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ROBUST MRAC OF A NONAUTONOMOUS PARABOLIC SYSTEM 
WITH SPATIOTEMPORALLY VARYING COEFFICIENTS AND 

BOUNDED DISTURBANCE 
 

Kyung-Jinn Yang and Keum-Shik Hong 

 
ABSTRACT 

 
In this paper, a robust model reference adaptive control of a parabolic 

system with unknown spatiotemporally varying coefficients and disturbance 
is investigated. In the adaptive control of time-varying plants, the derivative 
of a Lyapunov function candidate, which allows the derivation of adaptation 
laws, is not negative semi-definite in general. Under the assumption that the 
disturbance is uniformly bounded, the proposed robust adaptive scheme 
guarantees the boundedness of all signals in the closed loop system and the 
asymptotic convergence of the state error near to zero. With an additional 
persistence of excitation condition, the parameter estimation errors are shown 
to converge near to zero as well. Simulation results are provided. 

 
KeyWords: Robust model reference adaptive control, parabolic partial dif-

ferential equation, uniform ultimate boundedness, stability, per-
sistence of excitation. 

 
 

I. INTRODUCTION 
 
In this paper a robust model reference adaptive 

control (MRAC) of a linear parabolic system with un-
known spatiotemporally varying coefficients and bounded 
disturbance is investigated. As in the adaptive control of 
finite dimensional systems a robust MRAC, under the 
assumption that the structure of the plant is known and 
only parameters in the system equation are unknown, is 
derived. Distributed sensing and actuation are also as-
sumed. Compared to the adaptive control/identification 
of finite dimensional systems, that of infinite dimen-
sional systems is not well developed and has been re-
cently studied [1-7,10-14,19-20,21,25,30,32-34]. 

The mathematical models of physical plants that 
control engineers adopt for the purpose of designing 
control systems normally contain some uncertainty. This 
is due to imperfect knowledge on the system parameters 
and/or disturbances. Parameter time-variations may be 
due to unmodeled dynamics, for instance, neglected fric-
tions, neglected high order dynamics, etc., and may also 

arise from linear approximations along different motions 
over a wide range of operating conditions. Studies on the 
control of distributed parameter systems (DPSs) with 
uncertainty include various H ∞  algorithms developed 
in the frequency domain [9,18,24,26], Lyapunov-based 
robust controller design methods [6], feedback control 
using Galerkin projections [23,31], and adaptive control/ 
identification [16,29,35]. 

The objective of a MRAC scheme is to determine a 
feedback control law which forces the state of a plant to 
track asymptotically the state of a given reference model. 
At the same time, the unknown parameters in the plant 
model are estimated and used to update the control law. 
Typically, the whole adaptive system is represented as 
two error systems describing the evolution of the state 
error and the parameter estimation errors. In the infinite 
dimensional systems the state error and the parameter 
estimation errors take the forms of a partial differential 
equation and ordinary differential equations, respectively. 
The resulting closed loop system consisting of the plant, 
the reference model, and the estimator will be nonlinear. 
This is true even if the underlying plant and reference 
model, and the estimator are linear. The nonlinearity 
arises due to the coupling of error dynamics. Conse-
quently, an adaptive scheme requires a careful stability 
analysis to ensure that all signals, both input and output, 
remain in some sense, bounded. It is also desirable, al-
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though not necessarily essential, that some sort of pa-
rameter convergence is achieved. 

To conclude various stabilities in the sense of 
Lyapunov, the associated stability theorems require that 
the time derivative of a Lyapunov function candidate, 
V� , should be at least ≤ 0, i.e., negative semidefinite. 
Therefore, if V�  allows positive values near an equilib-
rium point, no stability can be asserted. In the MRAC of 
time-varying plants, the derivative of a Lyapunov func-
tion, which is introduced to derive adaptation laws, is not 
negative semi-definite in general. 

The present paper makes the following contribu-
tions: To the authors’ best knowledge this paper is the 
first treatment of an infinite dimensional system with 
unknown spatiotemporally varying parameters and addi-
tive disturbance in the frame of robust MRAC. The un-
known time-varying parameters are not required to be 
slow, which can be allowed to vary arbitrarily fast, and 
the disturbance is allowed to vary in both time and spa-
tial domains. The well posedness of the closed loop sys-
tem is established. Using an appropriate Lyapunov func-
tion candidate, the tracking error convergence near to 
zero is established. With the additional assumption of 
persistence of excitation the convergence of parameter 
estimation errors near to zero is established as well. 

