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SUMMARY

In this paper, a tracking algorithm for autonomous navigation of automated guided vehicles (AGVs) is
presented. The developed navigation algorithm is an interacting multiple-model (IMM) algorithm used to
detect other AGVs using fused information from multiple sensors. In order to detect other AGVs, two
kinematic models were derived: A constant-velocity model for linear motion, and a constant-speed turn
model for curvilinear motion. In the constant-speed turn model, a nonlinear information filter (IF) is used
in place of the extended Kalman filter (KF). Being equivalent to the KF algebraically, the IF is extended to
N-sensor distributed dynamic systems. The model-matched filter used in multi-sensor environments takes
the form of a federated nonlinear IF. In multi-sensor environments, the information-based filter is easier to
decentralize, initialize, and fuse than a KF-based filter. In this paper, the structural features and
information-sharing principle of the federated IF are discussed. The performance of the suggested
algorithm using a Monte Carlo simulation is evaluated under the three navigation patterns. Copyright ©
2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Automated guided vehicle (AGV) is a vehicle that is driven by an automatic control system that
takes the role of the driver [1]. Sensors on the road/vehicle or infrastructure provide
measurements of the location and speed of the vehicle, which are used by the automatic control
system to generate the appropriate commands for the throttle/brake actuators in order to follow
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certain position and speed trajectories. In a fully automated container terminal, AGVs are used
to replace the manually driven trucks that transport containers within the terminal. Figure 1
shows an AGV, with a load, in the Europe Container Terminal (ECT) at Rotterdam.

An AGV system consists of a vehicle, an onboard controller, a management system, a
communication system, and a navigation system. Figure 2 shows a configuration of an AGV in
the automated container terminal. The navigation system provides guidance and navigation to
the AGVs in the operating yard. The effectiveness of a navigation system depends on the
interpretation of the information arriving from sensors, which provide details of the
surrounding environment and obstacles. In particular, all of these systems rely on the detection
and subsequent tracking of objects around the AGV. Such detection information is provided by
radar, lidar, laser scanner, and vision sensor.

Many studies on the autonomous navigation and localization of AGVs have appeared in
the literature. Adam et al. [2] presented a method of determining the position and orientation
of an AGV by fusing odometry with the information provided by a vision system. Lim and
Kang [3] investigated a technique for the localization of a mobile robot by using sonar
sensors. Localization is the continual provision of knowledge of position that is deduced from
its a priori position estimation. A natural landmark navigation algorithm was utilized for
autonomous vehicles operating in relatively unstructured environments by Madhavan and
Durrant-Whyte [4, 5].

Figure 1. An AGV in the automated container terminal of ECT at Rotterdam.
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Figure 2. Configuration of an AGV in an automated container terminal.
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In order to detect other AGVs using the object information obtained from multiple sensors,
tracking techniques based on the Bayesian approach are usually used [6]. Techniques for
tracking manoeuvering targets are used in many tracking and surveillance systems as well as in
applications where reliability is the main concern [6-10,11]. In particular, tracking a
manoeuvering target using multiple models can provide better performance than using a single
model. A number of multiple-model techniques to track a manoeuvering target have been
proposed in the literature: the multiple-model algorithm [9], the interacting multiple-model
(IMM) algorithm [6, 8, 12, 13], the adaptive IMM [14-16], the fuzzy IMM [17, 18], and others.

Generally, target motion models can be divided into two subcategories: the uniform motion
model and the manoeuvering model. A manoeuvering target moving at a constant turn-rate and
speed is usually modelled as a manoeuvering model, and is called a co-ordinated turn model
[6,8,15-17,19,20]. For application to air traffic control, a fixed-structure IMM algorithm with
a single constant-velocity model and two co-ordinated turn models was analysed [8]. Semerdjiev
and Mihaylova [21] discussed variable- and fixed-structure augmented IMM algorithms,
whereas a fixed-structure algorithm only was discussed by Li and Bar-Shalom [8], and was
applied to a manoeuvering ship tracking problem by augmenting the turn-rate error.

Data fusion techniques are used to employ a number of sensors (which may be of different
types) and to fuse the information from all of these sensors in a central processor. In a
distributed system, the processing of raw data is performed at local sensors and the results are
transmitted to a data fusion centre for track processing in order to obtain the final results. As an
alternative method to improve the track fusion, the information filter (IF) [6,22-24], which is
claimed to be the algebraic equivalent to the Kalman filter (KF) [22], was developed. The IF is
essentially a KF expressed in measures of information about state estimates and their associated
covariances. It has been called the inverse covariance form of the KF [23]. In addition,
a decentralized IF (DIF) was developed by Mutambara [23]. Carelli and Freire [25] proposed
a state variables estimation structure that fuses sonar and odometric information by using
a decentralized version of the IF [23]. Guivant et al. [26] designed a high-accuracy outdoor
navigation system based on standard dead-reckoning sensors and laser range and bearing
information.

