Spatiotemporally Varying Tension*
Kyung-Jinn YANG™, Keum-Shik HONG™* and Fumitoshi MATSUNO®*

In this paper, a vibration suppression scheme of an axially moving steel strip in the zinc
galvanizing line is investigated. The moving steel strip is modeled as a moving beam, in
which the tension applied to the strip is a spatiotemporally varying function. The transverse
vibration of the strip is controlled by a hydraulic touch-roll actuator at the right boundary.
The mathematical model of the system, which consists of a hyperbolic partial differential
equation describing the dynamics of the moving beam and an ordinary differential equation
describing the actuator dynamics, is derived by using the Hamilton's principle for the systems
of changing mass. The Lyapunov method is employed to design a boundary control law for
ensuring the vibration reduction of the system in the presence of a spatiotemporally varying
tension. The exponential stability of the closed loop system under the boundary control is
proved through the use of invariance principle and semigroup theory. Simulation results
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verify the effectiveness of the boundary control law proposed.
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1. Introduction

Figure 1 shows the continuous hot-dip zinc galvaniz-
ing process. The steel strips, of order of 1 -1.2m wide by
0.8 — 3.0 mm thick, are preheated and passed at a constant
speed through a pot of molten zinc at a temperature in the
region of about 450°C. A zinc film is entrained onto the
strip as it emerges from the pot. In order to achieve the
target deposited mass and maintain it over various process
conditions, a pair of air knives, which direct a long thin
wedge-shaped jet of high-velocity air onto the strip, are
generally used to control the thickness of the deposited
zinc by stripping out excess zinc back into the pot. The de-
posited film solidifies while the strip moves vertically up-
ward, cooling as it goes, and horizontally for about 110 m,
to the gauge that measures the mass of zinc deposited on
the strip surfaces.
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Two control objectives in the galvanizing line are to
improve the uniformity of the zinc deposit on the strip
surfaces and to reduce the zinc consumption. The trans-
verse movement or vibrations of the strip is known to be
the main cause for the difference between the average de-
posited masses on the right and left surfaces and the non-
uniformity across the surfaces. As a regulation problem
of deposited mass, a number of adjustment methods of the
gap between the strip and air knives have been studied by
several researchers: Bertin et al.!), McKerrow™, Jacobs
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Fig. 1 An axially moving steel strip in the zinc galvanizing line
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and Chen®®, and Chen*. However, a pertinacious prob-
lem was the lack of a precise knowledge on strip position
due to the vibrations of the strip. Many galvanized steel
manufacturers including POSCO (Korea) and U.S. Steel
have attempted to measure the strip position directly by
installing laser transducers near the air knives. however,
no long-term success has been reported yet, because the
transducers were unreliable in the high-temperature envi-
ronment in the long run.

Thus, as an alternative method not using unreliable
transducers, the strip vibrations need to be directly sup-
pressed by using a more practical and reasonabie method
such as active boundary force control. The mathematical
models describing the dynamics of a moving steel strip
with a hydraulic touch-roll actuator for exerting boundary
control force are represented as a coupled hyperbolic par-
tial differential equation (PDE) and an ordinary differen-
tial equation (ODE), respectively. The coupled system of
a PDE and an ODE can then be analyzed through the use
of Lyapunov method and semigroup theory to ensure the
stability of the closed loop system and to derive a bound-
ary contro] law for reducing the vibration energy of the
strip.

Axially moving systems can be found in various en-
gineering areas: high-speed magnetic tapes, band saws,
power transmission chains and belts, and paper sheets un-
der precessing. Especially, the dynamics analysis and con-
trol for axially moving beams have received a growing at-
tention due to the entrance of new applications in flexible
robotic manipulators and flexible space structures®-®,
Particularly, vibration control schemes on axially moving
strings include Yang et al.!!%, Chung and Tan!!V, Lee and
Mote!!?), Fung et al.t’¥, and Li et al.!¥, and those on ax-
ially moving beams include Choi et al.'", Hong et al,!'®,
Lee and Mote!?, Li and Rahn"®, and Fung et al.('

The boundary force control has several advantages
over control schemes acting within the spatial domain
(e.g., distributed force control). A boundary control law,
as apposed to a distributed control law, is not only eas-
ily implementable by active or semi-active means at the
boundary, but also the dynamic model of the system equa-
tion is not altered by adding sensors and actuators. Lee
and Mote!'” analyzed a boundary controller to minimize
the vibration energy of a translating tensioned beam via
an active or passive damping. Li and Rahn'"® reported
an innovative boundary control strategy to suppress vibra-
tions of an axially moving beam by distinguishing the con-
trolled span from a disturbed span via an active, pivoting
roller actuator. Fung et al.{'® developed an optimal bound-
ary control strategy for an axially moving material sys-
tem through a mass-spring-damper controller. In all pa-
pers above, the control laws have been designed under the
assumption of a constant tension. However, in practical
situations, almost every axially moving system may have
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an axial tension which is a function of both time and space
due to the eccentricity of a support roller, and/or external
disturbances, and/or gravity etc.” Thus, to obtain a bet-
ter performance, a boundary controller in the presence of
a spatiotemporally varying tension has to be investigated.