The paper has the following structure. In Section 2, 
the standard MRAC of a linear parabolic system with 
spatiotemporally varying coefficients is reviewed. In 
Section 3, a robust MRAC algorithm in the presence of 
bounded disturbance is proposed. The derived control 
law guarantees its robustness with respect to the inacces-
sible disturbance and yields the desired equations of mo-
tion, thereby ensuring the adaptability of the controller. 
In Section 4, with the persistence of excitation condition, 
the adjustable parameters in the adaptive controller are 
shown to admit convergence to their nominal values 
when an appropriate reference signal is used. In Section 
5, computer simulations are provided. Conclusions are 
given in Section 6. 

 
II. PROBLEM FORMULATION 

 
In this section, the standard MRAC algorithm for a 

linear, 1-dimensional, parabolic partial differential equa-
tion (PDE) with spatiotemporally varying coefficients 
and bounded disturbance is formulated. As in the adap-
tive control of finite dimensional systems, under the as-
sumption that the structure of the plant is known and 
only parameters in the system equation are unknown, the 
MRAC is investigated. 

Consider the following 1-dimensional linear para-
bolic equation.  

( )( , ) ( , ) ( , ) ( , ) ( , )x x
x t a x t x t b x t x tξ ξ ξ= +�  

( , ) ( , ),u x t d x t+ +  (1) 

where [0,  1]x∈ , 0t > , ( , )a x t  and ( , )b x t  are un-
known spatiotemporally varying coefficients that are not 
necessarily slow-varying, ( , )x tξ  is the distributed state 
of the plant (in heat transfer, for example, it represents 
the temperature at position x at time t on a rod), ξ� =  

( ), ( , ) ( , ) ( , ) ( , ) ,x x
t a x t x t a x t x t

x x
ξ ξ ξ∂ ∂ ∂ ∂ =  ∂ ∂ 

 u(x, t)  

is the control input function, and ( , )d x t  is the inacces-
sible external disturbance. Note that ( , )d x t  is an un-
known bounded spatiotemporally varying function. 
Boundary conditions are given as 

1(0, ) 0, (1, ) ( ).t t h tξ ξ= =  

Initial condition is given as 

0( ,0) ( ).x xξ ξ=  

The output y of (1) in general is given by y(x, t) = Gξ(x, 
t), where G : C([0, 1] × [0, ∞)) → C(Ω ⊂ [0, 1] × [0, ∞)) 
is a linear bounded time invariant operator with the form 
depending on the characteristics of the sensor. The fol-
lowing assumptions are made. 

 
Assumptions. (i) The structure of (1) (plant) is a priori 
known. (ii) Boundary conditions are a priori known, and 

1( )h ⋅ ∈ [0, )C∞ ∞ . (iii) Distributed sensing and actuation 
are available, and the observation operator G is a priori 
known ( G I=  may be assumed, where I denotes the 
identity operator from ([0,  1] [0, ))C × ∞  onto itself. (iv) 
Coefficients a(x, t) and b(x, t) are unknown and uni-
formly bounded with uniformly bounded derivatives. 
However, ( , ) 0a x t >  is assumed, due to the parabolic-
ity condition of the plant. (v) Disturbance ( , )d x t  is 
unknown but uniformly bounded. 

The parameters a(x, t) and b(x, t) may be piecewise 
values due to the presence and differing material proper-
ties of the bonding layer and patches of distributed ac-
tuators and sensors. It is then forced to differentiate dis-
continuous functions when considering the strong form 
of plant equation (1). To avoid the difficulty as well as 
lower smoothness requirements for approximating ele-
ments, the system (1) in weak form is considered [3,5]. 

To convert (1) into weak form, both sides of (1) are 
multiplied by a sufficiently smooth test function ϕ and 
are integrated by parts. Assuming that ϕ satisfies the 
boundary conditions ( )xϕ = 0 at x = 0,1, the weak form 
of (1) is 

( )

]

 1 1

 0 0
( , ) ( , )( , ) ( ) ( , ) ( , )

( ) .( , ) ( , )

x x
a x t x tx t x dx b x t x t

x dxu x t d x t

ξξ ϕ ξ

ϕ

= +

+ +

∫ ∫�
 (2) 

By using the boundary conditions, the integration of the 
first term in the bracket in (2) yields: 
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( ) 1  1

 0  0
( , ) ( , ) ( ) ( , ) ( , ) ( ) .x x xx

a x t x t x dx a x t x t x dxξ ϕ ξ ϕ= −∫ ∫  

Thus, the following weak form of the plant is derived: 