Carlson and Berarducci [27, 28] considered a federated structure as another means of data
fusion. It is known that the federated KF (FKF) has the advantages of simplicity and fault-
tolerant capability over other decentralized filter techniques. Nebot and Durrant-Whyte [29]
presented the design of a high-integrity navigation system for use in large autonomous mobile
vehicles. A decentralized estimation architecture was also presented for the fusion of
information from different asynchronous sources. Bruder [30] used, a decentralized hierarchical
fusion architecture with feedback for the multi-sensor integration problem in robotic
applications.

The contributions of this paper are as follows. First, the IMM algorithm is applied to a
tracking algorithm for AGVs in navigating autonomously in multi-sensor environments within
an automated container terminal. Second, two kinematic models for the possible navigation
patterns of AGVs were derived: a constant-velocity model for linear motions and a constant-
speed turn model for curvilinear motions. Third, for the constant-speed turn model, an FNIF
was used in multi-sensor environments. Fourth, in this study, unlike the FKF, there are no gain
or innovation covariance matrices, and the maximum dimension of a matrix to be inverted is the
state dimension. Fifth, this paper shows that, in information sharing, the FIF/FNIF is equal to
the centralized IF/NIF (CIF/CNIF). Sixth, the suggested algorithm reduces the root mean
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squares (RMS) error in the case of rectilinear motions and detects the occurrence of quick
manoeuvering in the case of turning motions.

This paper is organized as follows. In Section 2, we provide the various navigation patterns of
AGVs. A stochastic hybrid system is formulated, and two kinematic models are discussed. In
Section 3, we formulate an FIF for a constant-velocity model and an FNIF for a constant-speed
turn model in an IMM algorithm in multi-sensor environments. In Section 4, we evaluate the
performance of these filters using a Monte Carlo simulation under the various patterns. Section 5
concludes the paper.

2. PROBLEM FORMULATION

In this section, after analysing the navigation patterns of an AGV in a terminal, a stochastic
hybrid system in the form of an IMM algorithm to detect other AGVs using multi-sensors
(radar, lidar, laser scanner, sonar, vision, etc.) is formulated. Also, two kinematic models
representing the analysed navigation patterns are introduced.

2.1. Navigation patterns

Figure 3 depicts the various navigation patterns of an AGV [31]: straight line and curve, cut-in/
out, and U-turn. All of these patterns can be represented by a combination of a constant-
velocity rectilinear motion, a constant-acceleration rectilinear motion, a constant angular
velocity curvilinear motion, and a constant angular acceleration curvilinear motion. Two
stochastic kinematic models for describing these motions will be investigated: one for rectilinear
motion, and the other for curvilinear motion. These typical navigation patterns are described
briefly as follows.

(1) Straight line and curve. In this situation, the AGV detects a preceding AGV that follows
straight lines and curves on a curved road [32, 33].
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Figure 3. Various navigation patterns of AGVs: cross-lane layout.
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(i1) Cut-in/out. Cut-in/out indicates the situation in which the AGV detects a manoeuvering
AGYV that cuts in (or out) to (or from) the lane while it is being tracked. In this case, the
target AGV changes its motion from a rectilinear motion to a curvilinear motion and
then back to a rectilinear motion, and the detection of up to three surrounding AGVs is
assumed: one in front, one to the left, and one to the right.

(iii) U-turn. This situation occurs when the target AGV changes its driving direction by 180°.
The U-turn consists of three motions as follows: the target AGV moves rectilinearly,
undergoes a uniform circular turning of up to 180° at a constant yaw rate, and then
converts to a rectilinear motion in the opposite direction.

It will be shown in an upcoming study that a constant-velocity model will capture both
constant-velocity and accelerative rectilinear motions without and with an additional noise
term, respectively. On the other hand, a constant-speed turn model will cover both constant
angular velocity and angular accelerative curvilinear motions without and with a noise term,
respectively.

