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In this paper, a manipulability analysis of a new parallel-type rolling mill, named
‘‘paramill,’’ in its conceptual design stage is investigated. The paramill considered uses
two Stewart platforms (SPs) in opposite directions for the generation of 6 degree-of-
freedom motions of individual work-rolls. The objective of this new approach is to pursue
an integrated control of the strip thickness, strip shape, pair-crossing angle, uniform wear
of the rolls, and tension of the strip. The forward/inverse kinematics problems are for-
mulated. Two main kinematic parameters, the size of the base and the acute angle made
by two neighboring joints for a given size of the work-roll, have been determined in the
way that the force and moment transmission from the actuators to the work-rolls is maxi-
mized. © 2004 Wiley Periodicals, Inc.
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1. INTRODUCTION

The continuous rolling is a mechanical process
whereby the plastic deformation of a metal (a plate)
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Published online in Wiley InterScience (www.interscience.wiley.co
is achieved by passing it through a series of stands
yielding a thin sheet of the metal. Each stand consists
of two Stewart platforms (SPs), and each SP has a
work-roll and a backup-roll. The role of the backup-
roll is to support the work-roll during the rolling.
Periodicals, Inc.
m). • DOI: 10.1002/rob.20017
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Both rolls move up and down together as a unit when
the roll gap (strip thickness) is adjusted. Since the
middle section of the strip is less deformed than the
side edges due to the bendings of the rolls, the upper
and lower work-rolls are obliquely placed. The ob-
lique placement of the two work-rolls is called a pair-
crossing, with which a uniform thickness across the
strip is achieved. To adjust the pair-crossing angle of
the rolls, two additional hydraulic cylinders are used.
In the conventional mill, the degrees of freedom
(DOF) of a roll is 3: heave (up and down motion),
pair-crossing (yawing), and rolling.

In the current rolling mill, once the roll gap and
the pair-crossing angle are set up, they cannot be
modified during the process. Only the roll velocity
and the looper angle for adjusting the strip tension
can be adjusted. Therefore, an integrated (simulta-
neous) control of the strip thickness, strip tension,
strip shape, and uniform wear of the roll is not pos-
sible. This necessitates the development of a new roll-
ing technology, which can provide sufficient degrees
of freedom to the work-rolls (at least five degrees of
freedom). The proposed paramill is based upon a SP
type manipulator.1,2 Its manipulability analysis has
already been addressed in Reference 3. However, the
work in Reference 3 has considered only one SP, not
two SPs in opposite directions, which would repre-
sent the actual rolling process better.

The rolling process needs high power consump-
tion and an accurate control. For a SP type manipu-
lator, six hydraulic actuators are located in parallel, so
that the rolling force can be evenly distributed. Also,
in comparison with a serial manipulator, the position-
ing accuracy of the end-effector (the work-roll) is bet-
ter, the structural stiffness is higher, and the dynamic
response time is superior, too. On the other hand, the
workspace of a parallel manipulator is relatively
small. Such a small workspace is an evident weak-
ness in general; however, this would not be a short-
coming for a paramill, because the workspace for roll-
ing is quite small. Each SP considered in this paper
consists of a platform, a base, and six hydraulic legs.
Hence, by attaching a work-roll to the platform, 6
DOF motions of the roll can be made.

In this paper, a conceptual design of the paramill
is presented in the way that power transmission from
the actuators to the end-effector is maximized. The
authors do not claim that the paramill should be de-
signed in this fashion only, but would rather suggest
one way of designing. Note that an integrated control
needs at least 5 DOF motions of the work-roll: surge
(strip tension control), sway (even wear across the
roll), heave (strip thickness control), rolling (strip
shape control), and yawing (even thickness across the
strip). Even though the SP1 can provide 6 DOF mo-
tions, the pitch motion of the roll is not considered
because the roll itself is rotating. The paramill then
will make the looper mechanism obsolete, which is
the current technology for tension control.

The design problem considered in this paper dis-
cusses the determination of a stand size for a given
size of the work-roll. Therefore, the size of the base,
configuration of the joints, and lengths of hydraulic
cylinders have to be decided. The results of Hong
et al.3 that considered only one SP in the kinematic
design would not be sufficient because the analysis
by Hong et al.3 did not consider the rolling force and
moment generated between the two work-rolls in
contact.

The forward kinematics problem is defined as the
problem of finding the roll-gap and the pair-crossing
angle of the two work-rolls for given lengths of 12
legs, six from each SP. On the other hand, the inverse
kinematics problem is defined as the problem of find-
ing the lengths of 12 legs when the roll-gap, the pair-
crossing angle, and the position and orientation of
one work-roll are given. A kinematic constraint equa-
tion, in the configuration where two SPs are in contact
at its neutral position, is first derived. From the ki-
nematic constraint equation, a velocity–Jacobian ma-
trix and a subsequent force–Jacobian matrix are de-
rived. A manipulability measure, which is a ratio of
the manipulability ellipsoid volume and the condi-
tion number of each velocity/force-Jacobian matrix,
is defined. Two main kinematic parameters, the size
of the base and the acute (opening) angle of two
neighboring joints, have been determined in the way
that the force and moment transmissions from the ac-
tuators to the work-roll are maximized. The results
will be compared with the results of ref. 3.

