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Abstract : In this paper, we investigate an active vibration control of a translating tensioned steel strip in the
zinc galvanizing line. The dynamics of the moving strip is modeled as a Euler—Bernoulli beam with non-linear
tension. The control objective is to suppress the transverse vibrations of the strip via boundary control. A right
boundary control law based upon the Lyapunov second method is derived. It is revealed that a time-varying
boundary force and a suitable passive damping at the right boundary can successfully suppress the transverse
vibrations. The exponential stability of the closed-loop system is proved. The effectiveness of the control
laws proposed is demonstrated via simulations.
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1. INTRODUCTION

The control problem of axially moving systems occurs in various engineering areas: for
example, the strips in thin metal-sheet production lines, the cables, belts, and chains in power
transmission lines, the magnetic tapes in recorders, band saws, etc. The dynamics of these
systems can be modeled differently depending on the length, flexibility, and control objectives
of the system considered. For instance, the dynamics of a moving cable of an elevator can
be described by a string equation, but that of a rubber belt in a traditional mill can be well
represented by a belt equation. The difference between a string and a belt lies in whether the
longitudinal elongation is considered or not.

In axially moving systems, the transverse vibration of the moving material often causes
a serious problem in achieving good quality. It is also known that these vibrations are often
caused by the eccentricity of a pulley, and/or an irregular speed of the driving motor, and/or
a non-uniform material property, and/or environmental disturbances. Because the quality
requirement as well as the productivity in a production line is becoming stricter, an active or
a semi-active vibration control is nowadays seriously considered.
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Figure 1. An axially moving steel strip in the zinc galvanizing line.
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Figure 1 depicts a continuous hot-dip zinc galvanizing process with an active vibration
control. The steel strip, with width varying from 800 to 1400 mm and thickness varying from
1.2 to 4.5 mm, is pre-heated in a continuous annealing furnace and then introduced at a speed
around 1 m s~! into the pot of molten zinc at about 450°C. The steel strip passes under the
sink roll and rises vertically up, coated with a layer of zinc, from the pot. The thickness of
the zinc film is controlled by a pair of air knives located about 0.5 m above the surface of the
zinc tank, which direct a long thin wedge-shaped air jet toward the strip, and strip out excess
zinc back to the pot. Hence, maintaining a constant gap between the strip and air knives, i.e.
keeping equidistance from both air knives, is the crux to achieving the uniform thickness of
zinc coating (Chen, 1995; Hong et al. 2004; Yang and Hong, 2002).
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The lateral (transversal) vibration of the strip occurs during the process for various
reasons. The eccentricity of the sink roll is known to be the main cause of the vibration. This
lateral vibration then changes the equidistance from two air knives and therefore the thickness
of the deposit will fluctuate. Various gap control methods have been applied at Pohang Steel
and Iron Company, Ltd, in Korea, but a long-term successful implementation has not yet been
reported. This is mainly because of the harsh and high-temperature environment near the zinc
tank.

Another important aspect of the lateral vibration control is that by using vibration control
the maintenance interval of the entire production line can be extended. It is also known that
the eccentricity of the sink roll is caused by the wear of the copper bushing (bearing) in the
sink roll. Therefore, the entire production line has to be halted frequently for the replacement
of a new bushing. Hence, the necessity of an active/semi-active vibration control is fully
justified from two objectives: obtaining a uniform thickness of the zinc deposit and extending
the maintenance interval for increasing the line productivity.

How to model an axially moving system, i.e. as a string equation, a belt equation or a
beam equation, depends on the structure of the plant and control schemes. The plant in this
paper is the steel strip between the sink roll and the tower roll in Figure 1, which is 35 m in
length and 1.2—4.5 mm in thickness. Therefore, it could be modeled as a string, or a belt, or a
beam depending on where the actuator is actually inserted and whether the axial deformation
is considered or not.

