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Abstract—In this paper, a PC-based off-line programming (OLP) method using the virtual reality
modeling language is proposed. The developed OLP system consists of simulation programs, a block-
arrangement algorithm, an optimal traveling-path generation algorithm, an automatic robot program
generator and the TRIBON CAD interface. The strength of the developed PC-based OLP system lies
in its flexibility in handling the changes in the robot’s target objects. The operator can generate robot
programs very easily and quickly. Possible applications of the developed OLP can be extended to port
automation, container loading/unloading processes as well as painting and grinding processes in the
shipbuilding industry.
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1. INTRODUCTION

The shipbuilding industry is steadily advancing by introducing robots to its work
fields so as to increase productivity and improve working conditions [1–3]. In par-
ticular, robot applications have yielded a large productivity improvement in hull as-
sembly welding and have reduced work-related musculosketetal disorders of work-
ers. However, because the shapes and sizes of workpieces vary, and, furthermore,
because the operating environments of robots are not stable, it is difficult to oper-
ate robots in welding processes, particularly in subassembly lines. Moreover, in
order to achieve a desired production schedule, the ability to generate robot pro-
grams in real-time for various applications is of great importance. Currently the
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operation of industrial robots is through either on-line teaching or off-line program-
ming (OLP) [4–11].

On-line teaching is, by definition, a technique of generating robot programs using
a real robot system, whereas OLP is a method using simulations that are set up in
advance. On-line teaching may be suitable for jobs for which a robot only needs to
repeat a monotonous motion using one pre-written program that applies to identical
sizes or objects. However, in work places where objects are constantly changing,
on-line teaching will cause problems due not only to the decrease of productivity
caused by halting the robots while reprogramming, but, more importantly, through
not being able to revise work errors that on-line programming itself can cause.
Hence, the more profitable method of building a work program is using OLP, while
only applying programs that were already verified to be effective for the job.

The advantages of using OLP are: (i) effective programming of robot-command
logic with debugging facilities, (ii) easy verification of the validity of the robot pro-
grams through simulation and visualization, (iii) organized documentation through
simulation models with appropriate programs, (iv) reuse of existing robot programs
and easy application to other objects and (v) cost independence of production due
to the fact that production can be continued while programming.

Currently, research on robotic system simulation is prevalent [12–16], and robot
production enterprises provide commercialized software for robot simulations such
as ROBCAD and IGRIP, which include developed simulation tools for the robots.
However, applying this commercialized software to ship construction requires
extra preparation, including users becoming fluent with CAD systems, complete
modeling of the work object and development of language translators that will
work with robot manufacturing companies. In short, because it takes too much
time and effort, the utilization of commercial software for robot systems is not
suitable. Instead, because of high expectations for computer systems and the rapid
development in graphic interfaces, nowadays establishing a PC-based simulation
environment has become easier and has come to be preferred. Therefore, using
OLP for robot systems is suitable for work in a shipbuilding yard because it is more
economical than commercial software that is provided by robot companies.

In this paper, the results of our work in the development of PC-based off-line
programming for welding robots on hull assembly lines are presented. The pro-
grams were developed based on object-oriented programming (OOP). Using the
virtual reality modeling language (VRML), various functions including robot simu-
lations, block placement simulations, optimal trajectory generations and automatic
CAD interfaces were performed. The VRML utilized is a three-dimensional (3D)
graphic language, which expresses objects and their motions in a space of proper
dimensions, and which is useful in constructing a virtual environment on a PC. The
salient features of the VRML are as follows: (i) it is easier to interpret because the
text is expressed with a grammatical structure of functions, (ii) one can easily ob-
tain VRML models from other CAD software, because converting a CAD drawing
to a VRML model is possible in most 3D CAD software, (iii) the VRML model
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Figure 1. Flowchart of the OLP and graphic simulation.

contains vertex data which makes it easy to extract useful specific point information
and (iv) because the 3D objects are modeled by VRML, which can be shown on the
Internet, OLP using the Internet is an option.