This paper is organized as follows: Section 2 de-
scribes the rolling process briefly and introduces the
coordinate systems of the paramill. In Section 3, ki-
nematic constraint equations are derived and then
the forward and inverse kinematics problems are
analyzed. In Section 4, Jacobian matrices are derived
and the workspace is discussed. In Section 5, the ma-
nipulability analysis of the paramill in terms of link
lengths and joint angles is performed and the optimal
link lengths are proposed. Finally, Section 6 con-
cludes the paper.
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2. PRELIMINARIES: ROLLING PROCESS AND
PARAMILL STRUCTURE

2.1. Rolling Process

Rolling is the process of forming metal (steel, alumi-
num, etc.) sheets from slab ingots. The slab is nor-
mally preheated in a furnace and rolled between
powered rollers. The main difference between hot
and cold rollings is that in hot rolling the workpiece
is initially at, or is heated to, above recrystallization
temperature, as contrasted to cold rolling, where the
workpiece is processed at ambient temperature.4

Figure 1 shows a schematic of the current con-
tinuous rolling mill facility. The process route can best
be described in terms of the major items of equipment
as follows:5 The feed stock for the rolling mill are
slabs produced by the continuous casting process in
a steel plant. Therefore, the slabs at ambient tempera-
ture are first sent to a reheat furnace to raise the tem-
perature of the whole slab to around 1300 °C. On exit
from the reheat furnace, there is a buildup of scale on
the surface of the slab, due to oxidation, which is det-
rimental to the surface quality. This is removed
within the descaling box, which consists of jets of
high-pressure water. And then the slab is sent to a
roughing mill, which is a reversing mill that produces
a breakdown bar by rolling the slab through a series
of forward and reverse passes, typically reducing the
slab thickness from 200 to 30 mm. After removing any
variations in the leading edge of the breakdown bar
and descaling, the slab is finally sent to a finishing
mill, which is designed to reduce the thickness of the
breakdown bar to that of the finished coil, while
maintaining the desired width. A sequential combi-
nation of stands, from two to six, is used depending
on the product being rolled. The mill control system
is critical, because a constant mass flow must be
maintained in all stands to ensure continuous
production.

On exit from the finishing mill, the product,
which is typically above 800 °C, is cooled at a run-out
table. On exit from the mill/run-out table cooling sys-
tem, the hot product typically has a velocity of up to

Figure 1. A schematic of the current continuous rolling
mill facility.
40 m per hour and can be hundreds of meters in
length. The down coiler finally allows the product to
be converted into a coil of dimensions that can be eas-
ily transported.

2.2. Paramill Configuration

Figure 2 shows a 3D graphic of the paramill based
upon two SPs. Figure 3 depicts a schematic of the

Figure 2. A 3D graphics of the paramill based upon two
Stewart platforms.

Figure 3. The proposed continuous rolling process that
uses seven paramills.
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Figure 4. The coordinate systems introduced for the paramill.
proposed continuous rolling process, which uses
seven paramills. Figure 4 shows the coordinate sys-
tems introduced for the paramill, which are attached
to the bases and platforms.

The coordinate systems for the lower SP are first
introduced: Let �0� be the coordinate system that is
attached to the base, which is a fixed coordinate sys-
tem denoting X0�Y0�Z0 directions. The origin of �0�
is O0 , which is the center of the base. Let �1� be the
coordinate system that is attached to the platform,
which is a moving coordinate system denoting x1

�y1�z1 directions. The origin of �1� is o1 , which is
the center of the platform. Let Bi and Pi (i
�1,2,...,6) denote six joints on the base and on the
platform, respectively. Let bi�O0Bi and pi�o1Pi
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(i�1,2,...,6) be the position vectors from the origins
of the base and platform to the corresponding joints,
respectively. Let ai�BiPi (i�1,2,...,6) be the leg vec-
tors from the six joints on the base to the six joints on
the platform. Let 0R1 and d�O0o1��dX dY dZ�T be
the rotation matrix and translation vector between �0�
and �1�, respectively.

A similar notation can be introduced for the up-
per SP. Note that all variables for the upper SP are
written in italic, while those for the lower SP are writ-
ten in normal face. Let �0� the coordinate system at-
tached to the base of the upper SP, which is a fixed
coordinate system denoting X0�Y0�Z0 directions.
Note that �0� has been rotated by RX0

(�) with respect
to �0�, i.e., 180 degrees with respect to the X0-axis of
the lower SP. Let O0 denote the center of the base of
the upper SP. Let �2� denote the coordinate system at-
tached to the platform of the upper SP. �2� is a moving
coordinate system denoting x2�y2�z2 directions,
whose origin is o2 . Let Bi and Pi (i�1,2,...,6) denote
the six joints on the base and platform in the upper SP,
respectively. Let pi�o2Pi and bi�O0Bi (i�1,2,...,6) be
the position vectors to the joints. The leg vectors of
the upper SP are ai�BiPi (i�1,2,...,6). Let 2R0 and
d�o2O0��dx dy dz�

T be the rotation matrix and
translation vector from the moving coordinate �2� to
the fixed coordinate �0�.