In the literature, there has been diverse research on the dynamics, stability, and/or
active/passive controls for axially moving systems (Carrier, 1945; Bapat and Srinivasan,
1967; Wickert and Mote, 1990; Wickert, 1992; Oshima et al., 1997; Pellicano and Zirilli,
1998; Shahruz, 1998, 2000; Oostveen and Curtain, 2000). Particularly, Mote (1965) modeled
the dynamics of a band saw, as an axially moving string, and investigated its instability with
respect to the moving speed and excitation frequency of the saw. Wickert and Mote (1988)
reported on a passive control strategy, by changing its damping and stiffness, for axially
moving continua. Morgul (1992) investigated a boundary control law that suppresses the
lateral vibration of a Euler—Bernoulli beam, but in his work the beam was not axially moving.
Laousy et al. (1996) investigated a boundary feedback stabilization method for a rotating
body—beam system. Lee and Mote (1996) demonstrated an optimal boundary force control
law that dissipates the vibration energy of an axially moving string. Fung et al. (1999a,
1999b) reported on boundary control laws for linear and non-linear strings, in which the
dynamics of the actuator has been incorporated in the control law design. An optimal control
(Fung et al., 2002a) and an adaptive control (Fung et al., 2002b) for an axially moving string
were also investigated. For a translating linear beam, Lee and Mote (1999) investigated the
wave characteristics and derived boundary control laws in terms of linear velocity, linear
slope, and linear force. Li and Rahn (2000) investigated an adaptive vibration control for an
axially moving linear beam by splitting the moving part into two subsystems, i.e. a controlled
part and an uncontrolled part. Li et al. (2002) applied the control strategy in Li and Rahn
(2000) to the linear string including experimental results. Fard and Sagatun (2001) focused on
the exponential stabilization of a non-linear beam, not axially moving, by boundary control.
Interesting results on energy-based control are also found in Ge et al. (2000, 2001) and Zhu
and Ge (1998).

All previous works were limited either to non-linear non-axially moving systems or to
linear axially moving systems. The contributions of this paper are as follows. First, an axially
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Figure 2. An axially moving strip under the right boundary control force.

moving non-linear beam equation is considered for the first time. Focusing on the vibration
suppression near the air knives and assuming that the controlled part in Li and Rahn (2000) is
relatively small, a non-linear beam model is adopted. Secondly, the actuator dynamics is also
incorporated in the control law design. Thirdly, the derived boundary control law utilizes two
pieces of information: the strip slope at the right boundary and the damping coefficient of
the actuator. Hence, once the damping coefficient is properly estimated in an actuator design
stage using the parameter values of the system, the final control law depends only on the
slope measurement. Therefore, the use of a single slope sensor enables the implementation
of the control law. Finally, the exponential stability of the closed-loop system is established.

The paper is structured as follows. In Section 2, we derive the non-linear beam equations
of motion using the Hamilton principle of changing mass. In Section 3, we derive a stabilizing
boundary control law that suppresses the transverse vibrations of the beam. The exponential
stability of the closed-loop system is proved. In Section 4, we discuss the implementation
issue of the control law derived. Simulation results are given in Section 5. Finally, Section 6
concludes the paper.

2. EQUATIONS OF MOTION

Figure 1 shows the axially moving steel strip in the zinc galvanizing line, which emerges from
a hot-dip zinc pot and moves vertically upward. The distance from the sink roll to the top
roll is about 35 m long. It is assumed that the controlled portion, in the sense of Li and Rahn
(2000), of the strip is smaller than that of the uncontrolled portion. In other words, the touch
rolls cannot be inserted too far away from the sink roll for the strip to be modeled as a beam.
Figure 2 shows a schematic diagram of the plant for analyzing the dynamics and deriving a
boundary control law. The strip is assumed to travel at a constant speed. The left boundary
(the sink roll) is fixed, i.e. the left boundary itself does not have any vertical or longitudinal
displacements, but allows the longitudinal movement of the strip. The right boundary (the
touch rolls) allows the transverse displacement under a control force.
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Let ¢ be the time, let x be the spatial coordinate along the longitude of motion, let v be
the axial speed of the strip, let w (x, ¢) be the transversal displacement of the strip at spatial
coordinate x and time #, and let L be the length of the strip. Then, the absolute velocity at
spatial coordinate x becomes

V= vi+ W]‘ = vi + {wi (x, 1) + vw, (x, )}, (M

where (-), = d(-) /dtand (-), = 9 (-) /dx denote the partial derivatives and v = dx /0t has
been used. Now, to derive the equations of motion, the Hamilton principle for systems of
changing mass (Mclver, 1973) is utilized as follows

t2

t1

where T is the kinetic energy, U is the strain energy, W, . is the non-conservative work,
and W, is the virtual momentum transport at the right boundary (no variation at the left
boundary). The kinetic energy is

A [* 1
T= %/ {v2 + (w, + vwx)z} dx + §mw,2 (L,1), (3)
0

where p is the mass per unit length, 4 is the cross-sectional area, and m is the mass of the
actuator. The potential energy is