Figure 1 shows a flowchart of the developed OLP. If the shape of the workpiece
changes, then a new program for the new shape is generated by simulation.
First, if the workpiece is identical to an old one, then an appropriate program
is automatically loaded from the database (D/B). Simulations using OLP are
particularly effective when creating a robot program for movements on a critical
surface, whereas an automatic program is used in reference to objects with pre-
determined surfaces. Second, depending on the work schedule, OLP provides a
work-order document of a workplace arrangement for the blocks. Third, after
arranging the blocks according to the document, a vision sensor verifies and revises
the positions of the blocks. Finally, the off-line program sends the robot program to
the controller using TCP/IP communication.

The contributions of this paper are as follows: (i) a methodology for applying
a welding robot system that works for variously shaped objects, especially for as-
sembly lines of shipbuilding, is suggested, (ii) the functions required to implement
OLP successfully and the development of PC-based OLP that helps on-site opera-
tors handle a robot system easily are explained and (iii) the practical implementation
of recently issued algorithms such as the VRML of the simulation environment, the
geometrical computation of the CAD interface, the computing techniques of the au-
tomatic generation of robot programs and the genetic algorithm (GA) of robot path
planning are shown.

The paper is structured as follows. In Section 2, the application of OLP in
a welding robot system is explained. In Section 3, the general structure of the
robot simulation program is discussed. Section 4 describes the algorithm for the
application of the CAD interface and the robot program to the actual welding
plant. In Section 5, the process of finding the optimum trajectory for scattering the
blocks based on a block arrangement simulation is explained. Section 6 presents an
example of an application. Finally, Section 7 provides conclusions.
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2. SYSTEM CONFIGURATION

Figure 2 shows the welding robot system that is being used at Daewoo Shipbuilding
and Marine Engineering (South Korea). The system is composed of a welding robot,
a controller, a gantry crane, welding equipment and an on-site industrial computer.
The same configuration is being used for two types of welding processes: grand-
and mid-assembly. A four-axis gantry crane and a hanging-type six-axis robot
to increase the moving ability of the robot system are used for the subassembly.
Because the size and shape of workpieces in the shipbuilding industry vary greatly,
a six-axis articulated robot is generally used for welding. The robot controller
consists of a Pentium II processor, three motor interface boards and a digital signal
processing board. Because one motor interface board controls four motors, room
for adding more control boards for auxiliary actuators has been reserved. The
QNX is used as a real-time operating system. The robot is equipped with a touch
sensor to compensate for the difference between CAD data and the actual shape of
workpieces. To increase the robot’s path-tracking ability, an arc sensor is also being
used.

Figure 3 shows an example of the robot program, named the standard program,
which consists of three separate parts: a program file, an rpy file and a rule file. Rpy
represents the roll, pitch and yaw values of the orientation of the tool. The program
file describes the sequence of robot motions that is written in robot language, the
rule file contains the tool position values of the teaching points indicated by the

Figure 2. Configuration of the welding robot system.
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Figure 3. An example of the standard program consisting of three parts: a program file (top), a rpy
file (middle) and a rule file (bottom).

program file and the rpy file contains the orientation values of the teaching points.
In order to apply variously sized, but identically shaped, target objects without
modifying the pre-generated robot program, the teaching points in the standard
program are written in a variable form.

Before the controller executes the standard program, information regarding the
real size of the workpiece and the welding conditions should be contained in the
standard program. The standard program including this information is referred to
as a job program. The size information is obtained by the CAD interface and the
welding conditions are gathered from a database in which all previous experimental
data have been stored. TCP/IP transfers the job program to a robot controller. When
the controller receives the job program and the start signal, the controller interprets
the job program and controls the movements of the robot.