Since the motions of two SPs are not indepen-
dent, two auxiliary vectors ri�O0Bi and si�O0Pi (i
�1,2,...,6) are introduced as intermediate variables
for clarifying the dependence; see Figure 4. Let OdO

�O0O0 be the vector from the origin of �0�-coordinate
to that of �0�-coordinate. Let 1R2 and t��tx ty tz�

T

be the rotation matrix and translational vector from
�1�-coordinate to �2�-coordinate, respectively, where t
denotes the thickness of the strip.

Let the rotation matrix of the platform of the
lower SP with respect to �0�-coordinate be 0R1
�RZ0

(�)RY0
(�)RX0

(�), where �,�,� denote the fixed
angle representation. Similarly, let the rotation matrix
of the platform of the upper SP with
respect to �0�-coordinate be 0R2�(2R0)

�1

�RZ0
(��)RY0

(��)RX0
(��), where ��,��,�� denote

the fixed angle representation for the upper SP. Note
that �, �, � and ��,��,�� represent the rolling, pitch-
ing, and yawing angles of the individual platforms.
Hence, 1R2 can be determined from 0R1 and 0R2 .

Finally, Figure 5 shows the configuration of the
joints on the base and platform for connecting the hy-
draulic cylinders. Such an arrangement in Figure 5
can avoid a kinematic singularity.6–9 It is noted that
the center lines (solid) bisecting two neighboring
joints make 120 degree obtuse angles. Let the acute
angle made by the center line and one neighboring
joint on the base and platform be 	 lb and 	 lp for the
lower SP, respectively, and 	ub and 	up for the upper
SP, respectively.

Design Objective: In this paper, the two design
parameters pursued are the radius of the base, rlb ,
and the acute angle, 	 lb , for a given radius of the
platform. For the paramill, seven parameters, i.e., rlb ,
rub , 	 lb , 	 lp , 	ub , 	up , and OdO�O0O0, would af-
fect a manipulability of the paramill. But, because a
symmetric structure of the paramill is desired and the
complexity of the optimization problem should be in
a manageable form, rlb�rub and 	 lb�	 lp�	ub
�	up are assumed. Also, OdO is assumed a given
value. Therefore, through the analyses in Sections 3
and 4 next, the base radius rlb(�rub) and the acute
angle 	 lb(�	 lp�	ub�	up) are optimally designed.

3. KINEMATIC ANALYSIS OF PARAMILL

3.1. Kinematic Constraints

Since a paramill involves two SPs, the motion of the
upper work-roll is not independent from the motion
of the lower one. The contact motion with a given roll
gap has to be maintained at all times, yielding a
closed-loop chain. Therefore, the kinematics problem
should be looked into as a constraint problem of a
closed kinematic chain.

First, in Figure 4, the leg vectors ai of the lower SP
are derived as

ai�d�bi�
0R1

1pi , i�1,2,...,6, (1)

where the superscript in the left-hand side of 1p de-
notes the �1� coordinate system. In such a situation
where a misunderstanding might occur, the left-hand
superscript like 0 in 0R1 or 1 in 1p will be added.
However, if the used coordinate system is quite clear,
it will be skipped. The ri and si vectors in Figure 4 are

ri�d�0R1
1t�0R2

2d�0R0bi , i�1,2,...,6, (2)

si�d�0R1
1t�0R2

2pi , i�1,2,...,6. (3)

Hence, the leg vectors ai of the upper SP become

ai��ri�si , i�1,2,...,6. (4)

The substitution of (2) and (3) into (4) yields
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Figure 5. The joints configuration for connecting hydraulic cylinders.
ai��
d�0R1
1t�0R2

2d�0R0bi��d�0R1
1t�0R2

2pi

�0R2
�2d�2R0bi�
2pi�, i�1,2,...,6. (5)

The multiplication of (0R2)�1 at both sides of (5)
yields


0R2��1ai��2d�2R0bi�
2pi , i�1,2,...,6. (6)

The re-arrangement of the terms in (6) yields

2d��2R0bi�
2pi�
0R2��1ai , i�1,2,...,6. (7)

The distance from O0 to O0 is

0d0�d�0R1
1t�0R2

2d. (8)
Finally, by substituting (1) and (7) into (8), the
constraint equation is derived as follows:

0d0�ai�bi�
0R1

1pi
0R1

1t�0R0bi�
0R2

2pi�ai ,

i�1,2,...,6, (9)

where 0d0 denotes the constant vector given by the
height of a stand. Hence, ai becomes

ai�ai�bi�
0R1

1pi�
0R1

1t�0R0bi�
0R2

2pi�
0d0 ,

i�1,2,...,6. (10)

3.2. Inverse Kinematics

The inverse kinematics problem of the paramill is de-
fined as the problem of finding the 12 leg lengths of
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the two SPs for a given roll-gap and pair-crossing
angle. This problem becomes equivalent to the prob-
lem of finding the lengths of six legs of individual SPs
once the orientation and position of one work-roll is
further given. This is because once the roll gap, the
pair-crossing angle, and the position and orientation
of one roll are determined, the position and orienta-
tion of another roll are automatically determined. In
this case, ai (i�1,2,...,6) can be pursued for given d
and 0R1 and ai (i�1,2,...,6 can be pursued for given
d and 2R0 .

Now, assume that d, 0R1 , t (roll gap), and 1R2
(pair-crossing angle) are given. Therefore, the leg
lengths in the lower SP from (1) are given as

�ai�2�
d�bi�
0R1

1pi�•
d�bi�
0R1

1pi�


 i�1,2,...,6 �, (11)

where bi��rlb cos �lbi rlb sin �lbi 0�T, 1pi��rlp cos �lpi
rlp sin �lpi 0�T, (i�1,2,...,6). Similarly, the substitution
of (1) into (10) yields

ai�
0R1

1R2
2pi�

0R1
1R2

2R0
0bi�

0R1
1t�d�0d0 ,

(12)

where bi��rub cos ubi rub sin ubi 0�T, pi��rup
cos upi rup sin upi 0�T (i�1,2,...,6). Hence, the leg
lengths in the upper SP are

�ai�2�
0R1
1R2

2pi�
0R1

1R2
2R0

0bi�
0R1

1t�d�0d0�

•
0R1
1R2

2pi�
0R1

1R2
2R0

0bi�
0R1

1t�d

�0d0�, i�1,2,...,6. (13)

Note that �ai� are given in terms of d and 0R1 and �ai�
are given with additional t and 1R2 .

3.3. Direct Kinematics Analysis

For a single SP, the forward kinematics problem is de-
fined as the problem of finding the position and ori-
entation of the platform for given lengths of the six
legs. For a parallel manipulator, the forward kinemat-
ics solutions are known to be nonunique and there-
fore a numerical approach or the use of extra sensors
is sometimes pursued.10,11

For the paramill, the forward kinematics problem
is defined as the problem of finding the roll gap and
pair-crossing angle via the position and orientation
information of individual work-rolls for given
lengths of the two SPs. Hence, following the works in
the literature,2 d and 0R1 can be pursued for given leg
lengths of the lower SP and similarly �d and 0R2 can
be pursued for given leg lengths of the upper SP.

Since the �0� coordinate system of the upper SP
has rotated 180 degrees with respect to the X0-axis in
the lower SP, the rotation matrix between the two
frames, 0R0 , has the relationship 0R0�

2R0
1R2

0R1
and therefore the rotation matrix between the two
work-rolls becomes

1R2�
2R0�
�1 0R0


0R1��1. (14)

Also, once d, 0R1 , d, 0R2 are determined for given
lengths of the 12 legs, the roll gap t is obtained using
(10) and (14) as follows:

t�
0R1��1
ai�ai�bi�
0d0��1pi

�

2R0��1 0R0

0R1��1�
2R0bi�

�

2R0��1 0R0

0R1��1�
2pi�, i�1,2,...,6.

(15)

Therefore, as forward kinematics solutions of
Paramill, the relative orientation of two work-rolls
is given in (14) and their relative position in (15),
respectively.

4. JACOBIAN MATRICES AND WORK SPACE

In this section, the velocity and force Jacobian matri-
ces of the paramill are derived and the associated
workspace is discussed. For a single SP, the velocity
Jacobian matrix is the transformation that allows the
calculation of the linear and angular velocities of the
platform for given linear velocities of the legs. Also,
the force/moment Jacobian matrices is the transfor-
mation that converts the axial forces at the six legs to
the resultant force and moment of the platform,
respectively.12,3

The velocity Jacobian matrix proposed for the
paramill is the transformation that maps the linear
velocities at the 12 legs to the relative velocity and
relative angular velocity between the two work-rolls.
Also, the force and moment Jacobian matrix, which is
derived from the velocity Jacobian matrix using the
principle of virtual work, allows the calculation of the
resultant rolling force and moment at the two work-
rolls for given actuating forces at the 12 legs.
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4.1. Velocity Jacobian Matrix

Using the constraint equations (1) and (10), the veloc-
ity Jacobian matrix is derived as follows: First, the in-
ner product of (1) yields

ai•ai�ai•
d�bi�
0R1

1pi�, i�1,2,...,6. (16)