L
EA EI
U= / {Posx + —& + —w?, }dx, 4)
0 2 9

where E is the coefficient of elasticity, Py is a constant axial tension of the strip, / is the
moment of inertia of the beam cross-section, and &, is the strain. The first term in equation
(4) is due to the strip tension, the second term reflects the strain energy due to disturbances,
and the last term is from the bending moment. If the infinitesimal distance dx is replaced
by the infinitesimal length d.s, the strain &, can be approximated as &, = w? /2 (Benaroya,
1998). Then

L
P EA EI
U= /0 {?wa - ?wf - wax }dx. (5)
The variations of equations (3) and (5) are
L
0T = pA/ (W, +vwy ) (0w, +vow, ) dx + mw,dw, (L,1), (6)
0

t EA
oUu = Pow, 0w, + 7WX5WX + Elw,, 0wy, ¢ dx. (7
0
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Also, the variations of the non-conservative work and the virtual momentum transport at the
right boundary are

oW,.. = F.oow(L,t)—d.w, (L,t)ow(L,1), (8)
oW, = —pAv{w, (L,t) +vw, (L, )} dw(L,1), )
where d, is the damping coefficient of the actuator and F.. (¢) is the control force.

The substitution of equations (6)—(9) into equation (2) yields the non-linear equation of
motion as follows:

3EA
PA (th + 2vth + Vzwxx ) - <PO + TW§> Wy x +E[W¥xxx = 0 (]0)

The boundary conditions are

w(0,7) =0, w(0,£) =0, wy, (L,f) =0, and (11)
EA
mw,, (L,t) +d.w,(L,t) + Pow, (L, t) + - W (L,t) — EIwy o (L, 1) = F.(1).(12)

Equation (10) is a non-linear partial differential equation representing the transverse motion,
where 3EAw? /2 is the non-linearity, which is again due to EAw? /8 in equation (5). Note that
(Py + 3EAw? /2) is often called as a non-linear tension (Qu, 2002). Note also that equation
(12) is an ordinary differential equation relating the strip motion at the right boundary and
the control force.

Remark 1. Without E4¢? /2 in equation (4), the following linear beam equation would
have been derived (Lee and Mote, 1999):

pA (Wir 4 2vwe, 4+ VWi ) — Powex + EDVyr = 0. (13)

Lee and Mote (1999) revealed that the strip moving speed v, to avoid a divergence of the
solution, should be smaller than some critical speed given by

P
0<V< Vg =/ —. (14)
p
Hence, the satisfaction of equation (14) is also assumed in this paper.

3. BOUNDARY CONTROL LAW

In this section, a right boundary control law that suppresses the transverse vibration of the
strip governed by equations (10)—(12) is derived.
Let L? and H{; be defined as

J A {f: [O,L]—>R|/0Lf2dx<oc}, (15)
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HY, & {ferl?|f.f".f® el? and f(0) =0}, (16)

where the subscript / in H denotes that functions have the left support. Now, the state space
A, whose first component is the displacement and the second is the velocity, is introduced as
follows:

AL HZ, x[? = {Z(t) 2 fw(x, £) wix, 0)]" | we HZ,, W e LQ} . (17)

From equation (17), the following energy inner product is defined in A:

<z E>y = < (ww),(W,w) >
A [F . P, [*
- p—/ de+—°/ w, i, dx
2 Jo 2 Jo

EA [* EI [*
+ = wﬁwfder—/ Wyx Wyy dX. (18)
8 0 2 0

Note that the A space equipped with the energy inner product (18) becomes a Hilbert space
(Chen and Zhou, 1993; Matsuno et al., 2002). The energy norm induced by the energy inner
product (18) denotes the mechanical energy of the strip as follows:

Ewip = <z2>y=|z0)|A

4 [* P, [* EA [* EI [*

= p_/ dex—l——O/ wfdx+—/ wfdx+—/ w2 dx
2 Jo 2 /o 8 Jo 2 Jo '
A [* P, [*

= p_/ (wt+vwx)2dx—|——0/ w2dx
2 0 2 0

EA [* EI [*
+ — widx + —/ w? dx. (19)
8 Jo 2 Jo
The following lemmas are then stated.