Figure 4 depicts the defined coordinate systems: {W} denotes the fixed world
(reference) coordinate system attached to the ground, {B} denotes the base coordi-
nate system affixed to the base of the robot, whose position will be determined by
the movement of the gantry, {O} refers to the object coordinate system attached to
the workpiece and {T} represents the coordinate system attached to the tool center.

3. ROBOT SIMULATION

Figure 5 illustrates the structure of the developed PC-based OLP system. The user
screen consists of four fields for a user-friendly interface: the set-up menus, the
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main graphic simulation screen, a jog panel for off-line teaching and a message
window. The menu bar consists of a CAD interface, a block-arranging algorithm, a
path-planning algorithm and an automatic robot program generator.

To render a robot, a robot initialization file is used. The robot initialization file
contains the data of the robot body modeling, the link parameters, the limit values
of individual joints and the home position data. In addition, the user can arbitrarily
specify the robot base position so that the initial position of the robot system can be

Figure 4. The coordinate systems defined: world, base, object and tool.

Figure 5. The structure of the PC-based OLP developed.
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easily set. Also, through the manipulation of kinematics data, the base coordinate
frame can be easily placed at a desired position. Hence, the reachability of the end-
effector and possible collisions with the surrounding parts can be easily examined
through the simulations in a virtual environment.

Two types of simulation modes are provided: a teaching mode and an execution
mode. Robot teaching tells the robot what to do. Because the operator can easily
move the robot in various motions with via-points using the teaching mode, this
mode is very helpful for operators. The teaching mode includes two jog functions:
a joint jog function that moves the joint actuators in relation to the joint coordinates
and a coordinate jog function that moves the robot according to a given coordinate
frame, as shown in Fig. 4. In the program execution mode, all of the robot motions
written to a standard program are automatically, simultaneously and continuously
executed.

Two simulations are illustrated: Fig. 6 shows the simulation of a grand-assembly,
while Fig. 7 shows the simulation of a subassembly for which the robot is the
hanging type. Figure 8 is a picture of an actual grand-assembly.

The simulated motions approach the real ones, because the algorithms of the
simulation program including kinematics, the robot motion planning and the robot
language interpreter are identical to those of the real controller’s. Because the
control input sampling time is 16 ms, whereas the interpolation time of a robot
motion is 5 ms, the robot motion is updated every 16 ms in simulations. Also,

Figure 6. A grand-assembly simulation.
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Figure 7. A subassembly simulation.

Figure 8. A grand-assembly (real).
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multi-threads called for by a 16-ms timer are used for the multi-robot simulation.
In this case, one thread can initiate some of the functions shared with other threads,
such as the robot language interpret function, the motion planning function and the
starting command function, at the same time, and that results in memory leakage or
malfunction. Thus, the multi-threads and CCriticalSection of VC++ work together.

To implement various 3D solid models and motions on a PC, a structured
graphical representation of the nodes, illustrated as in Fig. 9a, is required [17–19].
Figure 9b shows the 3D robot body and each link model. Each link can be replaced
with a newly designed link without influencing other graphic objects. The 3D solid
model of each link is defined as m_Arm[n], whereas each link’s motion engine is
defined as myRotor[n], where n represents the nth link. m_Arm[n] is a variable
name that stores the n link model and myRotor[n] is the variable name of the motion
engine. The basic composition is a parallel combination of the motion engine and
the link model of each link. Accordingly, the motion of the (i + n)th link, where
n = 1, 2, 3, . . . , is affected by the movement of the ith link. Auxiliary graphic
objects such as axes, texts and welding lines are added to the top node defined as
m_pSceneRoot directly, in order to be independent of the robot’s movements. For
example, to display the axis of the teaching points and the welding line, m_pAxisSep
and m_pLine are attached to the m_pSceneRoot node independently of the motion
of the related nodes m_pLoadBlockSep and GantrySep, as shown in Fig. 9. The axis
graphic node is added to the m_pSceneRoot node whenever the user introduces a
new teaching point. The added axis graphic node is counted and the entire axis in
the simulation window has its own number. By clicking the axis in the simulation
window, the simulation window displays the data of the selected teaching point.
In the same way, the m_pLine containing the line graphic object is added to the
m_pSceneRoot node and, whenever the user selects a welding line, the line is
displayed in the simulation window.

