a similar analysis of Remark 5, we can conclude
that system state w(x, t) with the proposed robust adaptive
boundary control can bemade arbitrarily small by choosing control
gain k in Eq. (43) appropriately.

Remark 9. From Eq. (56), we can obtain that the parameter es-
timate error Φ̃ is bounded ∀t ∈ [0,∞). Using a derivation
similar to those employed in Remark 6, we can state the pro-
posed control Eq. (43) ensures all internal system signals includ-
ing w(x, t), w′(x, t), ẇ(x, t), ẇ′(x, t), ẅ(x, t), w′′′(x, t), ẇ′′′(x, t)
and w′′′′(x, t) are uniformly bounded. Since Φ̂, w′(x, t), ẇ(x, t),
w′′′(x, t) and ẇ′′′(x, t) are all bounded ∀(x, t) ∈ [0, L] × [0,∞),
and we can conclude the boundary adaptive control Eq. (43) is also
bounded ∀t ∈ [0,∞).

Remark 10. For the system dynamics described by Eq. (11)
and boundary conditions (12)–(15), if there is no distributed
disturbance for the riser system, i.e., f (x, t) = 0, the boundedness
stability can be achieved with the proposed boundary control (43)
as follows:

|w(x, t)| ≤


2L

βTλ1ak2


Va(0)e−λat +

r‖Φ‖2

2λa


,

∀(x, t) ∈ [0, L] × [0,∞). (59)

4. Numerical simulations

Simulations for a riser of length 1000munder the ocean current
disturbance are carried out to demonstrate the effectiveness of
the proposed boundary control Eqs. (22) and (43). In this article,
the finite difference (FD) method is chosen to simulate the system
performance with the proposed boundary control.

The riser, initially at rest, is excited by a distributed transverse
disturbance due to the ocean current. The corresponding initial
conditions of the riser system are given as

w(x, 0) = 0, (60)
ẇ(x, 0) = 0. (61)

The system parameters are given in Table 1.
Large vibrational stresses are normally associated with a

resonance that exists when the frequency of the imposed force
is tuned to one of the natural frequencies (Bokaian, 1990). In our
simulation experiments, the ocean surface current velocity U(t) is
modeled as a mean flow with worst case sinusoidal components
to simulate the riser with a mean deflected profile. The sinusoids
have frequencies ofωi = {0.867, 1.827, 2.946, 4.282}, for i = 1–4,
corresponding to the four natural modes of vibration of the riser.
The current U(t) is expressed as

U(t) = Ū + U ′

4−
i=1

sin(ωit), i = 1, 2, . . . , 4, (62)
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Fig. 2. Ocean surface current U(t).
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Fig. 3. Displacement of the riser without control.

where Ū = 2 ms−1 is the mean flow current and U ′
= 0.2 is the

amplitude of the oscillating flow. The surface current generated by
Eq. (62) is shown in Fig. 2. The full current load is applied from
x = 1000 m to x = 0 m and thereafter linearly decline to zero
at the ocean floor, x = 0, to obtain a depth dependent ocean
current profile U(x, t). The distributed load f (x, t) is generated
using Eq. (16) with CD = 1.361, β = 0, St = 0.2 and fv = 2.625.
The disturbance d(t) on the vessel is generated by the following
equation.

d(t) = [3 + 0.8 sin(0.7t)+ 0.2 sin(0.5t)

+ 0.2 sin(0.9t)] × 105. (63)

Displacement of the riser system for free vibration, i.e., u(t) =

0, under the ocean disturbance is shown in Fig. 3. Displacement
of the riser system with exact model-based control Eq. (22), by
choosing k = 1 × 107, under the ocean disturbance is shown in
Fig. 4. When the system parameters EI, T , ds andMs are unknown,
displacement of the riser systemwith adaptive control Eq. (43), by
choosing k = 1×107, r = 0.0001 and Γ = diag{1, 1, 1, 1}, under
the ocean disturbance is shown in Fig. 5. Figs. 4 and 5 illustrate that
the proposed boundary control (22) and (43) are able to stabilize
the riser at the small neighborhood of zero by appropriately
choosing design parameters. The corresponding boundary control
input for the exact model-based control and the adaptive control
are shown in Fig. 6.