Lemma 1. The mechanical energy E,.;, of equation (19) and the following function are
equivalent:

L

Virip = 0Egrip +[)’pA/ xw, (w, +vw, ) dx. (20)

0
That is, there exist constants a, 8, f1 > 0 such that

(06 _ﬁﬂl)Estrip S Vstrip S (0[ +ﬁﬁ1)Estrip7 (21)

where

B <a/B (22)
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Table 1. The plant parameters used for simulations.

Symbol Definition Value
A Cross-section area 1.4x0.0045 m?
E Elastic modulus of the steel 2x10" Nm~2
L Length of the controlled part 17.5m
Py Tension of the strip 9800 kN
m Mass of the actuator S5kg
Vo Strip moving speed 1.67ms™?
P Mass per unit area 7850 kg m—?2

Proof. If using 2ab < a* + b?, the following inequalities for equation (20) hold:

L pAL L L
pA/ xwy, (w, +vw, ) dx 5 [/ widx—l—/ (w, —|—vwx)2 dX}
0 0 0
A P, [t 4 [*
S L |:pP—O . 70/(; Wde‘i‘ p?/o (Wt +wa)2 dx:|

A
L - max {1, pp_} : Estrip — ﬁl : Estrip> (23)
0

IN

IN

where

ﬁlzL-max{l,';—A}. (24)

0

Using the parameters in Table 1, for example, f; = 17.5 x max {1, 0.00005} = 17.5 is
obtained. The substitution of equation (23) into equation (20) yields

Vstrip (t) S a - Estrip +ﬁﬁ1 : Eytrip = (a +:8181)E9trip- (25)

By the same token, the left inequality in equation (21) is achieved.
Now, with Lemma 1, the following Lyapunov function candidate is proposed

V(t) — Vstrip + Vactuat0r7 (26)
where
m 2
Vactuator — E {é Wy (L7 t) + TW, (La t)} ’
& = a/2>0, 7 =(av+pL)/2>0. (27)

The reason for choosing such ¢ and 7 above will become clear in the following.
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Lemma 2. Equation (26) satisfies the following inequalities

bo (B + 5 {Em(Lt) + (L)) < 1)

< ko [Euny + 5 {6 w(L0) + (L0 (8)

where
ky =min{a — ff1, 1} >0 and ky = max{a + S, 1} > 0. (29)

Proof. From equations (21) and (27), the following holds:

m
(0( - ﬁﬁl) Estrip + g {é: Wy (L7 t) + TWy (L7 l)}2 S Vstrip + Vactuator

< (@ +pBP1) Eurip + ? (& wi(L,1) + 7w, (L,0)}2.
Therefore,

min {a — Bf1, 1} [Em,«,, + ? {Ew (L, 1) + 7w (L, z)ﬂ < V(1)

< max{a +fp1, 1} [Esmp T ? (& w, (L, 1) + 7wy (L, t)}2] (30)

is achieved.
Now, the total derivative (or the material derivative) of equation (26) is evaluated. First,
the time derivative of V,,;, becomes

d d [*r- Lq.
aVstrip(t) = d_f o I/Strip(x7t)dx:/(; d_tVstrip(x7[)dx

L
d - 0x 0 -
— /0 |:E‘ Vstrip (xa t) + EaVS[Hp (x> t):| dx

a [t ~ L
= 5 Vstrip (x> Z)dx + VVstr[p (.X', t)}o
0

0 d
= a_tVstrip +vaVstrip7 (31)

where
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~ A P EA EI
Virip (x,8) = «a o { 2+ (w, + vwx)Z} + 2w =t w2 | (32)
2 2 8 2
d 9 [F .
E‘Vstrip = & o Vstrip (x, t)dx, and
0 Loy .
aVvtrip - /(; aVvtrip (X, l)dx.

Because the system involves a mass flow entering in and out at the boundaries, the net change
of the total energy is the sum of the change in the control volume, i.e. ;—t Viirip » and the energy

flux at the boundaries, i.e. v I~/_gt,,,-p ﬁ . Now, equation (31) is calculated as follows:

d d d
aVstrip = al/strip + V& I/strip

L
= « {pA/ (wr +vw,) (W, +vw,, ) dx
0

L L
+ EI/ Wyx Wexe dx+P0/ We Wy, dx
0 0

L

EA [*
— wfwx,dx] —i—ﬂpA/ [xwe, (W 4+ vwy)
0

2 Jo

L
+ xwe (Wi +vwy, )] dx+a [pA/ (W +vwy) (W +vwy, ) dx
0

L L E4 [t
+ EI/ Wyx Wyrx dx+P0/ Wy Wy dX —1—7/ wfé’wxx dx}
0 0 0

L
+ ﬁIOA/ [WXW[ + VW)% +xwxx (Wl‘ + VWx)
0

+xwye (W +ywy, )] dx (33)