4. CAD INTERFACE AND PROGRAM GENERATION

4.1. TRIBON CAD interface

The geometric modeling of robotic systems plays an important role in OLP. A good
geometric model of robots, obstacles and the objects manipulated by the robots is
important to task planning and path planning. As auxiliary 3D modeling for robot
simulations is time consuming and painstaking work, a CAD interface is essential
to the robot system.

In developed OLP, 3D geometric models of robot simulations are acquired from
a TRIBON CAD interface. The output of the CAD interface is a 3D model of
the workpiece that is converted into the VRML. Additionally, the teaching points,
which contain the information of the position of the tool center point (TCP) and the
orientation of the tool, are also obtained by the CAD interface. Figure 10 shows
a simple example of a set of welding information files from the CAD interface.
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(a)

(b)

Figure 9. Simulation environment construction: (a) a hierarchical representation of graphic nodes to
realize the simulation environment and (b) 3D robot body and individual link models.

A welding information file contains the welding condition that is acquired from
experiments and welding standards. It also contains the base coordinate definition,
number of welding passes, block names and general block information.
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Figure 10. An example of welding information generated from the CAD interface.

By using the boundary representation (BR) method in Ref. [20], the surface of
a solid object is segmented into faces, and each face is modeled by its bounding
edges and vertices. Also, the edges and vertices of an object can be extracted
from the TRIBON CAD models by the BR method. Therefore, the 3D drawing
of TRIBON CAD is decomposed into edges and vertices. The edges and vertices
are reconstructed into VRML models. The function IndexedFaceSet is a VRML
command to render a 3D object from edges and vertices. Using the extracted edges
and vertices, all of the elements of the workpiece comprise solid models. Next,
these elements are assembled together on the plates according to the assembly’s
sequence of drawings. This method is similar to the real assembly process in such a
way that the operator handles all of the elements in the space and measures the size
of each element using simulations, as in a real system.

The CAD interface selects the robot’s weldable workpieces and extracts the
welding information of the selected workpieces. Weldable workpieces are selected
by simulation as well as by human operators. For example, to plan a robot motion
trajectory for a line-type seam, the start point and destination point are required.
In the case of an arc-type seam, the start point, mid point and destination point are
required. Accordingly, the required points are extracted from the vertex datum of
the TRIBON CAD according to the {O} coordinate frame in Fig. 4. Because a seam
is defined as an adjacent line between two elements, the designated vertexes can be
separated from the rest of the vertexes.

The orientation of the torch defined by roll–pitch–yaw values is extracted as
shown in Fig. 11, which depicts an example of a specific shape of a workpiece
and of the tool orientation values for the welding start and end points. For other
shapes of welding seam such as a straight line, a curved line and a vertical line, the
normal robot job is accomplished. For the critical examples in Fig. 11, the geometric
constraints of a workpiece are: (i) all the elements are made of plate of a thickness
of less than 20 mm and (ii) the possible welding length of a robot is longer than
200 mm. After acquiring the welding start and end points of workpieces from the
output of the CAD interface where the points are listed line by line in accordance
with the sequence of composing the complete object, three adjacent points of all the



446 C.-S. Kim et al.

Figure 11. An example of torch pose calculation (cut view of the workpiece). (a) Case 1: convex and
available part, (b) Case 2: concave and available part, and (c) Case 3: concave and unavailable part.

edges in a workpiece are gathered as p1(x1, y1, z1), p2(x2, y2, z2) and p3(x3, y3, z3).
Then, the center positions pc and po are obtained as:

pc = (p2 + p3)/2, (1)

po = (p1 + p3)/2. (2)