The contributions of this paper are: The zinc galva-
nizing line is analyzed and a control-oriented beam model
for the traveling steel strip is derived. Considering the
length of the strip, the longitudinal tension of the sirip is
treated as a spatiotemporally varying function, which is
assumed to be bounded and periodic in time. An active
vibration suppression scheme in the form of a boundary
control and the Lyapunov method are proposed to control
the traveling strip system under a spatiotemporally varying
tension using a hydraulic touch-roll actuator at the right
boundary. The asymptotic and furthermore exponential
stability of the closed loop system are assured through the
invariance principle and semigroup theory, respectively.

The structure of this paper is organized as follows.
In section 2, the governing equation and boundary condi-
tions of an axially moving steel strip are derived by using
Hamilton’s principle. The boundary control problem is
then formulated. In sections 3, a robust boundary force
control law is proposed by using the Lyapunov method. In
section 4, the asymptotic and exponential stability of the
closed loop system are investigated. In section 5, com-
puter simulations are provided. Conclusions are given in
section 6.

2. Problem Formulation: Equations of Motion

Figure 2 shows a schematic of the axially moving
steel strip for control system design purpose. The left
boundary at the sink roll is assumed fixed, i.e., fixed in the
sense that there is no vertical movement but it allows the
strip to move in the horizontal direction. The two touch
rolls located in the middle section, but rather close to the
sink roll, of the strip are considered to be the right bound-
ary, where the control input (force) is exerted with a hy-
draulic actuator. In the zinc galvanizing line, the moving
steel strip can be modeled as a moving beam with high
flexibility.

Let ¢ be the time, x be the spatial coordinate along
the longitude of motion, v, be the axial speed of the strip,
w{x,?) be the transversal displacement of the strip at spa-
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Fig.2 A control-oriented schematic of the axially moving steel
strip with a hydraulic actuator at the right boundary
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tial coordinate x and time ¢, and { be the length of the strip
from left to right boundaries. Also, let p be the mass per
unit length, T;(x.r) be the tension applied to the strip, ET
be the flexural rigidity of the strip, and c, be. the viscous
damping coefficient of the strip. Let the mass and damping
coefficient of the hydraulic actuator be m, and d,, respec-
tively. The control force f.(¢) is applied to the touch rolis
to suppress the transverse vibrations of the strip.

Because the strip travels with a constant speed v;, the
total derivative operator (the material derivative) with re-
spect to time should be defined as (- )éd( dt=( )+
us - )@, where (- ), =8( - )/dx and (- },=8( - )/dx
denote the partial derivatives.

The kinetic energy of the steel strip between x =0 and
x=lincluding the hydraulic actuator is

1
T=lfp{v§+(v,wx+w,)2}dx+ —mcwf(l,t). )
2.b 2

For brevity, w, = w,(x,r) and w; = w,(x,t) have been used,
and similar abbreviations will be used in the sequel. The
potential energy of the system is

1
v=1 f Ty, thldx+ fl Efu? dx, )
2Jy 2.0

where wyy = wy(x,1). The virtual work by the external
forces is

!
oW = .ﬁ‘é‘w(lv t) —f Cu(wr + Uswx)(stl.?dx
0
~daw (LOédw(l, 1. 3

4|
Now, by using the Hamilton’s principle, i.e., (6T -

i}
6V +5W)dt =0, the governing equation and boundary con-
ditions are derived as follows:

PWie(x, 1) + 2p0 (X, 1) + priuw . (x,1)

—(T(x, D (2, 1)) + €, (Wi (x,7) + Vsix(x,1))

HEIW, (%, ) =0, 0<x<l, )
w(x,M=wo(x), w(x,0)=wyo(x), (5)
w0,0)=w 0,0=0, w.l)=0, (6)

and
fe=maw (1O + (@, — pvsw, (1.5
+H(T (1) = prP w1, 6) — Elw (1, ). (N

(4) is a linear hyperbolic PDE governing the transverse
mokion w(x,t) of the axially moving strip. (5) and (6)—(7)
denote the initial conditions and the boundary conditions
of the system, respectively. Note that the right bound-
ary condition (7) is an ODE that describes the equation
of motion of the hydraulic actuator in compliance with the
transversal force at x =/. For notational brevity, all vari-
ables at boundaries will be written without explicit time in
the sequel, i.e., w(0) =w(0,n, w(d) = w0, T,() = T (90,
etc,
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As shown in (2) and (4), the tension T,(x,?) is a
spatiotemporally, but periodic in time, varying function.
Since the steel strip is moving vertically, the gravitational
force pgx, which acts as an additional tension to the strip,
cannot be neglected. Also the tension itself may be time-
varying due to the eccentricity of a support roller, which
causes a periodic excitation. Thus, these variations need
to be incorporated in control system design, It is now as-
sumed that T(x,?) is sufficiently smooth and uniformly
bounded as follows:

Timin <To(x,0) < Ty max (8)
(T s (x, 00| < AT s )tymax, 9
(T s (x, 0l < (Ts) e maxs (10)

for all x€[0,1], =0, and some a priori known constants
Ts mins Ts.maxs (F's)rmax, and (Ts)xmax-

The objective of a boundary control is now to stabilize
asymptotically the vibration energy of the axially moving
strip with a time-varying condition at x =/. From (1) —(2),
the mechanical energy En(f) is given by

1 1
En = 3 f p{vf + (vl + w,)z}dx+ 3 fT,wf‘dx
0 )}

!
+1 f E1w§x4x+lmcw,2(l), ' an
2 Jo 2

where the traveling speed of the strip, v,, is a constant and
T,=Tu(x,8).