Using equation (10), equation (33) can be written as

d
_I/str[p

dt

L
o [pA/ (w, +vw,) (w,, + 2vw,, +Vw,, ) dx
0

ANL04

L
+ EI/ (Wex Wexr 4 VWiy Wiy ) dx
0
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L E4 [t
+ PO/ (Wewy, +vwew,, ) dx + 7/ (w;:’wx, —|—VW§WXX)
0 0
L
+ ,BpA/ (xthwt + VW, Wy + VIXW e Wy VW, W,) dx
0
L
+ ,BpA/ (wewy +v?w?) dx
0

L
+ ﬁpA/ XWy (w,, + 2vw,, +V2Wxx)dx
0

L
EA
= a [/ (W, +vwy) { (Po + %wi) Wer — EMW,y iy } dx
0

L L
+ EI/ Wyx Wyyr dX +E1v/ Wiy Wyery dX
0 0

¢ L EA [* .
+ Po/ wxwx,dx—FPov/ Wy Wy y dx+7/ ijxtdx
0 0

0
L

EAv [*
kel Wiw,, dx} +,BpA/ xwy, wedx
0

2 Jo

L

L

+ ,BpA/ VW w,, dx —i—ﬁpA/ viwidx
0 0
L

+ ,BpA/ (XvWy, Wy 4 xvW, W +ywew, ) dx
0

XW Wy, dx

L L
3L EA
+ ,BPO/ XWy Wy dx—i—ﬁT 3
0

0

L
- ﬁEI/ xwxwxxxxdx' (34)
0

Lemma 3. Because w (x, ¢) satisfies equation (11), the following equalities hold:

L
PO/ (Wewer +wewy, ) dx = Py [W,Wx]é = Pow, (L, t) w, (L, 1), (35a)
0

L L
—E[/ W Wy ry dX + EI/ Wy Weor dx = —El[w, w,]g + Elw,, wy, ]8
0 0

= —Elw. (L,Ow,(L, 1), (35b)

EA (", . EA
5 (wfwx, + 3w Wiy, ) dx = 5 [wswt]é = —w (L, )w,(L,t), (35¢)
0
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L L
1 EA
2BAv | wiw.,dx = 2EAv |=w'| == wi(L, 1), (35d)
o X 4 X 0 2 X
L L
2P0v/ Wy Wy, dx = Pyv [Wf]o = Poww? (L, 1), (35¢)
0
L Eb
—Elv W Wi dx = —Elvw, (L, )Wy (L, 1) — 5 Wes (0,1), (359)
0
L
ET ET
Elv/ Wyy Wy dX = Tv [wix ]é = —TVW)%X (0,1), (35g)
0
t BpAL BpA [*
,BpA/ Wy wedx = Tw?(L,t) - T/ widx, (35h)
0 0
L 2 2 L
AL A
,BpA/ VW w,, dx = 2 5 Y w2(L,t) — ﬁp2v / widx, (351)
0 0
‘ BPoL BPo [*
ﬁPo/ XWew,, dx = 5 wi(L,t) — T/ widx, (35))
0 0
3BEA [* 3BEAL 3BEA [*
'B— awdw, dx = / wi(L,t) — ﬁ— whdx, (35k)
2 0 X 8 X 8 0 X

L L
—BEI / YWy Wy yry AX = —BEILW, (L, )Wy, (L, 1) — 5 / w2 dx, (35])
0 0

L
,BpA/ (W, Wy 4 xvW, W +ywew, ) dx = BpAv [xwxw,]é
0

= PpALvw, (L,t)w,(L,1). (35m)

Proof. The integration by parts yields all above equalities.
Now, by using Lemma 3, equation (34) is modified as follows:

d
&Vstrip

AL04

EA EA
@ [Pow, (L. wy (L 1) + —=w! (L, 0w, (L, 1) + ==wi (L.1)

Povw? (L,t) — Evw?_(0,£) —EIw, ., (L,£) {w,(L,t) +vw, (L, )}]