The values pc and po are depicted in Fig. 11. Let the distance between two points
pA(xA, yA, zA) and pB(xB, yB, zB) be:

l(pA, pB) =
√

(xA − xB)2 + (yA − yB)2 + (zA − zB)2. (3)

The union vectors are obtained as:

ûo =
−−→
popc

l(po, pc)
, (4)

û1 =
−−→
p2pc

l(p2, pc)
, (5)

û2 =
−−→
p3pc

l(p3, pc)
. (6)
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The two vectors are obtained as:
{
uT1B = −→u1 + −→uo

uT2B = −→u2 + −→uo ,
(7)

where uT1B and uT2B are the vectors of the tool’s direction projected on a plate.
Considering the shape of the seam line and the constraints, uT1B and uT2B are
translated into real tool direction vectors as in the following four cases: Case 1
is the convex part of a workpiece, Case 2 is the concave part of a workpiece, Case 3
is the impossible shape of the robot’s welding and Case 4 is considered as a normal
welding seam line.

Case 1: {l(p1, p2) � 20 and l(p2, p3) � 200} or {l(p1, p2) � 200 and
l(p2, p3) � 20}






uT1 = RXYZ

(
π

4
, 0, π

)
uT1B

uT2 = RXYZ

(
π

4
, 0, π

)
uT2B.

(8)

Case 2: l(p1, p2) � 200 and l(p2, p3) � 200





uT1 = RXYZ

{
π

4
, 0, sign(−→u1 × −→uo )

π

2

}
uT1B

uT2 = RXYZ

{
π

4
, 0, sign(−→u2 × −→uo )

π

2

}
uT2B.

(9)

Case 3: l(p1, p2) < 20 and l(p2, p3) < 20,
indeterminate seam.

Case 4: 20 < l(p1, p2) < 200 and 20 < l(p2, p3) < 200
normal welding seam,

where:

RXYZ(γ, β, α) =



cαcβ cαsβsγ − sαcγ cαsβcγ + sαsγ

sαcβ sαsβsγ + cαcγ sαsβcγ − cαsγ

−sβ cβsγ cβcγ



 .

Finally, the tool orientation value of each seam RT1(γ, β, α) according to world
frame {W} is defined as:

{
RT1(γ, β, α) = WTOuT1

RT2(γ, β, α) = WTOuT2.
(10)

The value of WTO is shown in Fig. 4.

4.2. Automatic generation of the robot program

In operating welding robots in a shipyard, the most time-consuming aspect is robot
programming. In particular, for workpieces of different shapes and sizes, more time
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is required to render the robot programs operable in real-time. To minimize time
consumption, robot programs are often generated automatically from the welding
information from the CAD interface. First, by the analysis of the shape of the
workpiece, the shape can be represented as a simple geometry such as a scallop,
a hole, a horizontal line, a horizontal curve, a vertical line, etc. The programs for
these simple geometries have already been created and saved in the robot program
database. When the workpiece is allocated to the robot system, the robot program
generation algorithm divides the workpiece into simple geometries already defined.
Next, the robot programs required for the respective simple geometries are selected
from the database and combined together to complete the entire program for the
given workpiece. The size of the workpiece from the CAD data is reflected in the
teaching points in the program.

Figure 12 shows a flowchart representing the automatic robot program generation.
The robot program generation algorithm is composed of five subroutines: input data
conversion, via-point creation, robot program selection using simple geometries,
compilation of the combined robot programs of simple geometry and robot program
writing. The input data conversion routine creates teaching points for each seam
of the workplace by the methodology explained above. In the via-point creation
routine, all of the via-points are calculated in such a way that no collision occurs
in moving from one teaching point to another teaching point. The collision-free
path is obtained by pre-simulation results that are obtained for all of the shapes
of the workpieces. In the robot program selection routine, the simple geometries
of a workpiece are matched to respective robot programs. In the compilation
routine, the matched robot programs are combined into a standard program. The
program writing routine rewrites the robot program to fit it to the format of the robot
language. Moreover, it sorts the teaching points according to the teaching point’s
number, and matches each teaching point in the robot program to the respective
values in the rule and rpy files.