 1  1

 0  0

 1  1

 0  0

 1

 0

( , ) ( ) ( , ) ( , ) ( )

( , ) ( , ) ( ) ( , ) ( )

( , ) ( ) .

x xx t x dx a x t x t x dx

b x t x t x dx u x t x dx

d x t x dx

ξ ϕ ξ ϕ

ξ ϕ ϕ

ϕ

= −

+ +

+

∫ ∫

∫ ∫

∫

�

 (3) 

To pose the MRAC problem, adequate function 
spaces are now introduced. L2(0, 1), Hk(0, 1), and 

1 (0, 1)LH  are the Hilbert spaces defined as 

[ ]{ } 1 2
2  0

2 ( )

2 22 ( )

(0,1)  : 0,1   |  ,

(0,1)  (0,1) | , , , (0,1) ,
k

k
k

L R dx

H L L
x x x

η η

η η ηη

= → < ∞

 ∂ ∂ ∂= ∈ ∈ ∂ ∂ ∂ 

∫

"
 

1
2 2(0,1)  (0,1) | (0,1), and ( ) 0 at 0 ,LH L L x x

x
ηη η∂ = ∈ ∈ = = ∂ 

 

 (4) 

where the subscript L in H denotes η(x) = 0 at x = 0. The 
inner product in 2 (0,1)L  and 1 (0,1)LH  are defined, 
respectively, as 

1

 1

 0

 1

 0

( ), ( ) ( ) ( ) ,

( ) ( )( ), ( ) ,
LH

x x x x dx

x xx x dx
x x

φ ψ φ ψ

φ ψφ ψ

=

∂ ∂=
∂ ∂

∫

∫
 

and the corresponding induced norms are denoted by 
⋅  and 

H
⋅ , respectively. 

Let a, b ∈ Q, where Q is a compact subset of 
2 (0,1)L  and is a real Hilbert space (henceforth the pa-

rameter space) with inner product ,
Q

⋅ ⋅  and corre-
sponding norm 

Q
⋅ . Note that the inner product ,

Q
⋅ ⋅  

is appropriately chosen according to the bonding layer 
and patches of distributed actuators and sensors, see [3]. 

With these definitions, (3) can be rewritten as 

, , , , , .x xa b u dξ ϕ ξ ϕ ξ ϕ ϕ ϕ= − + + +�  (5) 

The MRAC problem for plant (5), in the presence 
of unknown parameters a, b and unknown disturbance d, 
is now to find a control input u in feedback form, which 
forces the state ξ to track a reference signal ξm. The ref-
erence signal ξm is generated through a reference model 
with the same boundary conditions defined by 

, , , , ,m m mx x m ma b rξ ϕ ξ ϕ ξ ϕ ϕ= − + +�  (6) 

1 0(0, ) 0, (1, ) ( ) and ( ,0) ( ),m m m mt t h t x xξ ξ ξ ξ= = =  

where ,m ma b R∈  are the reference model parameters 
which are chosen so that the response ξm can have the 
desired characteristics, the subscript m indicates vari-
ables and parameters related to the reference model, and 
r(x, t) is the reference input which is analytic on [0, 1] × 
[0, ∞]. It is assumed that am > 0 and bm < amπ2. It is 
known that if r(⋅, ⋅) is analytic in [0, 1] × [0, ∞], the solu-
tion of (6) is analytic in [0, 1] × {0 < t < T < ∞} [8, p. 
212]. 

Now adopting the procedure in [12], consider a 
control law of the form 

ˆ, , , ,

ˆ , , ,

m x x x x mu a a b

b r

ϕ ξ ϕ ξ ϕ ξ ϕ

ξ ϕ ϕ

= − + +

− +
 (7a) 

which is a weak representation of 

ˆˆ( ) ,m xx x x mu a a b b rξ ξ ξ ξ= − + − +  (7b) 

where â and b̂  are adaptive estimates to be specified in 
the sequel. Substituting (7a) into (5) yields the following 
closed loop plant equation 

, , , ,

, , , ,

m x x x x ma a b

b r d

ξ ϕ ξ ϕ ξ ϕ ξ ϕ

ξ ϕ ϕ ϕ

= − + +

− + +

� �

�
 (8) 

where ˆa a a= −�  and ˆb b b= −�  are parameter estima-
tion errors. Note that if a =� b =� 0 and d = 0, then (8) is 
exactly the same as (6). 

Introducing the state error me ξ ξ= − , the follow-
ing state error equation is obtained. 