A [t ¢ 3BEA [*
'BL/ widx — b (Po + pAv?) / w2dx — ﬁ—/ widx
2 Jo 2 0 8 Jo

EI [* AL
% / w2 dx + BpALvw, (L, O)w, (L, ) + ﬁpwa(L, )
0
BL 3BEAL ,

> (Po +pAV*) w? (L, 1) + T (L,1)
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L

——ﬁﬂ%@@JWﬂALﬁ+Mﬂﬁ/,wwx (36)
0

On the other hand, the time derivative of equation (27) becomes

Vomaor = (G WL+ T (L)} & Wi (L) + s (L0}

= 2m& w;(L,1t) - wy; (L, t) + 2m7rw, (L, t) - wy, (L, 1)

2mt?

+ 2mTw, (L, t) - w, (L, t) + Wy (L, 1) - wy, (L, 1). (37)

From equations (36) and (37), the total derivative of equation (26) becomes

d d
— Wt = — Vsui Vaciuator
dr ()Al04 dt( fP+ tf)
A4 [* Py —pAV?) [*
= —aEhw?, (O,t)—ﬁpT/ wfdx—w/ w2dx
0 0

EA [*F EI [* 4o EA EAL
— %/ wfdx—%/ w2 dx+ a v—|8—3ﬂ wi(L,t)
0 0

EA PyL ALV?
+ “Tw;?(L, Ow, (L, 1) + (Pgav—i—ﬁ > L > 4 )wf(L,t)
BpAL

w2(L, 1) + (Poa + Bp ALv) w, (L, )w, (L, 1)

— Elwy (L, t) [aw, (L, ) + (av+ L) w, (L, 1)]
+ mw,, (L) {2 w, (L, t) + 27w, (L, 1)}

2mt?

+ 2mTw, (L, t)w,, (L,t) + wy (L, )wy, (L, 1). (33)

The substitution of equation (12) into equation (38) yields

d A [t
— V(1) = —aEbw? (0,1) — ﬁL/ widx —
0

dr ANL04,A124 2

3BEA [* 3BEI [t
— 'B—/ wfdx—ﬂ—/ w2 dx
8 0 2 0

AaEAv + 3BEAL E4
pAEASPEAL Ly SER
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AL
+ ﬁp—wf(L, )

P,L ALY
n <P0av+ﬂ0 L V) 2

2 2 WX (L7 t)

+ (Poa + BpALv)w, (L, t)w,(L,¢)
— EWyyr (L, 1) [ow, (L, 1) + (av + BL) w, (L, 1)]
+ {2Ew (L, t) 4+ 2w, (L, 8)} - [Fe(t) — d.ow, (L, t) — Pow, (L, 1)

EA .
— 7Wj (L,t) +EIw,,, (L,1)]

+ 2m {th (L, t)wy, (L,1) + ?wx (L,t) - wy, (L, t)} . (39)

Finally, the main theorem of this paper is stated as follows.

Theorem. Consider the system (10)—(12). Let the right boundary control force F.. () and
the damping coefficient of the actuator d, in equation (12) be given, respectively, by

F.(t) = —Kw(L,1), (402)
o -
where
K:m(av—ﬁtﬂL), o >0, and 0<ﬂ<min{za,i}. (41)
a L p

Then, the dynamics of the closed-loop system is exponentially stable, i.e.

V(t) <V(0)e ™ “2)
where
Po= min{ 38 B(Po—pAv?) B (Po—pA?)  aBL(Py—pAv*)
a (o +pB1) 20Py (o +Bp1)" dapAv? (a + BB1)" 2m (av+ BL)>
BpALE | PpALv 1
ma I:aOCV-i-ﬂL _5]}' (43)

Proof. Let = a/2and 7 = (av+ fL) /2, then equation (39) becomes

L o 2 L
= —aEhw?, (0,1) — ﬁpTA/ widx — M/ w2dx
0 0

ANL04,A124
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3BEA [* 3BEI [*
- ﬁ—/ w;ldx—ﬁ—/ w? dx
8 0 2 0

4aEA 3BEAL EA
¢ LBV g+ S L L)

8
BPL  ppALV*Y BpAL
5 T )WX(L,I)—i—Tw,(L,t)
+ (Poa + BpALv) w, (L, t)w,(L,t)

T {awLt) + (@v -+ BL) wi (L)} x [Fo(t) — dowi (L0

+ (Poav-l-

—  Pow,(L,1) —%wf (L, t)} +m {(av +BL) w, (L, t)wy, (L, 1)

(v + L)
a

wy (L, )wy, (L, t)} . 44

L
In equation (44), if we set the control input F. (¢) to be 0 < f— < a and the gain K to be
12

m (av + L) /a, then all terms involving w,, (L, f) can be eliminated, i.e.