Differentiating (16) with respect to time and using
(d/dt)(0R1)��l�

0R1 ,13 the following expression is
derived:

ai• ȧi�ai•
 ḋ��l�
0R1

1pi�

�ai•ḋ�ai•
�l�
0R1

1pi�

�ai•ḋ�0R1
1pi•
ai��l�

�ai•ḋ��l•
0R1

1pi�ai , i�1,2,...,6, (17)

where �l��� lX
� lY

� lZ
�T denotes the angular ve-

locity vector of the lower platform. Also, the inner
product of (10) yields

ai•ai�ai•
ai�bi�
0R1

1pi�
0R1

1t�0R0bi

�0R2
2pi�

0d0�

�ai•
ai�bi�
0R1

1pi�
0R1

1t�0R1
1R2

2R0bi

�0R1
1R2

2pi�
0d0�,

i�1,2,...,6. (18)

The differentiation of (18) with respect to time yields

ai•ȧi�ai•� ȧi�ḃi�
0Ṙ1
1pi�

0R1
1ṗi��
0Ṙ1

1t

�0R1
1 ṫ��
0Ṙ1

1R2
2R0bi�

0R1
1Ṙ2

2R0bi

�0R1
1R2

2Ṙ0bi�
0R1

1R2
2R0ḃi��
0Ṙ1

1R2
2pi

�0R1
1Ṙ2

2pi�
0R1

1R2
2ṗi��0ḋ0� , i�1,2,...,6.

(19)

Since 0d0 ,pi ,bi ,pi ,bi are constant vectors, 0ḋ0�ṗi

�ḃi�ṗi�ḃi�0 holds. Rearranging the terms in (19)
yields
ai•ȧi�ai•� ȧi�
0Ṙ1
1pi��
0Ṙ1

1t�0R1
1 ṫ�

�
0Ṙ1
1R2

2R0bi�
0R1

1Ṙ2
2R0bi

�0R1
1R2

2Ṙ0bi��
0Ṙ1
1R2

2pi

�0R1
1Ṙ2

2pi� , i�1,2,...,6. (20)

Using (d/dt)(1R2)��pc�
1R2 and (d/dt)(2R0)��u

�2R0 where the subscript pc stands for the pair-
crossing, the following expression is derived:

ai•ȧi�ai•� ȧi�
�l�
0R1

1pi��
�l�
0R1

1t�0R1
1 ṫ�

�
�l�
0R1

1R2
2R0bi�

0R1�pc�
1R2

2R0bi

�0R1
1R2�u�2R0bi��
�l�

0R1
1R2

2pi

�0R1�pc�
1R2

2pi� , i�1,2,...,6, (21)

where �u���uX �uY �uZ�T is the angular velocity
vector of the upper platform, �pc
���pcx �pcy �pcz�

T is the relative angular velocity
vector of the two work-rolls. �l , �u , and �pc satisfy
the following relationship (22), because the vector
from O0 to O0 is a constant vector with no rotational
motion:

�l�
0R1�pc�

0R1
1R2�u�0,

(22)
0R1

1R2�u���l�
0R1�pc .

The substitution of ȧi�ḋ��l�
0R1

1pi and (22) into
(21) yields

ai•ȧi�ai•ḋ�ai•
�l�
0R1
1t�0R1

1R2
2R0bi�

2R0bi

�0R1
1R2

2pi���ai•
�0R1�pc�
1R2
2R0bi

�2R0bi�
1R2

2pi���ai•
0R1
1 ṫ�

�ai•ḋ��l•
0R1
1t�0R1

1R2
2R0bi

�2R0bi�
0R1

1R2
2pi��ai�

0R1�pc•
1R2
2R0bi

�2R0bi�
1R2

2pi��ai�ai•
0R1
1 ṫ�,

i�1,2,...,6. (23)

A matrix representation of (17) and (23) becomes

L l̇�Mȯ,

where
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l̇�� � ȧ1�¯� ȧ6�� ȧ1�¯� ȧ6� �T,

ȯ�� ḋX ḋY dZ � lX � lY � lZ ṫx ṫy ṫz

�pcx �pcy �pcz�
T,

L��
�a1�

� 06�6

�a6�

�a1�

06�6 �

�a6�

� ,

M��
a1

T 
A1�a1�T 01�3 01�3

] ] ] ]

a6
T 
A6�a6�T 01�3 01�3

a1
T 
B1�a1�T �0R1a1

T 
C1�a1�T

] ] ] ]

a6
T 
B6�a6�T �0R1a6

T 
C6�a6�T

� ,

Ai�
0R1

1pi ,

Bi�
0R1

1t�0R1
1R2

2R0bi�
2R0bi�

0R1
1R2

2pi ,

Ci�
1R2

2R0bi�
2R0bi�

1R2
2pi , i�1,2,...,6.

Now, moving M to the other side yields

ȯ�M�1L l̇�Jv l̇, (24)

where Jv�M�1L is called the velocity Jacobian ma-
trix of the paramill.