0 0

, , , ,

, , , , ,

(0, ) (1, ) 0, ( ,0) ( ) ( ).

m x x x x m

mx x m

m

e a e ae b e

be a b d

e t e t e x x x

ϕ ϕ ϕ ϕ

ϕ ξ ϕ ξ ϕ ϕ

ξ ξ

= − + +

− + − +

= = = −

� �

� ��  (9) 

Now, consider a functional ( ) 2
2: 0,1V L Q R+× →  such 

that 

1 1 1( , , ) , , , ,
2 2 2Q Q

a b

V e a b e e a a b b
γ γ

= + +� � �� � �  (10) 

where γa and γb are positive constants, which will be-
come the adaptation gains later. Differentiating (10) with 
respect to t along (9) yields: 

1 1, , ,
Q Qa b

V e e a a b b
γ γ

= + + �� � �� � � �  

1, , , , ,m x x m x xQ
a

a e e b e e d e a a ae e
γ

= − + + + +�� � �  



 K.J. Yang and K.S. Hong: Robust MRAC of a Nonautonomous Parabolic System with Spatiotemporally Varying  353

1, , , , .mx x m
Qb

a e b b be e b eξ ξ
γ

+ + − −�� � � ��  (11) 

Let the differential equations of the adaptive estimators 
in (7) be given as 

( )ˆ  ,a x x mx xa e e eγ ξ= − +�  (12a) 

( )ˆ  .b mb ee eγ ξ= +�  (12b) 

From (12a,b) the differential equations of the adaptive 
estimate errors can be given as 

( ), , , , ,a a a x x a mx x a QQ
a p p e e p e a pγ ξ= − + −�� �  (13a) 

( ), , , , ,b b b b m b QQ
b p p e e p e b pγ ξ= + −�� �  (13b) 

where ,a bp p Q∈ . By Poincare’s inequality [17, p.67], 
it is concluded that 

2 , ,x xe e e eπ ≤  (14) 

for all 0t ≥ . Then, substituting (13a,b) and (14) into (11) 
yields: 

( ) 22 1 1 , , , .m m Q Q
a b

V a b e a a b b d eπ
γ γ

≤ − − − − +� �� � �  

 (15) 

Now, from (15) the following observations are 
made. 

 
Case (1) Assume that the system coefficients a and b are 
constant, i.e., 0a b= =�� , and the disturbance d = 0. Then, 
(15) becomes V� ≤ 0, i.e., negative semidefinite, which 
implies that (10) is a Lyapunov function. Therefore, the 
stability of an equilibrium point ( , , )e a b��  = (0, 0, 0) is 
guaranteed. Furthermore, the convergence of the state 
error e to zero is also guaranteed by the uniqueness and 
semigroup properties of the solution [11]. 

 
Case (2) Assume that d = 0, but a and b are time-varying. 
Then, (15) becomes 

( ) 22 1 1 , , .m m Q Q
a b

V a b e a a b bπ
γ γ

≤ − − − − � �� � �  (15a) 

In this case, V�  may take positive values because of the 
last two terms. Hence, no stability conclusion can be 
drawn from the Lyapunov function candidate (10). 
(a) But, further assume that a�  and b�  are bounded and 

1,a b L∈�� . Then, the integration of both sides of (15a) 
gives 

( ) 22
 0

 

 0

 

 0

 (0) ( )

1 1, ,

1 1(0) ( ) .

m m

Q Q
a b

Q Q QQ
a b

a b e dt V V

a a b b dt

V V a a b b dt

π

γ γ

γ γ

∞

∞

∞

− ≤ − ∞

 
− + 

 

 
≤ − ∞ + + < ∞ 

 

∫

∫

∫

� �� �

� �� �

 

Therefore, the tracking error e(t) converges to zero as t 
→ ∞. 
(b) Now, if only the boundedness of a� , a� , b� , and 
b� is assumed, then no asymptotic convergence to zero  

can be asserted. However, if , ,a bQ Q
a a b bγ γ+ � �� �  is  

sufficiently small, then it is guaranteed that e is uni-
formly ultimately bounded within an arbitrarily small 
neighborhood of zero [15]. 