5. Conclusion

Vibration suppression for a flexible marine riser system
subjected to ocean current disturbance has been presented in this
paper. Two cases have been investigated: (i) exact model-based
Displacement of the beam with exact model based control
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Fig. 4. Displacement of the riser with exact model-based control.
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Fig. 5. Displacement of the riser with adaptive control.

Fig. 6. Control input u(t).

control, and (ii) robust adaptive control for the system parametric
uncertainty. Robust boundary control has been proposed based
on the exact model of the riser system, and adaptive control has
been designed to compensate the system parametric uncertainty.
With the proposed control, closed-loop stability under the
external disturbance has been proven by using Lyapunov’s direct
method. The proposed control is designed based on the original
infinite dimensional model (PDE), and the spillover instability
phenomenon is eliminated. The control is implementable since
all the required signals in the control can be measured by
sensors or obtained by a backward difference algorithm.Numerical
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simulations have been provided to illustrate the effectiveness of
the proposed boundary control.
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Appendix A. Proof of Lemma 4

Proof. Applying Ineq. (18) in Eq. (29) yields

|V3| ≤ αρL
∫ L

0
([w′

]
2
+ [ẇ]

2)dx

≤ α1V1, (64)

where

α1 =
2αρL

min(βρk2, βTk2)
. (65)

Then, we obtain

− α1V1 ≤ V3 ≤ α1V1. (66)

Considering α is a small positive weighting constant satisfying
0 < α <

min(βρk2,βTk2)
2ρL , we can obtain

α2 = 1 − α1 = 1 −
2αρL

min(βρk2, βTk2)
> 0, (67)

α3 = 1 + α1 = 1 +
2αρL

min(βρk2, βTk2)
> 1. (68)

Then, we further have

0 ≤ α2V1 ≤ V1 + V3 ≤ α3V1. (69)

Given the Lyapunov function candidate in Eq. (26), we obtain

0 ≤ λ1(V1 + V2) ≤ V ≤ λ2(V1 + V2), (70)

where λ1 = min(α2, 1) = α2 and λ2 = max(α3, 1) = α3 are two
positive constants. �

Appendix B. Proof of Lemma 5

Proof. Differentiating Eq. (26) with respect to time leads to

V̇ = V̇1 + V̇2 + V̇3. (71)

The first term of the Eq. (71) is

V̇1 = A1 + A2 + A3, (72)

where

A1 = βρk2

∫ L

0
ẇẅdx, (73)

A2 = βEIk2

∫ L

0
w′′ẇ′′dx, (74)

A3 = βTk2

∫ L

0
w′ẇ′dx. (75)
Substituting the governing equation (11) into A1, we obtain

A1 = βk2

∫ L

0
ẇ


−EIw′′′′

+ Tw′′
+ f − cẇ


dx. (76)

Using the boundary conditions and integrating Eq. (74) by parts,
we obtain

A2 = −βEIk2w′′′(L, t)ẇ(L, t)+ βEIk2

∫ L

0
ẇw′′′′dx. (77)

Using the boundary conditions and integrating Eq. (75) by parts,
we obtain

A3 = βTk2w′(L, t)ẇ(L, t)− βTk2

∫ L

0
ẇw′′dx. (78)

Substituting Eqs. (76)–(78) into Eq. (72), we have

V̇1 = βk2

−EIw′′′(L, t)+ Tw′(L, t)


ẇ(L, t)

−βck2

∫ L

0
[ẇ]

2dx + βk2

∫ L

0
f ẇdx. (79)

Substituting the Eq. (23) into Ineq. (79), we obtain

V̇1 = −
βEI
2


[ẇ(L, t)]2 + k22[w

′′′(L, t)]2 + k21[w
′(L, t)]2


+
βEI
2

u2
a + β(Tk2 − EIk1)w′(L, t)ẇ(L, t)

+βEIk1k2w′′′(L, t)w′(L, t)− βck2

∫ L

0
[ẇ]

2dx

+βk2

∫ L

0
f ẇdx. (80)