4.2. Force/Moment Jacobian Matrix

The force/moment Jacobian matrix relates the forces
acting at the 12 legs with the force/moment resulting
on the platforms. Therefore, the rolling force and mo-
ment needed at the work-rolls can be generated by
multiplying the force/moment Jacobian matrix at a
given configuration to the force vector of 12 legs.
Now, this relationship is derived from the principle of
virtual work as follows:

Taking the variations of both sides of (24) yields

�o�Jv�l, (25)
where �o���dX �dY �dZ �� �� �� �tx �ty
�tz ��pc ��pc ��pc�

T and �l����a1�¯��a6���a1�
¯��a6� �T. Let f�� f l1¯f l6 fu1¯fu6�T be the actuating
forces at the legs. Let F��FX FY FZ Frollx
Frolly Frollz�

T and M��MX MY MZ Mpcx
Mpcy Mpcz�

T be the rolling force and moment at the
lower work-roll, respectively.

The application of the principle of virtual work to
(25) yields

fT�l��T�o. (26)

The substitution of (25) into (26) yields:


fT��TJv��l�0. (27)

Since (�l) in (27) is linearly independent,

f�Jv
T�. (28)

Defining J f�(Jv
T)�1, (28) becomes

��J ff, (29)

where J f is termed the force/moment Jacobian ma-
trix, which maps the actuating forces at the legs to the
resultant force and moment at the end-effector. Since
Jv in (24) and J f in (29) relate the input magnitudes
with the output velocities and force/moment, they
can be used as a tool for analyzing the manipulability
of the structure.

4.3. The Workspace

It may suffice to define a workspace for the lower SP
because that for the upper one can be defined in a
similar way. Using the definition of the workspace in-
troduced in Reference 3, the following two work-
spaces are defined.

First, focusing on translational motions, the po-
sition workspace, which represents the extent that the
center point of the work-roll can reach to, is defined
as follows:

���
�X ,�Y ,�Z ���70��X�70,

�100��Y�100, 0��Z�150;

unit�mm�, (30)

where �X , �Y , and �Z are incremental displace-
ments of the work-roll in the X-Y-Z directions from
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Table I. Workspace specifications.

6 DOF motions Lower SP Upper SP Control
objectives

Translational
motions

Strip moving
direction
(surge)

�70 mm �70 mm Tension control

Roll sideward
shift

(sway)

�100 mm �100 mm Uniform roll
wear

Strip thickness
direction
(heave)

150 mm 150 mm Thickness
control

Rotational
motions

Rotation about
the X-axis

(roll)

�1.42° �1.42° Even wear

Rotation about
the Y-axis

(pitch)

N/A N/A N/A

Rotation about
the Z-axis

(yaw)

�1° �1° Uniform strip
thickness
the static neutral configuration. Also, at the given
neutral position of the roll, the orientation work-
space, which represents how far the roll can rotate, is
defined as follows:

���
� ,� ,����1.42���1.42,��0,�1���1;

unit�°�, (31)

where �, �, and � are the rotational angles of the
work-roll in fixed angle representation. Note that
there is no pitch motion in the orientation workspace.
The 6 DOF motions of the roll, specifications, and
their control objectives are summarized in Table I.

Because the extent of the orientation workspace
in the rolling process is very small and its conse-
quence is somewhat limited due to the smallness,
only the position workspace is considered in the ma-
nipulability analysis in the next section. However, the
orientation workspace can be utilized in a later stage
when determining the maximum/minimum lengths
of hydraulic cylinders. Finally, it is noted that a ki-
nematic singularity does not exist within the work-
space given by (30) and (31).

5. KINEMATIC OPTIMAL DESIGN

5.1. Manipulability Analysis

One might want to know how easily the mechanism
can be manipulated in terms of delivering velocities
and forces.14–18 That is, it would be desirable to
achieve the target jobs in the configuration space with
minimal efforts in the joint space.

To analyze input–output characteristics of a
given mechanism, a unit-norm input is often used.
But, the unit-norm input may not represent the actual
operating range of the mechanism because the maxi-
mum velocities and forces of individual actuators
may differ. Therefore, individual actuator velocity
and force must be normalized.19,20 Now, the normal-
ized input velocities and forces are defined as fol-
lows:

l̇̂�Wl
�1 l̇, (32)

f̂�Wf
�1f, (33)

where Wl�diag(�ȧ1�max¯�ȧ6�max �ȧ1�max¯�ȧ6�max)
and Wf�diag(fl1 max¯fl6 max fu1 max¯fu6 max) represent
the maximum velocities and forces generated on the
twelve actuators and ˆ denotes the normalized value.
Here, noting that the arrangement of the 12 hydraulic
cylinders is symmetrical, we can assume that the
maximum velocities and forces of all actuators are
equal. Thus, in the case of a paramill, Wl and Wf can
be assumed diagonal matrices with proper
weightings.