 
Remark 1. In order to have the boundedness of  

, ,a bQ Q
a a b bγ γ+ � �� � , the boundedness of individual  

a� , b� , a� , and b�  is necessarily required. The bound-
edness of a�  and b�  depends on the plant, which can 
be assumed. However, the boundedness of a�  and b�  
can be proved through more rigorous theoretical analysis. 
In the case that a and b are slowly varying scalars and 
the disturbance d = 0, the boundedness of a�  and b�  
was shown through averaging analysis [14]. Now, more 
general problem would be one in which a, b, a�  and b�  
vary in unknown fashion but bounded (no slow varying 
assumption) and the disturbance 0d ≠ . The aim of this 
paper is for a nonautonomous parabolic system with un-
known spatiotemporally varying, but bounded, coeffi-
cients and disturbance to show not only the boundedness 
of all signals in the closed loop system including â , b̂ , 
and an estimator of d but also the convergence of the 
state error and parameter estimation errors near to zero. 

 
III. ROBUST MRAC: STABILITY 

 
As discussed in Section 2, the adaptation laws 

(12a,b) with the boundedness of ( )a t�  and ( )b t�  were 
not able to assure the boundedness of e, a�  and b�  due 
to disturbance and unknown time-varying behavior. In 
this section, the control and adaptation laws are modified 
so that the boundedness of all signals in the closed loop 
system and the convergence of the state error e near to 
zero can be assured. Assume that ( , )d x t  is uniformly 
bounded by µd, i.e., ( , )d d x tµ ≥ , where µd is an un-
known positive constant. The main idea is to consider 
the worst case of the uncertainties in the form of possible 
bounds. Based upon the worst case, the following control 
algorithms are proposed. 
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Control Law. 

ˆ, , , ,

ˆ , , , ,

m x x x x mu a a b

b r f

ϕ ξ ϕ ξ ϕ ξ ϕ

ξ ϕ ϕ ϕ

= − + +

− + +
 (16a) 

which is a weak representation of 

ˆˆ( ) ,m xx x x mu a a b b r fξ ξ ξ ξ= − + − + +  (16b) 

where the additional term f(x, t) is regarded as a new 
input signal to be determined based on robust control 
strategy. Let the additional input f(x, t) be given by 

2ˆ
( , ) ( , ),

ˆ ( , )
d

d d

f x t e x t
e x t
µ

µ ε
= −

+
 (17) 

where 0dε >  and ˆdµ  is the estimate of dµ . 
 

Adaptation Laws. 

( )ˆ ˆ  ,a a x x mx x aa a e e e gδ γ ξ= − − + −�  (18a) 

( )ˆ ˆ  ,b b m bb b ee e gδ γ ξ= − + + +� , (18b) 

ˆ ˆ ,d d d d eµ δ µ γ= − +�  (18c) 

where 

2

2

ˆ0, , 0, ,
ˆ

,

ˆ0, , 0, ,
ˆ

,

0 and 0.

a
a a a a a Q

a aQ

a
a

a a

b
b b b b b Q

b b
Q

b
b

b b

d d

g a f
a

af a

g b f
b

bf b

µ
δ ε µ

µ ε

δ
γ δ

µδ ε µ
µ ε

δ
γ δ

δ γ

> = − > ≥
+

 ∆ − + 
 

> = − > ≥
+

 ∆ − +   

> >

�

�

 

Note that the adaptation laws (18a-c) are implementable. 
The terms ˆaaδ− , ˆ

bbδ− , and ˆd dδ µ−  in (18a-c) are 
purposely inserted to enhance the convergence of â , b̂ , 
and ˆdµ  respectively; ag  and bg  are introduced to 
cope with the variations of a and b, respectively. Since 
a , a� , b  and b�  are assumed to be bounded, aµ  and 

bµ  can be selected at reasonable values by making aγ  
and bγ  sufficiently large. It is also noted that the con-
trol magnitudes aµ , bµ , and ˆdµ  are to compensate 
the maximum possible bounds of af , bf , and d , re-
spectively, for both positive and negative cases. 

Substituting (16b) into (5) yields the following 
closed loop plant equation: 

, , , ,

, , , , .

m x x x x ma a b

b r f d

ξ ϕ ξ ϕ ξ ϕ ξ ϕ

ξ ϕ ϕ ϕ ϕ

= − + +

− + + +

� �

�
 (19) 

Then, the following state error equation is derived: 

, , , ,

, , , , , ,

m x x x x m

mx x m

e a e ae b e

be a b f d

ϕ ϕ ϕ ϕ

ϕ ξ ϕ ξ ϕ ϕ ϕ

= − + +

− + − + +

� �

� ��
 

0 0(0, ) (1, ) 0, ( ,0) ( ) ( ).me t e t e x x xξ ξ= = = −  (20) 