In the remainder of this section, to order to give a gen-
eral idea regarding how the boundary control action will
work, the dynamics of the moving strip with both fixed
boundaries is first analyzed. In this case, the boundary
conditions in (6} and (7) become w(() = w.(0) = w(h} =
w,() =0, and henceforth m.w?(f) = 0 in (11). The time
derivative of E,(#) in (11} is now evaluated by applying
the one-dimensicnal transport theorem of moving mate-
rial®® as follows:

. 1
E, ()= 3 pr(w, + U W)Wy + 20500y + uz'wu)dx
0
+ f T oo (Wr + U5ty ) x
o
1 2
+3 A {(Ts) +o(Ts)hwidx
+ f Elw, (w, + v ) pdx
[}

)]
=f(w,+v,wx)((T.:wx)x
0

—cy(Wy + vy} = Elw gy )dx

+ f T o0y (wys + Ust o Yl x
0
1 2
+5 {(Ts)r+U5(Ts)x}wxdx
o

]
+f ETw o (0, + vgttre) exdx, (12)
0
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where (4) has been used in deriving the second equality.
Integrating by parts, the terms in (12} are further simpli-
fied as follows:

f {wr(T.s'wx).r + Tswxu,)xt}dx = [wl(Tswx)]I() ’ (13)
o]

fwx(Tswx)xd-x= f i(Tswi)dx_fTswxwxxdx
o o dx 0

!
=[Tswi]o—fT,wxw“dx, (14)
[\

{
fw.txxx(wr + 0,0, )dx = [W e (W + vstx)]y
¢

— [Wee(w, +vsw) Jh + j: War{w; +vstiy) xdx. (15)

The substitution of (13)—(15), together with the fixed
boundary conditions, into (12) yields:

E (D=~c, f (wy+vwy ) dx— v Elw? (0)
0

{
+vSEIwix(l)+% f (T +o(To)widx.  (16)
(1]

Now, the following observations from (16) are made: (i)
The viscous damping reduces the mechanical energy of
the axially moving strip, which can be seen from the exis-

tence of —¢, | (w; +v,w,)*dx. (ii) Even though the trans-

verse velocitieos and the slopes at both boundaries are zero,
i.e., w(0) = wil) = w(0) = w,(l) = 0, the instantaneous
bending moment, v,Elw,,, can still deform the strip. The
bending moment at x =0 decreases the mechanical energy,
while that at x = increases it. (ili) The time derivative of
To(x, 1), (Ts)e+vs(Ts)y, increases the energy flux by the fac-
tor of w?. The last observation indicates that the time rate
of the change of T (x,r) cannot be simply negiected.

Thus, it is concluded that for the traveling strip with
fixed boundary conditions, the bending moment occurring
at the right boundary x =/ and the time rate of the change
of tension T(x,?) should be treated properly to decrease
E,.(0.

3. Design of Boundary Control Law

The selection of a suitable Lyapunov function and the
construction of an effective control input are most impor-
tant issues in the Lyapunov method. To obtain the asymp-
totic stability of system (4)-(7), the convergence of the
hydraulic actuator displacement w({) to zero should also
be satisfied. But the mechanical energy E,,(r) in (11) does
not involve a state variable of the hydraulic actuator, w(/).
Thus, a modification of (11) is pursued.

Note that by boundary conditions (6) and Poincare’s
inequality®®, there exists a positive constant C; such that

fw%dxsclfwidx for x€[0,1]. (17)
Q

0
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From (17), it is seen that the convergence of the trans-
verse displacement w(x,#) for x €{0,]] to zero can be ob-
tained by considering the convergence of the slope w,{x,¢)

for x€[0,]]. That is, if }im widx =0 is satisfied, then

0

rlim f widx =0 is also satisfied. Thus, the asymptotic sta-

bility of the hydraulic actuator system can be analyzed by

adding the slope term at x =/ in the mechanical energy.
The following positive definite functional V,,(¢), re-

placing E,.(t) in (L 1), is now considered,

1
V()= 3 fp(pswx +wPdx+ %f‘Tswfdx
o [}

1 2 t 2 2
*5 j: Elu? dx+ Emc{w,(l)+wx(l)}. (18)

Note that the constant term v? has been omitted in (18)
because it doesn’t make any difference in deriving the fi-
nal control law. It is also noted that there exist positive
constants C, and C3 such that the following holds:

Cz{wf(l)+w§(!)+ f widx}
0
< {wD) +w (DY + f widx
0

<C; {w,2(1)+w§(1)+ f widx}. (19)
0

Using inequality (19), some positive constants Cy and Cs
can be chosen, so that the following holds:

, Cs [%mc {w,z(l) + wi(l)} + % j: T,wf;dx]
< %m {aw,(D+{av;s + zsl)wx(t)}%% _ETswidx

SCs[%mC{w,z(l)+wi(l)}+% f: T,widx], (20)

where a and 8 are positive constants.
Now, a further modification of the positive definite
functional, Vy(r), is proposed as follows:

1 1
Volt) = = f‘ Ploswz +w) dx+ = f' Tuldx
2. 2.

+% f' Elu? dx+ imc[aw,(t)+(avs+2ﬁnw,,(z)}2.
0

20
(21)
From (18), (20) and (21), the following holds:
L CaVnlt) < V() < Cs V() (22)

which means that Vo(f) is equivalent to V,(z).
Using Vo(f), define a functional V(z) such that

V(D) =aVe(H)+28 f pxw(w, + vgwyddx (23)
0
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=aVy() +8 f pxlws+ W, +o,w)V dx
0

] f pxwidx -B f px(w, + v_,wx)zdx, 24)
0 0

where

g f pw, + vwy ) dx > B fpl(w, + 0w, ) dx
0 i 0

Y fl px(w, +vaw,) dx, (25)
1]
3 f T,(x,r)wzdx> 2T,mm f widx> 8 f plutdx
(1]
> 5 f prudds. 26)

From (25) and (26), it is seen that V(¢) is a positive definite
functional if &> 28! and Temin > 0.

By using the Cauchy-Schwarz inequality, it can also
be shown that there exists a positive constant Cg such that

2B fpxwx(uswx + 1w, )dx
0

S,Bpl{ f widx+ f (w,+usw,,)2dx}

0 0

SC68 =T smin | widx+= | plw +vw,) dx
2 o 2. )
1 2 1 2

<Ced = | Tywdx+ = | plw+ow,)dx
20 20 ‘

< CsVo(D), h
where Cg > max( Zﬁp.l ,2{5‘!). From (21), (23) and (27),
the following holds :S'mm
(a—Ce}Vo() V(1) < (a+Ce)Volo), (28)
28pl

where a > max ,281]. From (28), it is concluded

that V() in (23) is eqmvalent to the positive definite func-
tional Vo(#).in (21).

In this paper, the positive definite functional V(¢) in
(23} is considered as a Lyapunov function candidate for
system (4) — (7) to determine a boundary force control law
for the stabilization of the vibrationh energy E,,(f) in (11}
and to obtain the asymptotic stability of the closed loop
system.

The time derivative of V{r) along (4) yields:

Vy=aVo+ % [2,8 j: P (W, + vy, )dx
=aVo(O+28p j: X + Vsl YWy + vt )dx
+28p J: Xy (tyr + 205Uy + VoW, )X
+28pus j: wy(w, +vwy)dx
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= a V(1) +Bp| x(w, +Uswx)2];

—ﬁpf(w: + v,wx)zdx
0

+218fxwx((Ts ey — oWy + 05wy ) — Efw, . )dx
0

+2,pr,fwx(w,+uswx)dx. (29
0

The integration by parts yields:

2 f' X (Towy ) dx=2 f xi(r,wﬁ)dx
0 o dx

-2 f xT,wandx=[X(Tswi)]:,
0

- f’ Touldx+ fl x(T)wdx, (30)
0 0

' ! i
fxwxwxxxxdx =- [xwxwxxx]() + [wxwxx]()

fw dx+fxwx,wxx,dx. (31)

Since [z, = j: w? dx+2 j: X0 Wrzxdx, (31) can be

rewritten as
fxwxwxxxxdx =- [xwxwxxx]:) + [wxwxxla
+ [xw ] wa dx— fanwxndx. (32
0
From (31) and (32), the following is derived:
- f XWxlWyrrxtdx=—2 {xwxwxxx](l)
0
, .
*2 ey + x| -3 f w? dx. (33)
0
The following inequality is also utilized.
wn < yu® + %vz, for any y>0. (34)

Using (34), the followings are derived.

']
f xtw, (w, + vy )dx
0

Slylfwfdx+—[~ f (w, + v,tw, dx, (35)
v} Y1 Jo

fwx(w, + U5ty )X
0
1
<y fwidx+ — f (w, +v,wy) dx, (36)
i} Y2 Jo

where ¥, >0,i=1,2.
Thus, by substituting (4), (6), (8)—(10), (13)-(15),
(30), (33), and (35) —(36) into (29), the time derivative of
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the Lyapunov function candidate V(f), with a right bound-
ary actuator at x=/ and the fixed condition at left bound-
ary, becomes:

ViH<— (ac., +,8p—2'Bc" ZBpUs)f (w, + 5w, )*dx

g
avs

- {ﬂT,.mm ~(1+%

—2ﬁ(cm!+pvsyz)} f wldx - 3BEI fl w? dx
0 0

+aT (DD, () +v,w:() ~ v, T(0)w(0)
+BIT (Dw2(D) — CETw e Dy (D + v (D)

+@E10 w5 (00w:(0) + A ETw oy (a1 + 00 (1)
—aElvu? (0)— aE T (0w (0)

~2BIETW (D cxx(D) + 2BE Ty (D ()

—2BEIw, (0w, (0) + BLEIWE (D) + Bpl(w (D) + vw(D)*

.2 {i me (ew (D) +(av; + Zﬁl)wx(l)}zl
2a

dt
@1_%) f(w,w,wx)zdx
Y2 0

)T naman = 5T

Y
av;

= a-(ac,, +Bp—

(BT smin = (81 T2 JT s = 5 (T

—M(C0711+pU572)}fwidx
0

-38ET f w? dx—aElvu? (0)
0

+HaT (D) + 208pDwDw(D) +Bolw(D
+{(avs+BDT () +Bpiv?}w(D
—Elw, (D {aw, () + (av; + 280w (D}

+1[imc {aw,a)+(avs+2ﬁt)wxa)}z]. a7
dt| 2a

The time derivative, along (7), of the last term on the
right in (37) yields:

d

m[ ! mc{aw,(z)+(avs+2,81)wx(t)12]

= 2 mefaw () + vy + 20D oD

+(@v, +28Dw (D)

= faw(D + (@0, + 20w DH £ + =2 v, + 2D
—a(d. —pos)wi(l)

~{(av,+28DMd. —pvs)+ AT (D - )} wiDx ()
(e, + 28I(T (D) — pr ()

+Haw () + (@, + 280w D) ETwoalD. (38)

A boundary force control law, which makes the time
derivative of V(f) negative definite in the presence of the
spatiotemporally varying tension, is then proposed as fol-
lows:
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o= (d. —2pvw (D~ %(av, +28Dwa(D.  (39)

The substitution of (38) and boundary force control law
(39) into (37) yields:

V(r)s—(ac., +Bp—& pvs) f (w; +vsw, )Y dx
Y1

- {JBT:,min (

)(Ts)x,max "(Ts)t,max
~2B(canl+pouy) f: widx

-38EI f w? dx—aElvul (0)
0

~p(3av, — BHw? (D)
—{BIT (D~ (av, + 38DpV (D, (40)
where (3av, 1) >0 and [BIT (D)~ (av, + 38Dpv} > .

If Ty min is sufficiently large, the positive values o, S,
and y;, i= 1,2, can be chosen to satisfy

ZJBCU Z)prs
(ac,,+ﬁp ol 20 )>o, @1

BT sain = (B1+ SN T wamex = 5 T diman

=28(c, 1+ pvs'yg)} >0. 42)

Thus, the following is obtained:

P
Vi < —co ( f (wy +vsw P dx+ f widx
) 0

+ f wi,dx+w,2(l)+w§(n), 43)
(1]

where
o= mm{(acv +8p— el M),
Y1 Y2

3BEI, p(3avs - B, BIT (D) - (av, +3BDpr?,
BT = (B ST emax = 5 (Todins

=28(c,y1l+pusya) }

From (43), it is concluded that the positive definite
functional V() in (23) is non-increasing and is a Lyapunov
function, because V(?) is negative definite. Hence, all the
signals in the closed loop system are bounded.

In the boundary force control law (39), the velocity
w,(]) and slope rate w,,(l) at x=1 are involved. The slop
rate w; (7} can be implemented by backward differentiation
of the signal from an encoder, which measures the slope
w,(H19),

4, Stability Analysis

In this section, the asymptotic and, furthermore,
exponential stability of the axially moving strip under
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of (39) into (7) yields:
mewg(D) + posw (D) + (T(D - prD)w(D)
—Elwy(D+mea v+ 28Dwa()=0.  (44)

In other to analyze the asymptotic stability of the closed
Ioop system (4) —(6) and (44), the state space 3 is defined

boundary control law (39) are proven. The: substitution . )
+8 1 pxwiddx+p | pxivd.dx
0 (.

+3me(@vs+ 280D +awiD) (e,
+2BD(0) + e D), (48)

where z = (w,,u(D,w, (D), 2= @, ®,8(), D)7 €I, and
a, B> 0. The norm induced by inner-product (48} is equiv-