The substitution of (32) and (33) into (24) and
(29), respectively, yields
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� vl

�l

vroll

�pc

��
Jv
�1Wl� l̇̂, (34)

� Fl

Ml

Froll

Mpc

��
J fWf� f̂, (35)

where vl , �l , Fl , and Ml denote the velocity, angular
velocity, force, and moment of the lower work-roll;
vroll , �pc , Froll , and Mpc represent the relative veloc-
ity, relative angular velocity, rolling force, and rolling
moment between the two work-rolls.

It is noted that the variables related to the lower
SP, i.e., vl , �l , Fl , Ml�R3�1, have been included for
computational purpose. In (34) and (35), the variables
that deserve attention are vroll , �pc , Froll and Mpc ,
which are the roll gap velocity, angular velocity of the
pair-crossing, rolling force, and rolling moment.

Now, splitting the Jacobian matrices of (34) and
(35) into two parts, the relative motion (linear and an-
gular) of two work-rolls and rolling force/moment
are finally derived as follows:

�vroll

�pc
��� Ĵvo

Ĵ�o
� l̇̂, (36)

�Froll

Mpc
��� ĴFo

ĴMo
� f̂, (37)

where vroll , �pc , Froll , Mpc�R3�1, Ĵvo , Ĵ�o , ĴFo ,
ĴMo�R3�12, and the subscript o denotes ‘‘output.’’
Since all analyses of the four split Jacobian matrices in
(36) and (37) are the same, we carry out only one
analysis as a representative one.

Intuitively, the manipulability can be defined as
how easily and uniformly the end-effector is able to
move in an arbitrary direction. To analyze the ma-
nipulability of a mechanism, the manipulability ellip-
soid is the most intuitive and useful measure. It can
be made by mapping a unit sphere in the input space
to the output space through the Jacobian matrix. The
major and minor axes of the ellipsoid indicate the di-
rections in which the platform can move most and
least easily, respectively, and the ease is proportional
to the principal axis length. Also, the magnitude and
direction of the major and minor axes can be obtained
from the singular value decomposition. If the ellip-
soid is larger and more circular, then the platform has
faster velocity, larger forces, and more uniform mo-
tion. The volume of the output manipulability ellip-
soid (MEV) and the condition number (CN) for a
given weighted Jacobian matrix are defined as
follows:12

MEV�
��/2

�
1��/2� �i�1

�

� i , (38)

CN�
�max

�min
, (39)

Figure 6. Three-dimensional plots of the global force and
moment manipulability measures with the use of one SP
(Ref. 3).
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where � is the dimension of the manipulability ellip-
soid and �(·) is the gamma function. The condition
number represents the directional characteristics of
the Jacobian matrix. The larger the condition number
is, the more severe the directional characteristics is.
The larger the volume of the manipulability ellipsoid
is, the greater the total output is for a given input.
Therefore, it is desirable to have a small condition
number and a large volume. Therefore, both MEV
and CN must be combined for a kinematic optimal
design.

Integrating local manipulabilities over the given
workspace, the following global manipulability in-
dex can be defined:

Figure 7. Three-dimensional plots of the global force and
moment manipulability measures with the use of two SPs.
� i�
��� i
rlb ,rub ,	 lb ,	ub ,	 lp ,	up�d�

��d�
, i�1,2,3,4,

(40)

where �, � i , and � i represent the total workspace,
the local manipulability measure, and the global ma-
nipulability, respectively.

Finally, it is noted that these manipulabilities are
functions of the kinematic parameters concerned. If
the velocity manipulability is large, then the mecha-
nism can respond fast and, furthermore, the response
characteristics are uniform throughout the work-
space. Similarly, if the force/moment manipulability
is large, the mechanism can resist a large external
disturbance and its resistance characteristics are
isotropic.

In order to confirm the correctness of the pro-
posed method, the results of the proposed method
and the results in Reference 3 are compared. Figure 6
shows the 3-D plots of the global force and moment
manipulability measures obtained with the use of one
SP (see Reference 3). Figure 7 shows the 3-D plots of
the global force and moment manipulability mea-
sures obtained with the use of two SPs. It can be seen
from Figures 6(a) and 7(a) that the maximum value of
the global force manipulability in Figure 7(a) is
greater than that of Figure 6(a). The reason for this is
that the condition number is the same, but the ma-
nipulability ellipsoid volume for the case of two SPs
is bigger than the case of one SP. That is, with the
same parameter values and the same input forces, the
maximum output in the case of two SPs is larger than

Figure 8. Two-dimensional contours of the combined glo-
bal force and moment manipulability measures with the
use of two SPs.
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Table II. The ranges of maximizing kinematic parameters.

rlb�rub (mm) 2	 lp�2	up (°) 2	 lb�2	ub (°) Remark

Global force
manipulability

1620–1820 17.5–35.5 17.5–35.5 Important

Global moment
manipulability

1620–1820 17.5–35.5 17.5–35.5 Important

Global
translational
velocity
manipulability

1850,
2850

60 60 Less
important

Global rotational
velocity
manipulability

2850 60 60 Less
important
that of a single SP, which means that for given mag-
nitudes of desired rolling force/moment, the actuator
sizes can be compactly designed. This is very impor-
tant because this will allow the reduction of a stand
size and consequently the length of the entire produc-
tion line. On the other hand, from Figures 6(b) and
7(b) it can be seen that the moment manipulabilities
are almost the same. The reason for this can be traced
from the fact that the rotational workspace for the
rolling process is relatively small compared with the
translational workspace.