Using Ineq. (19), we obtain

V̇1 ≤ −
βEI
2


[ẇ(L, t)]2 + k22[w

′′′(L, t)]2 + k21[w
′(L, t)]2


+
βEI
2

u2
a + β|Tk2 − EIk1|δ1[w′(L, t)]2

+
β

δ1
|Tk2 − EIk1|[ẇ(L, t)]2 − β(c − δ2)k2

∫ L

0
[ẇ]

2dx

+βEIk1k2w′′′(L, t)w′(L, t)+
βk2
δ2

∫ L

0
f 2dx, (81)

where δ1 and δ2 are two positive constants.
The second term of the Eq. (71) is

V̇2 = Msuau̇a

= −ku2
a + dua − sgn(ua)uad̄

= −ku2
a + dua − |ua|d̄

≤ −ku2
a. (82)

The third term of the Eq. (71) is

V̇3 = αρ

∫ L

0
(xẅw′

+ xẇẇ′)dx

= α

∫ L

0
xw′


−EIw′′′′

+ Tw′′
+ f − cẇ


dx

+αρ

∫ L

0
xẇẇ′dx

= B1 + B2 + B3 + B4 + B5, (83)
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where

B1 = −α

∫ L

0
EIxw′w′′′′dx, (84)

B2 = α

∫ L

0
Txw′w′′dx, (85)

B3 = α

∫ L

0
fxw′dx, (86)

B4 = −α

∫ L

0
cxw′ẇdx, (87)

B5 = αρ

∫ L

0
xẇẇ′dx. (88)

After integrating Eq. (84) by parts and using the boundary
conditions, we obtain

B1 = −αEILw′(L, t)w′′′(L, t)+ αEI
∫ L

0
w′w′′′dx

+αEI
∫ L

0
xw′′w′′′dx. (89)

By integrating Eq. (89) by parts, we obtain

B1 = −αEILw′(L, t)w′′′(L, t)−
3αEI
2

∫ L

0
[w′′

]
2dx. (90)

After integrating Eq. (85) by parts and using the boundary
conditions, we obtain

B2 = αTL[w′(L, t)]2 − αT
∫ L

0


[w′

]
2
+ xw′w′′


dx. (91)

Combining Eqs. (85) and (91), we obtain

B2 =
αTL
2

[w′(L, t)]2 −
αT
2

∫ L

0
[w′

]
2dx. (92)

Using Ineq. (19), we obtain

B3 ≤
αL
δ3

∫ L

0
f 2dx + αLδ3

∫ L

0
[w′

]
2dx, (93)

B4 ≤
αcL
δ4

∫ L

0
[ẇ]

2dx + αcLδ4

∫ L

0
[w′

]
2dx, (94)

where δ3 and δ4 are two positive constants. Integrating Eq. (88) by
parts, we obtain

B5 =
αρL
2

[ẇ(L, t)]2 −
αρ

2

∫ L

0
[ẇ]

2dx. (95)

Applying Eqs. (90), (95) and Ineqs. (92)–(94) in Eq. (83), we
obtain

V̇3 ≤ −αEILw′(L, t)w′′′(L, t)−
3αEI
2

∫ L

0
[w′′

]
2dx

+
αTL
2

[w′(L, t)]2 −
αT
2

∫ L

0
[w′

]
2dx +

αL
δ3

∫ L

0
f 2dx

+αLδ3

∫ L

0
[w′

]
2dx +

αcL
δ4

∫ L

0
[ẇ]

2dx + αcLδ4

∫ L

0
[w′

]
2dx

+
αρL
2

[ẇ(L, t)]2 −
αρ

2

∫ L

0
[ẇ]

2dx. (96)
Applying Ineqs. (81), (82) and (96) into Eq. (26), and utilizing
Ineqs. (19), we obtain

V̇ ≤ −


βck2 +

αρ

2
− βδ2k2 −

αcL
δ4

 ∫ L

0
[ẇ]