as follows: X )
A ) r s . o2 alent to V() in (23), i.e.,
9 {(w, i, uxD)w (D) lwe HE e L2, and w(d),w(D€R), 5
V=229 =lz(Dlly
(45)
a .2 a 2 a 3
where the superscript T stands for transpose. The spaces == f purdx+ = fTs‘wxdx"' 5 fEI wy,dx
2 Jo 2h 2Jo
L, and H¥ are defined as follows: . )
A +24 f prwytbdx+ 5 me{aw,(D+ (av; +28Dw (D).
L*=1f:00,1-R ffzdx<oo , (46) 0
o (49)
A Y By using ' '
HER(fel2|f.f" o f P e, £ 4 :
and f(0)=0}. 47 w= Y= E(w,+v,wx)=w,,+21)swx,+vswm
In the space J, the inner-product is defined as follows: the closed loop system (4) - (6) and (44) can be rewritten
A o in the following abstract form. 7
@ds=7 j: (Tswyids + Elwaixddx+ 5 j: puwiidx i=Altz, z(0)eT, (50)
, where z = (w, i, w(D), w7 €. Let
+8 f DX+ YDy + D) x et (@, 1, uD), wr(l)) _ ,
0 D= {(w, i, w(d), w DY we H}, ive HY, and w(D,wi(he R},
-8 f pxwythydx—f3 f prbbdx (51
1 ¢ 0 . and define the family of opgratoré {A(D)npr A:DCT - T
+§mc{(aus +280w (D) + aw(D)} by
x{(avs +26DDAD + aw (D},
= f' (T, + Elwyibr)dx + f pitdx
0 ' 1 0 0
d a a*
=T |-El— -l 0 o0
0 0 0 1
- 9 il 1 ] _
—mcl {(Ts —pvi)a —Elﬁ}nl —;(G'Us+2,81)a - 0 —mclpv_,

Since the time derivative of V(z) is negative definite as shown in (43), A(¢) given by (51) is dissipative in the space
I because of V(#) = {2,2)g = (A()z,2)5 < O for V(£) = ||z())|l3 using (49) and z = A(f)z. This implies that {A()}g is
a stable family of infinitesimal generators of Co semigroups on &J. Further, the map 7 — A(#)z for z € D is strongly
continuously differentiable in §. Thus, it follows from Theorem 4.8 in Pazy® that there exists a unique evolution
system, {S(z,5):0<s<t}, on J associated with the homogeneous system corresponding to (50). That is, the system (50)
admits a unique solution z(t) such that '

2 =5, 0z, t20. _ ' - (53)

4.1 Asymptotic stability
The closed loop system (50) is shown to be asymptotically sable by applying the invariance principle®® in the state
space 3. ' ‘

Theorem 1,  Consider the system (50) representing (4) —(6) and (44). Suppose that the following hold:

! .
Zp ’2161) » Tlrmin >p, QGav,~p>0,

Ts.rnin

a>max(
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{BIT(D ~ (av, +36Dpv?} > 0,

%Cu 2ﬂ.f-w.s'
) —— >0, and
(Q’C +ﬂp " v )) an
{ﬂTs,mm (ﬂl + %)(T Yx.max — (T,),'m
=2B(coyil+pusy2)) > 0.

Then, the solution z(r) of system (50) is asymptotically
stable, i.e., 2(1) = 0 as ¢ — o0, by boundary force control
law (39).

Proof. V{t) in (49) is a Lyapunov function on J
because V(#) <0 for all z€ I as shown in (43). Since the
tension T{x,?) is assumed to be spatiotemporally varying
but periodic in time, the system (50) is a periodic sys-
tem. Thus, a set B = {zEﬂl‘?(I):O'} with B,,, where By,
is the maximal invariant subset of B, can be defined®.
Then z() = 5 (¢,0)zg — B, as t > oo for all zp€ J, i.e., any
solution of system (50) asymptotically approaches to the
maximal invariant set B,,. Any element of B, except zero
solution, cannot be invariant, because waves of a nonzero
solution propagate to x =! with the speed v; by the char-
acteristics of wave equation. Therefore, the maximal in-
variant set includes only the origin, By, = {0}, and z{¢) is
asymptotically stabilized by boundary control law (39) at
x=1l

4.2 Exponential stability

To verify that right boundary force control law (39)
induces a rate of exponential decay of V(z), the following
theorem is proved using a semigroup of closed-loop sys-
tem (50).

Theorem 2. Consider system (50) as Theorem 1.
Suppose that there exist

a> max( ol ,2,31), Tsmin >0 (Bav,—p)>0,

s,min

{ﬁlTs(l) - (avs+ 3ﬂl)pu§} >0,

Ped _ 2”3‘003)>0 and
Y1 ¥

{BT oo (14 2 )T e

(acu +Bp -

(44
—E(To,,m-w(cpylhpvm)}>0.

Then, the Lyapunov function V() given by (23) decays
exponentially to zero along the solution of system (50).
That is, there exist constants g >0 and M > 0 such that

Vi) sMe™, t20.