2.2. Stochastic hybrid system

Following the work of Li and Bar-Shalom [8], a stochastic hybrid system with additive noise is
considered as follows:

x(k) = fTk — 1, x(k — 1), m(k)] + glk — 1, x(k — 1),v[k — 1, m(k)], m(k)] 1
with noisy measurements
z(k) = hlk, x(k), m(k)] + wlk, m(k)] (2)

where x(k) € R™ is the state vector including the position, velocity, and yaw rate of the AGV at
discrete time k. m(k) is the scalar-valued modal state (navigation mode index) at instant k, which
is a homogeneous Markov chain with probabilities of transition given by

P{imi(k +1) | mi(k)} =ny Vmj,mje M )

where P{-} denotes the probability and M is the set of modal states, which are, constant-
velocity, constant acceleration, constant angular rate turning with a constant radius of
curvature, among others. The considered system is hybrid since the discrete event m(k) appears
in the system. In the autonomous navigation of an AGV, m(k) denotes the navigation mode of
the preceding AGV, in effect during the sampling period ending at &, that is, the time period
(tx—1, tx]. The event for which a mode m; is in effect at time k is denoted as

mj(k) = {m(k) = m;} 4)

z(k) € W™ is the vector-valued noisy measurement from the sensor at time k, which is mode
dependent. v[k — 1, m(k)] € R™ is the mode-dependent process noise sequence with mean vk — 1,
m(k)] and covariance Q[k — 1, m(k)]. w[k, m(k)] € R"™ is the mode-dependent measurement noise
sequence with mean W[k, m(k)] and covariance R[k,m(k)]. Finally f, g, and 4 are nonlinear
vector-valued functions.
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2.3. Two kinematic models

The concept of using noise-driven kinematic models originates from the fact that noises with
different levels of variance can represent different motions. A model with high-variance noise
can capture manoeuvering motions, while a model with low-variance noise represents uniform
motions. The multiple-model approach assumes that a model can immediately capture complex
system behaviour better than others.

Two kinematic models for rectilinear and curvilinear motions are now derived. First,
assuming that accelerations in the steady state are quite small (abrupt motions like a sudden
stop or a collision are not factored in), linear accelerations or decelerations can be reasonably
well accounted for by process noises with the constant-velocity model. That is, the constant-
velocity model plus a zero-mean noise with an appropriate covariance representing the
magnitude of acceleration can handle uniform motions on the road. In discrete time, the
constant-velocity model with noise is given by

1 T 0 0 T 0
01 00 T

x(k) = 0o 1T x(k—1)+ 0 172 v(k —1) Q)
0 0 0 1 0o T

where T is the sampling time (0.01s), x(k) is the state vector including the position and velocity
of the preceding vehicle in the longitudinal () and lateral (1) directions at discrete time k&, that is,

x(k) = [&(k) &(k) n(k) rik)Y (6)

with £ and 5 denoting the orthogonal co-ordinates of the horizontal plane, and v is a zero-mean
Gaussian white noise representing the accelerations with an appropriate covariance Q. If v(k) is
the acceleration increment during the kth sampling period, the velocity during this period is
calculated by v(k)T, and the position is altered by v(k)T?/2.

Second, a discrete-time model for turning is derived from a continuous-time model for
co-ordinated turn motion [6, p. 183]. A constant-speed turn is a turn at a constant yaw rate
along a road of constant radius of curvature. However, the curvatures of actual roads are not
constant. Hence, a fairly small noise is added to a constant-speed turn model for the purpose of
capturing the variation of the road curvature. The noise in the model represents the modelling
error, such as the presence of angular acceleration or a non-constant radius of curvature. For a
vehicle turning at a constant angular rate and moving at a constant speed (the magnitude of the
velocity vector is constant), the kinematic equations in the (£,#) plane are

(1) = —wij(1),  j(t) = wé(1) (7
where &(7) is the normal (longitudinal) acceleration and () denotes the tangential acceleration,
and w is the constant yaw rate (w >0 implies a counterclockwise turn). The tangential
component of the acceleration is equal to the rate of change of the speed, that is,
ij(1) = dij(r)/dt = d(w&(2))/dt, and the normal component is defined as the square of the speed
in the tangential direction divided by the radius of the curvature of the path, that is,
&) = —12(1) /(1) = —*E (1) /E(r) where 4(1) = wé(r). The state space representation of
Equation (7) with the state vector defined by x(¢) = [£(7) &(¢) n(?) #(¢)] becomes

X(t) = Ax(1) )

Copyright © 2006 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2007; 21:533—555
DOI: 10.1002/acs



IMM ALGORITHM 539

where
01 0 O
0 0 0 —o
A =
0 0 0 1
0 w 0 O
The state transient matrix of the system, Equation (8), is given by
'1 sin wt 0 _l—coscot‘
w w
0 cos wt 0 —sin wt
et = . ©)
1 — cos wt | sin wt
w w
L0 sin wt 0 coswt |

It is remarked that if the angular rate @ in Equation (7) is time varying, Equation (9) would no
longer be true. In the sequel, following the approach of Bar-Shalom ez al. [6, p. 466], a ‘nearly’
constant speed turn model in a discrete-time domain is introduced. In this approach, the model
itself is derived from Equation (9), but the angular rate is allowed to vary.