Figure 12. A flowchart for automatic program generation.
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5. BLOCK ARRANGEMENT AND PATH GENERATION

5.1. Block arrangement simulation

In order to increase the efficiency of a block arrangement, and reduce the posi-
tioning errors between a real arrangement and its simulation, a block arrangement
simulation can be performed. Figure 13 illustrates a block arrangement simulation.

The block arrangement simulation helps not only to improve the efficiency of the
workplace, but also to correctly position the blocks. In this manner we can arrange
as many workpieces as possible in a bounded area. Thereby, block arrangement
simulation with 3D block models is very beneficial. The arranged blocks can be
printed to help the workers to correctly position the blocks on the workplace. The
reference coordinates of the robot program generation are based upon the local
coordinate frame {O} of each workpiece depicted in Fig. 4. Therefore, when the
robot program is applied to a workplace where many workpieces are scattered, the
reference coordinates of each robot program are translated into a world coordinate
frame {W}. The translation matrix from {O} to {W} is provided by the results of
the block simulation and a vision sensor.

The vision sensor is used to calibrate the difference in the unloading positions of
the workpiece between the simulation and the real operation. Figure 14 shows a
picture of the vision sensor used. To reduce the vision sensor’s marker-searching
time, the initial searching position is obtained by the result of the block arrangement

Figure 13. Block arrangement simulation view.
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simulation. Once the vision sensor captures the positions of the three markers
placed on the workpiece, the block’s real position is calculated. Because the vision
sensor is placed near the robot base frame {B}, translation only on the xy-plane is
possible. The values of translation from the vision sensor to the base frame {B} can
be obtained as:

{
x{B} = xvision + 300
y{B} = yvision,

(11)

where xvision and yvision are the captured values of each mark according to the vision
sensor base, and 300 is the offset of the vision sensor from the base frame {B}.
Next, the marker position in reference to the world frame {W} is obtained as:

M{W} =
[

dx

dy

]
= W

B T

[
x{B}
y{B}

]
, (12)

where MW is the marker position. The rotation values relative to the {W} frame
are calculated using three different MWs on the plate. The robot’s job program
generated for the {O} frame can be transformed into the {W} frame by using the
transformation WTO as follows:

WTO =






cos θ − sin θ 0 dx

sin θ cos θ 0 dy

0 0 1 dz

0 0 0 1




 , (13)

where dx , dy and dz are the position components of the origin of the {O} frame in
reference to the {W} frame. In most cases dz is zero, which means that the block is

Figure 14. The vision sensor used to calibrate the position error between simulations and real ones.
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always placed on the workplace. If dz is not zero, the operator measures the height
of the block’s base plate and inputs it to the off-line programs. The origin of the
{O} frame and the positions of the markers are predefined by the designer. In the
case of a multi-robot system, a calibrated job program is allocated to each robot by
a job program distribution algorithm, in which the determining fact is the sum of
the lengths of all of the seams in each robot’s working area.

5.2. Optimal path generation using a GA

Given that approximately 100–150 seams are randomly distributed on the work-
place, the robot’s traveling path should be minimal, resulting in the minimum
working time. Among many optimization tools, a GA is used for our robot sys-
tem [21–25]. Travel length minimization is more efficient than working time opti-
mization. There are two reasons for this. First, welding equipment malfunction, a
robot’s unpredictable motion and interruptions by operators occur frequently while
a robot is working; therefore, the time consumed by these problems cannot be con-
sidered in the GA calculation and simulation. Second, as the acceleration and decel-
eration times for trajectory planning are different according to the length of a seam,
so the welding time is not exactly known. Alternatively, by assuming that the veloc-
ity of the end-effecter is constant, the welding time can be calculated. However, this
approach is the same as the travel length minimization by the inverse proportional
relationship of time and length. Here, the optimization problem takes the form of a
traveling length minimization.