Proof. There exists a constant o> 0 such that

;
f (w, + st ) dx+ fwﬁdx
o 0

+fw§xdx+ w,z(l)+w§(l)
0
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Za[gfp(v,w,+w,)2dx+EfTswidx
2Jo 2o

+% f Elu? dx + %mc {ow D+ (avs+ Zﬂl)wx([)lz]
0
=caVy(t). (54
From (24) and (54), (43) can be rewritten as

V(1) € —cooraVolt)

< —cpor [aVo(t) -8 I} lrpxw'ffd,’x
—,Bj:px(w, +o.w,) dx
+,6‘j:px{wx+ (w, +v;wx)}2dx]
+cooB f; pxfwe+(w; + usw,)}zd{

< —coor V() + oo f px{wy+(w, +vaw, ) dx.
0
' (35)
Note that from Theorem 1, the closed loop system (50) is

asymptotically stable, i.e., rlim {ws + (e +vsw dx =
=0 Jo )

0, and then x{w,+ Wy +0,w,) Pdxde < 0o

o Jo
Thus, from {49) and (53), the integration of both sides
of (55) from 0 to oo yields:

f Vit = f e\t = fm IS . 0)zol Bt

< ——(V(O) V(o))

+B fﬂ f pxlwy +(w, +vw) dxdt <oo.  (56)
0 1]

By (56) and Theorem 4.1 in Pazy®, there exist M| > 1
and p; >0 such that

11§, 0)llg < Mye™t. - (57
The application of (57) to (53) gives
llz{)llg < M1 llzollg 7, (58)

proving the exponential stability of the solution of system
(50). Therefore, the Lyapunov function V() also QGcays
exponentially such that

V(e) = 2O < Milizollf 72 < Me™™, (59)
where M = M?|(zo|l3 and pe=2p;.
5. Numerical Simulations

The effectiveness of the proposed boundary control
law is illustrated by numerical simulations using a finite
difference method. An implicit difference operator is used
because the fourth order tetm w ., (x,f) requires a small
time increment in an explicit method”.
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Fig. 4 The transverse displacement at the right boundary, w(l,t)

The parameters of the axially moving beam used for
numerical simulations are: p = 2.7kg/m, EI = 146 Nm?,
¢, =0.001 Nm?sec, I=35m, v, = 1 m/sec, m.=10kg, d. =
0.25N/m/sec, and T'; = 26 000 + 9.8px +sin# N. The initial
conditions are wy =0.5sin3ax and w,y=0.
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Fig. 5 The control input force used: f.(f)

The controller parameters are selected as a=1, 8=
0.01, and y; =3 = 10, from which the conditions in The-
orem 1 and Theorem 2 are satisfied, i.e.,

a> max(—z—’(ﬂ,ﬂi‘l) =0.7,
5,min
(m:,, +pp— B _ M) —0.02255>0,
b Y2

T smin > P, (3005~ B} =2.65 >0,
{BIT (1)~ (@v; + 3p0)p1?} > 9400 > 0, and

(BT min=(B1+ S22 )T)

o
~ (T vmar = 2811+ 0,72} = 236450,

where T;min =25 999N, (T )xmax =9.8o N, and (Ts) max =
IN. .

A comparison of the mechanical energies, E,(f) of
(11), with boundary force control and without any control
action is shown in Fig.3. As analyzed in section 4, the
initial vibration energy dissipates exponentially with the
control action. However, the strip vibrations without any
control remain almost at the same level. Figure 4 shows
the displacement at the right boundary, w(l,r). Figure 5
depicts the control force used in getting Fig. 4.

6. Conclusions

In this paper, a boundary control scheme to suppress
the transverse vibration of an axially moving steel strip
with a spatiotemporally varying tension in the hot-dip gal-
vanizing line has been investigated. The following find-
ings are concluded:

(1) In the case of a traveling strip, even if the dis-
placements, velocities, and slopes at both boundaries are
zero, the bending moment occurring at the right boundary,
x =1[, and the time rate of the change of tension T (x, ) can
cause an increase of the total mechanical energy.

{ii) A boundary force control can achieve the sup-
pression of the vibration of the entire strip in the pres-
ence of a spatiotemporally varying tension. The exponen-
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tial stability of the closed loop system with the boundary
control law proposed has been proved with the Lyapunov
method and semi-group theory.

(iii) Since the feedback terms in the boundary control
law are the velocity and slope rate at the right boundary,
the vibration suppression of the axially moving strip can
be successfully implemented by the boundary control law.

Acknowledgements

This work was supported by the Ministry of Science
and Technelogy of Korea under the program of National
Research Laboratory, grant number NRL M1-0302-00-
0039-03-J00-00-023-10. The first author also would like
to thank the Korea Science and Engineering Foundation
for the support of his postdoctoral fellowship program in
Japan.

References

(1) Bertin, M.C,, Brown, L., Whitehead, R. L. and Yrisarri,
E., Computer Control of Coating Weight on Galvaniz-
ing and Tinning Lines, Proc. 7th IFAC World Congress,
Helsinki, (1978), pp.199-206,

(2) McKerrow, PJ., Computer Controlled Galvanizing,
Comput. Industry, Vol.4 {1983), pp.19-30.

(33} Jacobs, O.L.R. and Chen, D., Regulation of Deposited
Zinc in Hot-Dip Galvanizing, Proc. European Control
Conf., Grencble, Paper, No.32, (1991}.

(4) Chen, D., Adaptive Contrcl of Hot-Dip Galvanizing,
Automatica, Vol.31, No.5 (1995), pp.715-733.

(5) Yang, KJ., Hong, K.S., Yoo, W.S. and Matsuno, F,
Model Reference Adaptive Control of a Cantilevered
Flexible Beam, JSME Int. J., Ser. C, Vol.46, No.2
(2003), pp-640-651.