A new state vector formulated by augmenting the angular rate w(k) to the state vector of
Equation (7) is defined as follows:

xX(k) = [E(k) (k) n(k) k) k) (10)

where superscript a denotes the augmented value. Then, the nearly constant speed turn model is
defined as follows [6, p. 467]:

sinw(k — DT 0 1 —cosw(k—1)T 0'
wlk—1) wlk—1)
0 coswk— )T 0 —sinw(k — )T 0
x(k) = 1 —cosw(k — )T | sinow(k — 1)T 0 XUk =1)
ok —1) ok —1)
0 sinw(k —1)T 0 coswk —1)T 0
10 0 0 0 1]
. -
T? 0 0
T 0 0
+ 0 T72 0 vilk—1) (11)
0 T 0
L0 0 T
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Evidently, both Equations (5) and (11) are special forms of Equation (1). In addition, it is
reasonable to assume that the transition between the navigation modes of an AGV has the
Markovian probability governed by Equation (3). Consequently, the kinematic behaviours of
an AGV can be suitably described in the framework of stochastic hybrid systems.

3. FNIF FOR CURVILINEAR MOTIONS

The concept (structure) of an IMM algorithm is referred to in Bar-Shalom et al. [6, p. 454] and
Li and Bar-Shalom [8]. In this study, two models in the IMM algorithm were used: one for
rectilinear motion, and the other for curvilinear motion. The tracking procedure of the AGV in
a rectilinear motion, using Equation (5), is carried out by an FIF. However, in tracking
curvilinear motions, which requires the estimation of w with a new augmented model, Equation
(8) in Section 2, an FNIF is used.

3.1. The decentralized IF

We will begin by reviewing the CIF equations [23], as a means of introducing notation, and for
later comparison with the FIF equations to be suggested in Section 3.3. Denote the information
matrix as Y(k | k) = P~!(k | k) and information state as y(k | k) = P~!(k | k)X(k | k), respectively.
Then, at the master filter, assimilation equations to produce the global information state and
information matrix with all the sensor data are given as

(1) Time update (prediction)
Pklk—1)=Lk|k—Dptk—1k—1)

Yk|k—1)=[Fk—-1)Y '(k—1|k—1DF(k—1)+ Q(k —1)]! (12)

(i) Measurement update
Pk L) = 3k | k = 1)+ H'(K) R (k)=(k)

Y(k | k)= Y(k |k — 1)+ H' (k)R (k) H(K) (13)

where the information prediction coefficient L(k | kK — 1) is given by
Lk |k—1)=Y(k|k—1DFk—-1)Y Yk—1|k—1) (14)

Remark 1

For the system and measurement Equations (1) and (2), the KF provides a recursive solution for
the estimate X(k | k) of the state x(k) in the form of the estimate X(k |k — 1) and the new
observation z(k). However, it is preferable to employ an IF since in multi-sensor structures the
IF is easier to employ than the KF [23]. The IF is a more direct and natural method of dealing
with multi-sensor data fusion problems than the conventional covariance-based KF. The
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attractive features of the IF are as follows. First, there are no gain or innovation covariance
matrices, and the maximum dimension of a matrix to be inverted is the state dimension. In
multi-sensor systems, the state dimension is generally smaller than the observation dimension.
Hence, it is preferable to employ the IF and to invert smaller information matrices than to use
the KF and invert larger innovation covariance matrices. Second, initializing the IF is much
easier than the KF. This is because information estimates (matrix and state) are easily initialized
to zero information. Third, the IF is easier to distribute and fuse than is the KF.
For a local estimate by jth sensor, the decentralized estimation equations are given by

(i) Time update (prediction)
Vilk |k —=1) = Li(k | k = )yi(k = 1 | k —T)

Yk |k = 1) =[F(k = 1)Y; '(k =1k = DF(k - 1)+ Q% = 1] (15)

(i) Measurement update
ik | k) = pi(k | k = 1)+ Hj(k)R; (k)z(k)

Yilk | k) = Yk | k — 1)+ H{(k)R; (k) H;(k) (16)

where the information prediction coefficient L;(k | k — 1) is given by
Lj(k|k71):}’j(k|k71)F(k71))fi’l(k71|k71) (17)

and j;(k | k) and Y;(k | k) denote the partial information state and its information matrix based
only on the jth sensor’s own observation. Then, the assimilation equations to produce global
information estimates are as follows:

(1) Information state

N
Pk [ k)= 9k | k= 1)+ > 5k | k) = ik | k= 1)} (18)

J=1

(i1)) Information matrix
N
Y(k|h) =Yk |k—1)+> {¥k|k) = Yk |k—1)} (19)