In optimizing a small amount of genetic information or in solving a simple
optimization problem, a GA that uses binary bit string encoding is prevalent.
However, for welding robots in a shipyard, multi-robot cooperative work with
regard to several seam positions, teaching points, variant robots and welding
information has to be considered. Accordingly, the use of character-type encoding
is suggested. Figure 15 shows the structure of a chromosome. The number of
genotypes is the same as the number of seams. The assembly ID, path ID and
robot ID are encoded in a genotype.

Frequently, a general crossover method may result in a collision path in the multi-
robot cooperative work. The general crossover exchanges a gene of parent 1 with
a gene of parent 2. In this case, the exchanged gene of the assigned robot can be
different and so the child generated by the parents has to take the collision path.
Therefore, we use the partially matched crossover (PMX) suggested in Ref. [22].
The PMX guarantees the validity of the solution of the traveling salesman problem
(TSP) presented as a path generation. The children of the PMX inherit some pieces

Figure 15. Structure of the chromosome used for robot path planning.
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of the genetic information from the first parent by a two-point crossover and the
other pieces are inherited according to the gene sequence of the second parent.
The possibility of crossover occurrence is determined by the random number of
each gene. For example, assume that the parents are defined as P1 and P2, the
children are defined as C1 and C2, and the chromosomes, P1 and P2 are initialized
as P1 = (1 2 3 | 4 5 6 7 | 8 9) and P2 = (2 4 5 | 3 7 6 9 | 1 8), where ‘|’ is
a cut point; physically, a district separation, for each robot. The number between
cut points is an allocated path’s number. For the case of P1, the first, second and
third paths are allocated to the first robot, the fourth, fifth, sixth and seventh paths
are assigned to the second robot, and the eigth and ninth paths are assigned to the
third robot. The ‘×’ is an undefined gene. If the child inherits the second robot’s
genes, C1 = (× × × | 3 7 6 9 | ××) and C2 = (× × × | 4 5 6 7 | ××),
then the related mapping is 3 ↔ 4, 7 ↔ 5, 6 ↔ 6, 9 ↔ 7. By the transitivity
rule, the mapping is changed into 3 ↔ 4, 9 ↔ 5, 6 ↔ 6. If genes independent
of the mapping are inherited, the children are C1 = (1 2× | 3 7 6 9 | 8×)

and C2 = (2 × × | 4 5 6 7 | 1 8). The final children are obtained as
C1 = (1 2 4 | 3 7 6 9 | 8 5) and C2 = (2 3 9 | 4 5 6 7 | 1 8) by the mapping.
Concurrently, the assigned genes for each robot are changed with respect to the cut
points.

Although the PMX is suitable to prevent a collision path, the crossover method
is restricted in the sense that a crossover occurs over a limited range. Hence, the
range of solutions is also restricted and a set of solutions does not differ from
an initial population, but is constant. To search variable solutions, an adaptive
mutation method that enables the exchange of the allocated work by PMX is used.
The adaptive mutation method works better than the constant mutation rate method
and also prevents collisions among multi-robots. The mutation rate is an important
factor determining the convergence and the rate of the convergence of the solution.
For a real robot system, because the robot’s access to the neighboring seams near the
separation layer is easier than its access to distant seams, the mutation rate of seams
near the separation layer is high and the mutation rate of seams distant from the
separation layer is low. The separation layer is predefined by the block arrangement.
Here, we accommodate a Gauss function in (14) as an adaptive mutation rate.
Figure 16 shows the Gauss function:

yi = k exp

{
−(x − xi)

2

2σ 2

}
, (14)

where i = 0, . . . , n, n is the number of robots, k = 1, σ = 0.25, xi is the position
of the gantry and yi is the mutation rate. The dominant mutation rate in (14) is
determined by k, which is the maximum value, and x, which is obtained when y is
more than 68% of the whole area.