5.2. Determination of Kinematic Parameters

Let a static neutral position of the work-roll be
d��d��0 0 0.8�T with 1R2�0R1�0R2�I, where I is
an identity matrix. The position and orientation of the
work-roll can be expressed as deviations from the
static neutral position.

The ranges of parameter values in the pursuit of
optimal design are set as follows:

0°�2	�60° ,

1620 mm�r�2852 mm,

where 	�	 lb�	 lp�	ub�	up and r�rlb�rub have
been assumed. The defined ranges have the following
interpretations: The 0° angle between two joints
means that the joints of two neighboring cylinders are
overlapped at one point. This means that the SP will
allow less DOF motions. And the 60° of acute angle
results in a singular configuration.6,7 The base radius
of rlb�rub�1620 mm represents that the base diam-
eter must be larger than the length of a work-roll. The
range rlb�rub�2850 mm is limited from the size of a
stand. Because all above values were taken for dem-
onstration purpose, they can be changed in a later
stage reflecting the actual conditions. If the base and
platform radii become identical, the moment ma-
nipulability becomes maximized.

Figure 8 shows the two-dimensional contours of
the combined global force and moment manipulabili-
ties in Figure 7. The reason for adding two manipu-
labilities is because it is difficult to figure out the
maximum parameter values that satisfy both the
force and moment manipulabilies at the same time.
Note that the two manipulabilities have different
units. Therefore, both manipulabilities were first nor-
malized by their peak values and then added.

It is finally observed that a common range that
maximizes both manipulabilities is 1620–1820 mm for
the case of radius and 17.5°–35.5° for the case of joint
angle. Assuming that the paramill operates in the
workspace defined in Section 4.3, ai (i�1,2,...,6) can
be obtained from (1) and therefore the minimum and
maximum lengths of the actuators can be calculated
from (10) because bi , pi , bi , pi , i�1,2,...,6, are
Table III. Final specifications obtained by kinematic optimization: single SP case.

Platform
radius

(rp)
Base radius

(rb)

Angle between
joints

(	b�	p)

Minimum
length of leg

(lmin)

Maximum
length of leg

(lmax)

Kinematic
optimization

1620 mm 1900 mm 41° 907.7 mm 1269.3 mm
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Table IV. Final specifications obtained by kinematic optimization: two SPs case.

Platform
radius

(rlp�rup)
Base radius

(rlb�rub)

Angle between
joints

(2	 lb�2	 lp)
(2	ub�2	up)

Minimum
length of leg

(lmin)

Maximum
length of leg

(lmax)

Kinematic
optimization

1620 mm 1800 mm 32° 716.6 mm 1730.3 mm
determined from the kinematic design; 0R1 and 2R0

are determined by the given workspace; and 1R2 is
determined by 0R1 and 0R2 . And, t will be deter-
mined from the positional workspace.

Now, the kinematic parameters that maximize
the global force and moment manipulabilies are gath-
ered in Table II. For rolling, the transmissions of force
and moment are more important than those of veloc-
ity and angular velocity. This is because maintaining
the rolling force and moment is more critical than a
fast change of the roll gap and the pair-crossing angle.
Table III shows the optimal results obtained with the
use of single SP in Reference 3, while the results with
the use of two SPs are gathered in Table IV. By com-
paring Tables III and IV, it is seen that the base can be
made smaller through the analysis of two SPs, which
will allow the smaller size of a stand, and again which
makes the entire production line shorter.

6. CONCLUSIONS

In this paper a feasibility study on a new parallel-type
rolling mill based upon two SPs was investigated. Be-
cause an advantage of using different base sizes in the
lower and upper SPs was not seen, both SPs were as-
sumed to have the same structure, but used in oppo-
site directions. The forward kinematics problem was
finding the roll-gap and the pair-crossing angle of the
two work-rolls for given lengths of the 12 legs. On the
other hand, the inverse kinematics problem was find-
ing the lengths of 12 legs when the roll-gap, the pair-
crossing angle, and the position and orientation of
one work-roll were given. Two important kinematic
parameters, the size of the base and the acute angle
made by two neighboring joints for a given size of the
work-roll, have been determined in such a way that
the force and moment transmissions from the actua-
tors to the work-roll is maximized. It is the authors’
desire that the results in this paper provide a guide-
line for the conceptual design of parallel-type rolling
mills of SP type. Future works would be a dynamics
analysis and an integrated control of the strip thick-
ness, strip tension, roll speed, strip shape, pair-
crossing angle, uniform wear of the roll, etc.
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