2dx

−


αT
2

− αLδ3 − αcLδ4

 ∫ L

0
[w′

]
2dx

−


βEIk21
2

− |βEIk1k2 − αEIL|δ5 −
αTL
2

−β|Tk2 − EIk1|δ1


[w′(L, t)]2 −


k −

βEI
2


u2
a

−


βEI
2

−
β

δ1
|Tk2 − EIk1| −

αρL
2


[ẇ(L, t)]2

−


βEIk22
2

−
|βEIk1k2 − αEIL|

δ5


[w′′′(L, t)]2

−
3αEI
2

∫ L

0
[w′′

]
2dx +


βk2
δ2

+
αL
δ3

 ∫ L

0
f̄ 2dx

≤ −λ3(V1 + V2)+ ε, (97)

where ε =


βk2
δ2

+
αL
δ3

  L
0 f̄ 2dx =


βk2
δ2

+
αL
δ3


Lf̄ 2, the constants

k, k1, k2,α,β , δ1, δ2, δ3, δ4 and δ5 are chosen to satisfy the following
conditions:

α <
min(βρk2, βTk2)

2ρL
, (98)

βEIk21
2

− |βEIk1k2 − αEIL|δ5 −
αTL
2

−β|Tk2 − EIk1|δ1 ≥ 0, (99)
βEI
2

−
β

δ1
|Tk2 − EIk1| −

αρL
2

≥ 0, (100)

βEIk22
2

−
|βEIk1k2 − αEIL|

δ5
≥ 0, (101)

σ1 = βck2 +
αρ

2
− βδ2k2 −

αcL
δ4

> 0, (102)

σ2 =
3αEI
2

> 0, (103)

σ3 =
αT
2

− αLδ3 − αcLδ4 > 0, (104)

σ4 = k −
βEI
2
> 0, (105)

λ3 = min

2σ1
βρ

,
2σ2
βEI

,
2σ3
βT

,
2σ4
Ms


> 0. (106)

From Ineqs. (70) and (97) we have

V̇ ≤ −λV + ε, (107)

where λ = λ3/λ2 and ε are two positive constants. �

Appendix C. Proof of Lemma 6

Proof. From Ineq. (30), we have

λ1(V1 + V2) ≤ V ≤ λ2(V1 + V2), (108)

where λ1 and λ2 are two positive constants defined in Eqs. (31) and
(32). From the properties of matrix Γ , we have

1
2λmax

‖Φ̃‖
2

≤
1
2
Φ̃TΓ −1Φ̃ ≤

1
2λmin

‖Φ̃‖
2. (109)
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Combining Ineqs. (108) and (109), we have

0 ≤ λ1a(V1 + V2 + ‖Φ̃‖
2) ≤ Va ≤ λ2a(V1 + V2 + ‖Φ̃‖

2), (110)

where λ1a = min

λ1,

1
2λmax


and λ2a = max


λ2,

1
2λmin


are two

positive constants. �

Appendix D. Proof of Lemma 7

Proof. We obtain the time derivation of the Lyapunov function
candidate Eq. (49) as

V̇a = V̇ + Φ̃TΓ −1 ˙̃
Φ. (111)

Substituting Eq. (47) into the second term of the Eq. (71), we
have

V̇2 = Msuau̇a

= −ku2
a + dua − sgn(ua)d̄ua + PΦ̃ua

≤ −ku2
a + PΦ̃ua. (112)

Applying the results of Lemma 5 and utilizing Ineqs. (81), (112)
and (96) in V̇ , we obtain

V̇ ≤ −λ3(V1 + V2)+ PΦ̃ua + ε, (113)

where λ3 is defined in Eq. (106) and ε is defined in Appendix B.
Application of Ineq. (113) into Eq. (111) yields

V̇a ≤ −λ3(V1 + V2)+ Φ̃T

PTua + Γ −1 ˙̃

Φ


+ ε. (114)

Substituting Eq. (48) into Ineq. (114), we have

V̇a ≤ −λ3(V1 + V2)+ rΦ̃T Φ̂ + ε

≤ −λ3(V1 + V2)−
r
2
‖Φ̃‖

2
+

r
2
‖Φ‖

2
+ ε

≤ −λ3a(V1 + V2 + ‖Φ̃‖
2)+

r
2
‖Φ‖

2
+ ε, (115)

where λ3a = min

λ3,

r
2


is a positive constant. From Ineqs. (110)

and (115), we have

V̇a ≤ −λaVa + ψ, (116)

where λa = λ3a/λ2a and ψ =
r
2‖Φ‖

2
+ ε > 0. �
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