We use the rank selection method as a selection routine. First, the chromosomes
are sorted by the fitness of each chromosome. Second, the value is calculated as
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Figure 16. The mutation rate of the spatially adaptive mutation algorithm.

follows:

value = bias − √
bias × bias − 4.0(bias − 1.0) × drandom( )

2.0 × (bias − 1.0)
, (15)

where the range is the size of a population and drandom( ) is a function that returns
a random value. The position of the selected chromosome is defined as:

range − (base + value), (16)

where the base is the position of the last chromosome in a population. The selection
constraints are assumed as follows: (i) no robot can move beyond its working area
restricted by the gantry crane’s span, (ii) no collision is permitted and (iii) there is
no limit of the seam length for the welding equipment.

In this way, an execution order of the job programs calibrated by the vision
sensor is defined. Examples of GA computing for a simple subassembly are
shown in Fig. 17. Figure 18 depicts the best fitness value and the average fitness
value of each generation for three robots and for a single robot. For the multi-
robot system, to allocate workpieces to each robot, we engaged a simple allotment
method handled by operators. Two main determinant factors are welding length
and collision avoidance. To prevent collision, we restricted the robot’s working
volume by dividing the workplace into the same numbered zone of the robot. So
the workpieces lying on each zone are allotted to each robot system initially. In the
GA, initially allotted workpieces are modified partly to justify the welding length of
each robot system. As we expected, we can see that three robots are more efficient
than a single robot according to the computation time and the best fitness value.

6. IMPLEMENTATION

The tools utilized in this work are as follows. The PC O/S of a Pentium IV
2.4 GHz processor with Windows 2000 was used for computation and Visual C++
was used for programming. The Open Inventor was used to implement the
graphic environment for the OLP. Because the Open Inventor is a graphic library
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Figure 17. Two examples of an optimal path generated for a single robot system: the dashed line
indicates the optimal path represented by the robot base position.
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Figure 18. Fitness of the GA algorithm for an example in Fig. 17. The best fitness value of (a) is
7250 mm and the best fitness value of (b) is 17 000 mm. As we expected, the three-robot system
is more efficient than the single-robot system. In (a), we can see that due to the best chromosome
generated during the initial population computation, the best fitness value is constant over the entire
generation.
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Table 1.
The efficiency of PC-based OLP compared with on-line teaching

Approximate time to PC-based OLP On-line teaching

Generate a standard program 2 s 1 day
Generate all standard programs 5 min 1 week
Generate job programs 5 min 1 h

that provides collision-detection algorithms, it is useful in constructing graphic
environments. To increase the efficiency of the graphic processing ability, the
selection of a video card is very important. Hence, the implemented video card
has a 64 Mb frame buffer memory and a 128 Mb texture memory. Also, the video
card was optimized to process Open GL.

On account of OOP, the user can selectively use each function of OLP, which
automatically performs all functions in real-time. Considering users’ convenience,
for the grand- and mid-assembly welding robot systems, robot simulation and robot
program automatic generation functions were mainly used. For the subassembly
welding robot system, the whole operation of PC-based OLP is used. Table 1 shows
the effectiveness of PC-based OLP compared to on-line teaching.

7. CONCLUSIONS

This paper described a PC-based OLP method for welding robots used in the ship-
building industry. The developed OLP system provides a robot simulation, a block-
arrangement simulation, optimal robot traveling path generation and automatic ro-
bot program generation. Because graphic environments are made in the VRML, the
OLP developed is highly compatible with other software, thus allowing the use of
OLP on the Internet. Thereby, adjustments to various robot systems are easy. The
OLP developed is very easy for operators to use and maximizes the operating effi-
ciency of welding robot systems in the shipbuilding industry. In the future, due to
intelligent robotic techniques such as PC-based OLP, painstaking human labor will
be reduced and manufacturing productivity in shipyards will be increased.
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