J=1

Remark 2

As an alternative filtering method of the CIF, the DIF was suggested [33]. In this study,
however, contrary to the fully connected decentralized estimation algorithm of Mutambara [23],
there was no communication between sensors in the filter structure. Chong et al. [34] and Zhu
et al. [35] show Kalman-filtering fusion with feedback from a central processor in a
decentralized architecture. It is composed of multiple structures involving a master filter at
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high level and local filters at low level. A local filter, related to each observation sensor,
estimates the local state variable. The master filter combines the estimates transmitted from the
local filters and deduces the globally optimal state estimate. A decentralized filter presented in
this paper employs the architecture proposed by Chong et al. [34] and Zhu et al. [35]. As
explained earlier, the decentralized estimation algorithm has the same form as the centralized
estimation algorithm in real-time implementation, since the master model includes N estimates.
In general, however, in the event that the system models at local filters are all the same and the
observation model is decomposed to each local filter, the filter structure is not optimal. The
estimate of a local filter is affected by the overlapping use of the system model. The end result is
that the computational load can be significantly reduced by this decentralized technique.
Although the decentralized filtering technique has been recognized as an effective method of
reducing the typically high computational load in standard centralized filtering, its potentially
high fault-tolerance performance capability has not been widely investigated.

3.2. The FIF for the constant-velocity model

An FKF can be considered a special form of decentralized KF [28]. The federated filter takes the
decentralized technique one step further by employing the information-sharing principle. The
federated filter can obtain the globally optimal estimate by applying the information-sharing
principle to each local filter and then fusing the estimates of these local filters. This provides a
great variety of possibilities for improving the computational efficiency as well as the fault-
tolerance performance. For the systems of a local filter structure such as Equations (15) and
(16), the global information matrix and information state equations are as follows:

Ymasier(k | k) = Y1k | k) + -+ Yn(k | k) (20)
N

Fmaster(k | k) =Y Bilk | k) 1)
i=1

Theorem 1

For system Equations (1) and (2), and the local filter structure Equations (15) and (16), the
solution of the FIF, Equations (20) and (21), is equal to the solution of the CIF, Equations (12)
and (13), if conditions (a)—(c) are satisfied.

(a) The initial value of the information matrix, the initial information state, and the process
noise covariance are distributed to local filters as follows:

1
Y,7(0|0):y—Y(0|0), i=1,...,N (22)
70100 =Y (k| OY; (k| k)§O]0), i=1,....,N (23)
Qi) =700k, i=1,....N 24)
Copyright © 2006 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2007; 21:533—555
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(b) The information state and its information matrix, which are calculated using Equations
(20) and (21), are distributed to the local filters as follows:
1 .
Yt(k | k) = V_ Ymasler(k | k): i=1...,N (25)

);I(k | k) = );master(k | k), i=1,...,N (26)

(c) An information-sharing factor is defined as follows

1
=1, 0<—<l 27
Vi

Proof

We shall prove this hypothesis using a mathematical induction. First, we assume that at the
k — 1 time epoch, the information state and the information matrix of the master filter is
identical to those of the CIF as follows:

Ymaster(k_1|k_1):Y*(k_1|k_1)> izla"'aN (28)

Pmaster(k — 1| k=)= k—1|k—-1), i=1,...,N 29)

where 7* and Y* are the information state and its information matrix of the CIF, respectively.
The fused information state and its information matrix are sent to the local filters as follows:

1
Yz(k =1 | k — l) = ; Yinaster (30)

i

ﬁi(k_ 1 |k_ 1) :);master(k_ 1 |k_ 1) (31)

The prediction procedure at each local filter, using Equations (12) and (13) of the CIF, is
rewritten as follows:

Yitk | k= 1) =[F(k = D{Yi(k = 1 | k = D} ' F'(k = 1) + Ok — D]
-1

—1
Flk— 1){% Yimastr — 1 K — 1)} Fk - 1)+ 7,0k — 1)

i

:;[F(k — DY paserlk = 1 k= DF' (k= 1)+ Ok — 1)] !

1

1
:y—Y*(k|k—1) i=1,...,N (32)

1
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Yilk |k = 1) =Li(k | k = Dk = 1| k= 1)

:Li(k | k— l)ﬁmaster(k -1 | k — 1)
=Ltk | k—1)5*k —1]k—1)

=kl k—1) (33)

The measurement update of the information matrix at each local filter can be obtained as
follows:

Yilk | k) = Yi(k | k = 1)+ H{()R;" (k) H(k)
1
:y_Ymaster(k | k — 1) + H{(k)Rl_l(k)Hl(k) (34)
Hence, the assimilation equation in the master filter is expressed as follows:

N

Ymaster(k | K) = > Yillk | k)

i=1

N
i=1

N
aser(k | k= 1)+ Hi(k)R; (k) Hi(k)

i=1

[ —

Y
i

~

N

=Y(k|k—1)+ Y Hj(k)R; " (k)Hi(k)
i=1

=Yk | k) (35)

The measurement update of the information state at the local filters can be written as

Jilk | k) = Jilk | k = 1) + Hj(k)R; " (Kk)zi(k) (36)
Therefore, the assimilation equation in the master filter is given by

N
J;master :)91 + "'+J9N = Z );i(k | k)
i=1
N
= Wik | k= 1) + Hj(k)R; " (k)zi(k)]
i=1

N
=5k k= 1)+ Hi(k)R " (k)zi(k)

i=1
=54k | )

o 67
Copyright © 2006 John Wiley & Sons, Ltd.
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Remark 3

According to Equations (22) and (24) of the suggested filtering scheme, the system process
information is distributed among the master and local filters in the proportion of 1/y;. The issue
in the suggested filter design is to determine how the total information is to be divided among
the individual filters to achieve a higher fault-tolerance performance and improvement in
throughput and efficiency. In the suggested filter, contrary to the other decentralized filters, the
master filter combines only the filtered information state and its information matrix of local
filters. Therefore, the number of variables transmitted from the local filters to the master filter is
diminished. The FIF structure is shown in Figure 4. In Figure 4, dx denotes xg — Pmaster and LF
denotes a local filter.

3.3. The FNIF for the constant-speed turn model

Since the model in Equation (11) is nonlinear, the estimation of the state, Equation (10), will be
performed via the FNIF. The nearly constant-speed turn model of Equation (11) can be
rewritten as follows:

x4 k) = fxk — 1), ok — D]+ Gk — Dv'(k — 1) (38)

where the function f“(-) is known and remains unchanged during the estimation procedure. The
noise transition matrix G(k — 1) is the same form as that given in Equation (11). To obtain the
predicted state x“(k | k — 1), the nonlinear function in Equation (38) is expanded in Taylor series
around the latest estimate X“(k — 1 | kK — 1) with terms up to first order, to yield the first-order
EKF. The vector Taylor series expansion of Equation (38) up to first order is

xXUk) =f Xk — 1]k —1),0(k — D]+ fiatk — D[x(k— 1) = Xk — 1| k= 1)]

x4

+HOT + G(k — I)v(k — 1) )
dx
L
Reference >
X
R - Y, Y
Y master’ 1 / 1 “master Master
< Filter
Sensor #1 p| LF#l | i
p - (Fusion)
Zq Y1 :Yl
ymaster’ 1 / Yz Ymaster
—p] <
Sensor #2 p LFi#2 >
a 5,.Y,
Y master’ 1/ YN Ymaster y ,
ster
< mas
Sensor #N LF#N
T} R > Y master
Y
IN'N

Figure 4. FIF structure.
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where HOT represents the higher-order terms and

Gk — 1) = [V “(x% 0)] yozsoge—1jk—1)

i sina(k— )T 1 —cosa(k— )T ]
el st Jeatk=D
0 cosa(k — )T 0 —sino(k — )T fo2k—1)
= I —cosatk—1)T sina(k — DT (40)
0 ok — 1) W Jos(k—1)
0 sina(k — 1)T 0 cosatk — )T Joalk—1)
10 0 0 0 1 i

is the Jacobian of the vector f evaluated with the latest estimate of the state. The partial
derivatives with respect to @ are given by

Ték — 11k~ Deosatk — DT &k — 1]k Dsind (k- DT

Jor = o — 1) o~ 1)
Ttk =1k =1)sind(k = DT ik — 1| k= 1)(—=1 + cos d(k — )T)
a(k — 1) d(k —1)?
for = —TE(k — 1|k — 1)sindk — 1) — Tik — 1 | k — 1) cos &k — 1)
p CT&k—1|k—Dsindk — DT &k — 1]k —1)(1 —cosd(k — DT)
o ak —1) ok — 1
Tij(k—1|k—1)cosd(k — DT 4k —1|k—1)sind(k — 1)T
+ — —
a(k —1) d(k — 1)
Joa = TGk — 1k — 1)cosa(k — 1) — Ti(k — 1| k — 1)sind(k — 1) 41)

where Q¢ is the covariance of the process noise in Equation (38).
For a local estimate by the jth sensor, the decentralized nonlinear estimation equations are
given by

(1) Time update (prediction)

Yilk | k= 1) = Yj(k [ k = Df[Xj(k = 1| k = 1),k — 1)]

Yitk |k —1) = [f40k — DYk — 11k = Df4G — 1)+ 0k — 1] (42)
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(i) Measurement update
Filk 1) = Bk | k= 1) + e (R (k)oy(k) + he. (k)2 (k |k — 1)]