A L
— V(1) = —aEbw? (0,1) — ’BPT/ widx
0

ALO4,AL24, MOad
Py —pA?) [*

_ IB( 0 P V)/ W)%dx
2 0

EA [* El [*
— i/ wfdx—i/ w? dx
8 0o 2 0

EAL L
PEAL i)~ B (P = p ) w0

+ (ﬂp% —a dc) w?(L, 1)

+ {BpALv — (av + BL)dc} wi (L, )w, (L,1).  (45)

Because Py > pAv? is assumed, see equation (14), all terms except the last two terms in
equation (45) are negative. Therefore, by establishing the relationship between a, £, and d.
such that

AL
PrAL 4 < o, (46)

BpALv — (av+ pL)d. = 0, (47)
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the negative value of the last two terms can be achieved. It is noted that to satisfy equations
(46) and (47) the following inequality is also needed:

0<ﬂ€ < a. (48)

To satisfy equation (22), # should further satisfy
vV o a
0<pf <min< —-a,— /.
g {L B }

Hence, the total derivative of the Lyapunov function candidate becomes negative as follows

A L
iV(t) = —aEhw?, (O,t)—ﬁL/ w?dx
dr NL04, A1 24, MOa,b4 2 0
_ 2y L
- L) [* g,
2 0
EA [* EI [*
- L/ wfdx—ﬂ/ wivdx
8 Jo 2 Jo
FEAL L
- P - B (py - )L
ov 1
— AL | ——— — = | W?(L,¢ 49

where av/ (av + BL) > 1/2. Equation (49) can be rewritten as

A L
iV(t) = —aEhw?, (O,t)—[)l/ widx
dr NL04,A124, MOa,b4 2 0
Py—pAv?) [*
_ ﬂ( 0 p v )/ Wfdx
4 0
Py —pAv?) [* EA [*
- ﬂ—( - gp V)/ (vwx)de——gﬁ / widx
dv 0 8 0
3BEI [* EAL
- ﬂ—/ wﬁxdx—ﬂ—wf(L,t)
2 0 8
pL oy 9 ov 1 5
— — (Pyg—p4d L, t)—pBpAL — = L,t
2 (0 p V)Wx(7) ﬁp OCV—FﬁL 2 Wt(?)

IN

Py —pAv?) [*
—aEw? (0,1) — Lf‘})/ wdx
0
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3BEA [* EI [t
- ﬂ—/ wfdx—i/ w2 dx
8 0 2 0

A B (Py—pAV? g -
— min{’g'; ,ﬁ( o4v2p V)}[/o wfdx%—/0 (vwx)2dx]

EAL L
— 'Bwa (L,t) — '% (Po — pAV*) wi(L, 1)
av 1
— PBpAL — = | wi(L,1). 50
Now, the application of — fOL w2dx — fOL (vwy )2 dx < -3 OL (w;, 4+ vw,)? dxx to equation
(50) yields
d Py—pA?) [*
— V(1) < —aEhw?_ (0,1) — ﬂ(o—pv)/ w2dx
de NL04,A124,M0a,b4 4 0

IN

EA [* EI [* A B (Py — pAV?
SpEA / widx — SPE / w?_dx — min iz ,ﬁ (Po —pAv°)
8 /o 2 J, 4 8172

[/OL (w, +vw,)” dx] - [%wf (L,t) — pL (Py — pAV*) w2 (L, 1)

av 1 36 EA [* 38 EI [*
AL —— )WLt < —La— tdx — Ta— 2 d
Fr (av—i—ﬂL 2>W’(’)_ a8/0wx * aaZ/O Wes OX

B (Po—pAv?) Py / )
fro P2 a2 d
2P, 2 ),

B B(Po—pAV)\ pd [* >
111111{20C Tap A2 a5 . (W, +vw, )" dx

2BL (Py —pz‘;VQ) (ocv +[)’wa (L,t))2
(av+pL) 2

4Bp AL ov 1 o 2
a2 {av +BL B 5} (EWI(L’ [))