(6) Yang, K.J, Hong, K.S., Rhee, EJ. and Yoo, W.S,,
Model Reference Adaptive Control of a Flexible
Structure, KSME International Journal, Vol.15, No.10
{2001), pp.1356-1368.

(7) Yang, K.J. and Hong, K.S., Robust MARC of a Nonau-
tonomous Parabolic System with Spatially-Varying
Coefficients and Bounded Disturbance, Asian Journal
of Control, Vol.5, No.3 (2003), pp.350-363.

(8) Matsuno, F, Ohno, T. and Orlov, Y., Proportional
Derivative and Strain (PDS) Boundary Feedback Con-
trol of a Flexible Space Structure with a Closed-Loop
Chain Mechanism, Automatica, Vol.38, No.7 (2002),
pp.1201-1211.

(9) Tadikonda, S.K. and Baruh, H., Dynamics and Con-
trol of a Translating Flexible Beam with a Prismatic
Joint, ASME Journal of Dynamic Systems, Measure-
ment, and Control, Vol.114 (1992), pp.422-427.

(10) Yang, K.J,, Hong, K.S. and Matsuno, F., Robust Adap-
tive Boundary Control of an Axially Moving String
under a Spatiotemporally Varying Tension, Journal of
Sound and Vibration, V0l.273 (2004), pp.1007-1028,

(11y Chung, C.H. and Tan, C.A., Active Vibration Control
of the Axially Moving String by Wave Cancellation,

(12)

(13)

(14)

(15)

(16)

Qa7

(18)

(19

(20

2n

22)

23

24)

(25)

(26)

ASME Journal of Vibration and Acoustics, Vol.117
(1995), pp.49-55.

Lee, 5.Y. and Mote, C.D., Jr., Vibration Control of an
Axially Moving String by Boundary Control, ASME
Journal of Dynamic Systems, Measurement, and Con-
trol, Vol.118 {(1996), pp.66-74.

Fung, R.F, Wu, JW. and Lu, P.Y., Adaptive Boundary
Control of an Axially Moving String System, ASME
Journal of Vibration and Acoustics, Vol.124 (2002),
pp-435-440.

Ii, Y., Aron, D. and Rahn, C.D., Adaptive Vibration
Isolation for Axially Moving Strings: Theory and Ex-
periment, Automatica, Vol.38, No.3 (2002), pp.379-
390.

Choi, 1.Y., Hong, K.S. and Yang, K.J., Exponential
Stabilization of an Axially Moving Tensioned Strip by
Passive Damping and Boundary Control, Journal of Vi-
bration and Control, Vol.10 (2004), pp.661-682.
Hong, K.8., Kim, C.-W. and Hong, K.T., Boundary
Control of an Axially Moving Belt System in Thin-
Metal Production Line, International Journal of Con-
trol, Automation, and Systems, Vol.2, No.l (2004),
pp.55-67.

Lee, S.Y. and Mote, C.D., Jr,, Wave Characteristics
and Vibration Control of Translating Beams by Opti-
mal Boundary Damping, ASME Journal of Dynamic
Systems, Measurement, and Control, Vol.121 (1999),
pp.18-25. '

Li, Y. and Rahn, C.D., Adaptive Vibration Isolation for
Axially Moving Beams, IEEE Transactions on Mecha-
tronics, Vol.5, No.4 (2000), pp.419-428.

Fung, R.F,, Chou, J.H. and Kuo, Y.L., Optimal Bound-
ary Control of an Axially Moving Material System,
ASME Journal of Dynamic Systems, Measurement,
and Control, Vol.124 (2002), pp.55-61.

Fard, M.P. and Sagatun, S.I., Exponential Stabilization
of a Transversely Vibrating Beam via Boundary Con-
trol, Journal of Sound and Vibration, Vol.240, No.4
(2001), pp.613-622.

Wickert, J.A. and Mote, C.D., Jr., On the Energetics
of Axially Moving Continua, Journal of the Acousti-
cal Society of America, Vol.85, No.3 (1989), pp.1365—
1368.

Benaroya, H., Mechanical Vibration: Analysis, Uncer-
tainties, and Control, (1998), p.249, Prentice-Hall, Inc.,
NJ.

Munson, B.R., Young, D.F. and Okiishi, T.H., Funda-
mentais of Fluid Mechanics, (1998}, p.214, Wiley, NY.
Mitrinovi¢c, D.S., Pecaric, I.LE. and Fink, AM., In-
equalities Involving Functions and Their Integrals and
Derivatives, (1991), p.67, Kluwer Academic, Dor-
drecht.

Pazy, A., Semigroups of Linear Operators and Appli-
cations to Partial Differential Equations, (1983), p.116,
145, Springer-Verlag, NY.

Saperstone, S., Semidynamical Systems in Infinite Di-
mensional Spaces, (1981), p.78, Springer-Verlag, NY.

Series C, Vol. 47, No. 2, 2004

JSME International Journal