Ytk k)y= Yk |k—1)+ h;‘i,(k)R;l(k)h" (k) (43)

x4

where hé.(k) = [V h(x?, )T lye—saik—1) is the Jacobian of the vector h“ evaluated at the
predicted state X%k |k—1), and v(k) is the innovation given by v(k) = z(k)— h'(k,
X%k | k= 1),w(k)). Then, the assimilation equations to produce global information estimates

are as follows:

(i) Information state

N
Fmaster(k | k) =Y Filk | k) (44)
i=1

(11) Information matrix
Yiasier(k | k) = Y1k | k) + -+ V(K | k) (45)

Remark 4

Ultimately, the local filters in the FNIF produce the same results as the information state and
information matrix of the DIF, Equations (15) and (16). However, the assimilation equations of
the master filter produce the global optimal value by using only the updated value of each local
filter.

4. SIMULATIONS RESULTS

As described in this section, we considered a state estimation problem of an AGV in two
dimensions. Simulations were executed to compare the performance of the IMM algorithms
using a centralized EKF (CEKF), a federated EKF (FEKF), a centralized nonlinear IF (CNIF),
and an FNIF, respectively, for curvilinear motion. The performance of these four algorithms
was compared with the use of Monte Carlo simulations. The manoeuvering AGV trajectories
were generated using the various patterns mentioned in Section 2.1. Two kinematic models were
used to track the manoeuvering AGV: a constant-velocity model for rectilinear motion and a
constant-speed turn model for curvilinear motion. We then compared the performance of the
four different IMM algorithms with these two models. The numerical values of the simulation
conditions are represented in Table I.

It was assumed that two sensors were tracking an AGV. The measurement of the two sensors

were modelled as
\V EK) + n(k)

+wik), i=12
e (1K)
arctan ( & k))

zi(k) = (46)
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Table I. Numerical values for Monte Carlo simulations.

Process noise covariance Measurement noise
(m?) covariance (m?)
Mode transition
Scenarios probability Mode 1 Mode 2 Sensor 1 Sensor 2
. . [0.9 0.1]
Straight lines and 01 0.9 10 1 8 1
curves L ]
. [0.9 0.1]
Cut-in/out 01 09] 10 1 8 1
[0.9 0.1]
U-turn 0.1 09 10 1 5 0.5

where z;(k) is a measurement vector that consists of range for sensor 1 and azimuth for sensor 2.
The additive measurement noise w;(k) was assumed to be independent white Gaussian with zero

mean with the variance R; given in Table I. The Jacobian matrix of A{(k), h{. (k) is
o, o,
2 2 2 2
My = | VST Ve (7
—n(k) <(k)
e 0 v 0 1

where d = /& + 2.

4.1. The navigation scenario

It was assumed that the AGV navigates rectilinearly in the beginning. The target initial positions
and velocities were differently set for each scenario. The single-target track of the manoeuvering
AGYV was also assumed to have been previously initialized and that track maintenance was the
goal of the IMM algorithms. The results for the three selected scenarios are presented, according
to the cross-lane layout, in Figure 3.

(1) Scenario for straight line and curve. The target initial positions and velocities were xy =
10m; yo = 10m; xo = 4.25m/s; yo =4.25m/s; o = 0°/s. Its trajectory was a constant
velocity between 0 and 502s with a speed of 6 m/s; a turn with a constant yaw rate of
o = —0.3°/s between 502 and 851s; a constant velocity between 851 and 1184s; a turn
with a constant yaw rate of w = 0.3°/s between 1184 and 1533s; a constant velocity
between 1533 and 2033s.

(i1) Cut-in/out scenario. The target initial positions and velocities were xo = 10 m; yp = 10 m;
Xo =0m/s; yo = 6m/s; o = 0°/s. Its trajectory was a straight line between 0 and 333s
with a speed of 6 m/s; a turn at a constant yaw rate of w = —1.2°s between 333 and 376s5;
a straight line between 376 and 476 s with a speed of 6 m/s; a turn between 476 and 520 s
with a yaw rate of @ = 1.2°/s; a straight line between 520 and 687 s with a speed of 6m/s;
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a turn with a constant yaw rate of w = 1.2°/s between 687 and 730s; a straight line
between 730 and 830 s with a speed of 6 m/s; a turn between 830 and 874 s with a yaw rate
of w = —1.2°/s, and a straight line from scan 874 to 1209s.

(ii1) U-turn scenario. The target initial positions and velocities were xo = 10 m; yp = 10 m; xX¢ =
Om/s; yo = 6m/s; @ = 0°/s. This scenario included a non-manoeuvering navigation mode
during scans from 0 to 333 s with a speed of 6m/s, a 180° turn, lasting from scan 333 to 411s
at a yaw rate of ® = —4°/s, and a non-manoeuvering navigation mode from scan 411 to 747 s.