(35 PP p V) (P paV)
a’ 2a.P, T dap A2

EA ¢ A4 [*
a [—/ widx +—/ 2 dx+—/ wfdx+'[)—/ (wt+vwx)2dx]
8 Jo 0 2 Jo

min{aﬁL (Py — pAV?) BpAL [ av_ 1] }
2m (av +ﬂL)2 " mo

av+pL 2
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2m [« av+ pL ?
7{§W,(L,t)+TWX(L,f)} . (51)

Using equations (21), (26), and (27), equation (51) becomes

_ 2 _ 2
0 < —in {2 LU0 7) (P —pi?))
dr ALO4, AL 24, MOa, b4 a 20.P 4op Av
1 . [aBL(Py—pAv*) BpAL [ av 1] }
X —I/sri — min 3 -3 ><I/acuaor
a+pBp e { 2m(av+ﬁL)2 ma  |av+pL 2 fuat
< _ mm{ 3p B (Po—pAv?)  B(Po—pAV*) afL(Py—pAv*)
B a(a+pBp1) 20Py (o +BB1) dapAv? (a +pf1)" 2m(av +pL)?
BpALE [ av 1 B
mo av +ﬂL 92 X (I/Slrip + Vactuatar) = -1 V(t) . (52)

The theorem is now proved.
Equations (42), (28), and (29) imply that

1
min {a — 1,1}

Hence, it is seen that the mechanical energy (19) of the strip decays exponentially, which
again implies that all state variables decay exponentially in time.

Ewp =z} < V() < V(0)e .

4. IMPLEMENTATION OF THE CONTROL LAW

The implementation of equations (40a) and (40b) requires two things: the design of control
force F, (¢) and the satisfaction of a damping coefficient d.. Because the satisfaction of a
damping coefficient is related to the design of an actuator, it must be answered beforehand.
Note that S should satisfy both equations (24) and (41). Hence, f is selected as follows:

B =ksa, where 0 < ks <min{v/L,1/8:}. (54)
The substitution of equation (54) into d, in equation (40b) yields
d. = kspALv/(v + ksL). (55)

Note that equation (55) is an increasing function in k3. Hence, if k3 satisfies equation (54),
d. will assume the following

0<d. <MpALv/(v+ ML), (56)

where M = min{v/L,1/f,} Because all terms on the right-hand side of equation (56)
are already known, the range of the damping coefficient can be achieved. Once d. is
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determined, a can take an appropriate constant value and £ is chosen as explained above,
which determines the gains in equation (41). The implementation of w,, (L, ) in equation
(40a) can be achieved by backwards differencing of w, (L, ) measured at each step.

5. SIMULATIONS

To demonstrate the performance of the closed-loop system, computer simulations using the
finite difference scheme have been performed. The values used in simulations are listed in
Table 1.

Let x be chosen to be 1. The plausible range of d.., equation (56), can be estimated using
the plant parameter values in Table 1 as follows:

0 <d, <30.93. (57)

Letd. = 15 (see Rao, 1990). Then, from equations (54) and (55), /5 is calculated as follows:
B = ksa =va/(pALv/d. — L)
= 1.67 x 1/(7850 x 1.4 x 0.0045 x 17.5 x 1.67/15 — 17.5)
= 0.02. (58)

Thus, the control gain in equation (41) becomes
K =5(1.67+0.021 x 17.5)/1 = 10.19. (59)
Let the initial conditions be
w(x,0) = 2sin(37) cm and w; (x,0) =0m ™' (60)

Now, simulations using equations (57)—(60) have been performed for 20 s. Figures 3 and 4
show the transverse displacement at x = L /2 and the control force at x = L, respectively. As
shown in Figure 3, the lateral vibration has been suppressed within 4 s. Figure 5 shows the
decay of the total mechanical energy of the strip in time. It shows that the total energy with
control decays exponentially, while the energy without control is sustained in time.

6. CONCLUSIONS

In this paper we investigate a boundary control law for suppressing the transverse vibration
of an axially moving steel strip in the zinc galvanizing line. Because the strip was modeled as
a Euler—Bernoulli beam equation with a non-linear tension, the method developed is general
in the sense that it can be applied to any system in a similar form. Once the range of
damping coefficient is established, an appropriate value for § can be selected for given system
parameters. Achieving the exponential stability by using one sensor and one actuator is the
main contribution of the algorithm proposed.
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Figure 4. The control input used to obtain Figure 3.
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Figure 5. The exponential decay of the total energy (26) with the control input in Figure 4.
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