4.2. Parameters used in the design

The parameters used in the design are listed here. Subscripts ‘CV’ and ‘CST’ stand for ‘constant
velocity” and ‘constant-speed turn,” respectively. The initial yaw rate of each navigation scenario was
w(0) = —0.3, —1.2, and —4° /s, respectively. The initial values of information matrix were as follows:

CV mode: Y(0]0)=diag{1 11 1}
CST mode : Y(0|0)=diag{l 1112}

where o, = (0.1)°/s. The information-sharing factors used for the two sensors were 1/y; = 1/y, =
0.5. The initial mode probability vectors p were chosen as follows:

0.5
l/[ =
0.5
4.3. Performance evaluation and analysis

The RMS error of each state component was chosen as the measure of performance. The
comparison results of the IMM algorithms using a CEKF, an FEKF, a CNIF, and an FNIF,

50 L True trajectory

30 |-

20

Longitudinal position (m)

0 1 1 1 1 1
0 20 40 60 80 100

Laternal position (m)

Figure 5. Comparison of position estimates in the case of straight lines and curves.
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1 1 1 1
0 500 1000 1500 2000

Time (s)

Figure 6. Comparison of position errors in the case of straight lines and curves.

RMS velocity error (m/s)

0.0 1 1 1 1
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Time (s)

Figure 7. Comparison of velocity errors in the case of straight lines and curves.

respectively, for the curvilinear motion are shown in Figures 5-13, where the RMS error in the
position and the velocity are plotted by Figures 6, 7, 9, 10, 12, and 13. Figures 5, 8, and 11
show comparisons of the true position and the estimated ones with the CEKF, the FEKF,
the CNIF, and the FNIF, respectively. The results presented here are based on 100 Monte
Carlo runs. It is evident that the two algorithms have almost equal position and velocity
estimation accuracy for all scenarios. This confirms the algebraic equivalence which is
mathematically proven and established in the derivation of the IF from the KF.
These conclusions were confirmed by the RMS error plots presented in Figures 6, 7, 9, 10, 12 and 13,
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Figure 8. Comparison of position estimates in the case of cut-in/out.
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Figure 9. Comparison of position errors in the case of cut-in/out.

respectively. Besides, it is evident that the suggested algorithm has almost equal position
and velocity estimation accuracy for all scenarios. This is because, unlike the centralized filters,
the federated filters can obtain the globally optimal estimate by using the information-sharing
factor for each local filter and then fusing the estimates of the local filters in the multi-sensor
environments.

Figures 5-13 show the performance of the IMM algorithm operating in the fusion reset (FR)
mode, with information-share fractions 1/y; for the two local filters. For future study, the
suggested filter can be used in a no-reset (NR) mode. When sensor 2 is broken down, there is no
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Figure 10. Comparison of velocity errors in the case of cut-in/out.
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Figure 11. Comparison of position estimates in the case of U-turn.

feedback from the master filter to the local filter at sensor 2. Note that NR results are less
accurate than those of the FR mode. However, even though the NR mode is theoretically less
accurate than the FR mode, it is very useful for typical navigation systems. The estimate from a
broken local filter does not affect other local filters and facilitates fault detection and isolation,
since each local filter operates independently.

Copyright © 2006 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2007; 21:533—555
DOI: 10.1002/acs



IMM ALGORITHM 553

RMS position error (m)

"o 100 200 300 400 500 600 700
Time (s)

Figure 12. Comparison of position errors in the case of U-turn.
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Figure 13. Comparison of velocity errors in the case of U-turn.

5. CONCLUSIONS

In this paper, a tracking algorithm for AGVs operated in automated container terminals was
designed. In order to detect other AGVs (or obstacles), two kinematic models were derived: the
constant-velocity model for linear motion, and the constant-speed turn model for curvilinear
motion. For the constant-speed turn model, a federated nonlinear information filta (IF) was
used in place of the extended Kalman filter in multi-sensor systems. Besides, it was
mathematically shown that, by means of the information-sharing factor, the federated IF is
equal to the centralized IF.
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Comparison and analysis of the IMM algorithms using the CEKF, the FEKF, the CNIF, and
the FNIF were performed. Three navigation patterns including the curvilinear motions with
turn rates of —0.3, —1.2, and —4°/s were detected by the IMM algorithms using the FNIF, the
CEKEF, the CNIF, and the FEKF. In each case, it was through Monte Carlo simulations shown
that, by using the values of the information-sharing factor, y, =y, = 0.5, the federated IF is
almost equal to the centralized information filter.
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