Now, consider a functional ( ) 2
0 2: 0,1V L Q R R+× × →  

such that 

0

2

1 1 1( , , , ) , , ,
2 2 2

1 ,
2

d Q Q
a b

d
d

V e a b e e a a b bµ
γ γ

µ
γ

= + +

+

� � �� � � �

�
 (21) 

where ˆd d dµ µ µ= −� . Differentiating (21) with respect 
to t along (20) yields: 

0
1 ˆ, , , ,

1 , , ,

1 , , , .

m x x m d d
d

x x mx xQ
a

m
Qb

V a e e b e e f e d e

a a ae e a e

b b be e b e

µ µ
γ

ξ
γ

ξ
γ

= − + + + +

+ + +

+ − −

�� �

�� � � �

�� � � �

 (22) 

From (18a,b) and ˆa a a= −��� �  and ˆb b b= −��� � , the differ-
ential equations of the adaptive estimates errors can be 
given as 

(

)
(

)

ˆ, , , ,

, , ,

ˆ, , , ,

, , ,

a a a a a x x a mx xQQ

a a aQ Q

b b b b b b m
QQ

b b bQ Q

a p a p p e e p e

g p a p

b p b p p e e p e

g p b p

δ γ ξ

δ γ ξ

= − − +

− −

= − + +

+ −

��

�

��

�

 

where ,a bp p Q∈ . Therefore, (22) yields: 

0
1 ˆ, , , ,m x x m d d
d

V a e e b e e f e d e µ µ
γ

= − + + + + �� �  
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1 ˆˆ, , , ,

1, , .

a b
a QQQ Qa a b

b Q Q
b

a a g a a a b b

g b b b

δ δ
γ γ γ

γ

− + − −

+ −

�� � � �

� � �
 (23) 

The right hand side terms of (23) satisfy the following 
inequalities, respectively: 

2

2 2

2 2

1 ˆ, , ,
2

1ˆ, , ,

1 , ,

1ˆ, , ,

1 , .

d d
d d d d d

d d d

a
a QQQ

a a

a a
a aQ Q Q Q

a a a

b
b Q QQb b

b b
b b Q Q QQ

b b b

f e d e

a a g a a a

a a a a a

b b g b b b

b b b b b

δ δµ µ µ ε µ
γ γ γ

δ
γ γ

δ δε µ
γ γ γ

δ
γ γ

δ δε µ
γ γ γ

+ + ≤ − + +

− + −

≤ − + + + +

− + −

≤ − + + + +

�� �

� � � �

� �

� � � �

� �

 

 (24a, b, c) 

Therefore, the derivative of the Lyapunov function can-
didate is bounded as follows: 

( ) 2 22 2
0

2

 

( ),

d a
m m d Q

d a

b

Q
b

V a b e a

b t

δ δ
π µ

γ γ

δ υ
γ

≤ − − − −

− +

� � �

�
 (25) 

where 

2

2

1( ) ,
2

1 , .

d a
d d a a Q Q Q

d a a

b
b b Q Q Q

b b

t a a a a

b b b b

δ δυ ε µ ε µ
γ γ γ

δ
ε µ

γ γ

= + + + + +

+ + + +

�

�
 

Note that ( )tυ  is bounded because of the assumption 
that a, b, a� , b� , and dµ  are bounded. 

 
Remark 2. The existence and uniqueness of the solu-
tions for coupled nonautonomous dynamical systems (20) 
and (18a-c) are addressed in Appendix A. Since ( )tυ  is 
bounded, the solutions e, a� , b� , and dµ�  are uniformly 
ultimately bounded [15].  

 
Remark 3. The equations of a Q

f  and b Q
f  can be 

rewritten as 

1a
a aQ Q

a a aQ

af a a a
δ

δ
γ δ γ

 
= − + = − + 

 

� �  

and 

1 .b
b bQ Q

b b bQ

bf b b b
δ

δ
γ δ γ

 
= − + = − +   

� �  

From a a Q
fµ ≥  and b b Q

fµ ≥ , aµ  and bµ  can 
be chosen at reasonable values according to a Q

f  and 
b Q

f , respectively. Thus, ( )tυ  can be pushed in an 
arbitrarily small boundedness region by making suffi-
ciently small aε , bε , dε , aδ , bδ , dδ  and suffi-
ciently large aγ , bγ , dγ . 

 
All the above developments are now summarized 

as follows: 
 

Theorem 1. Consider the coupled nonautonomous dy-
namical system (20) and (18a-c). Then, all signals in the 
system are uniformly ultimately bounded. Furthermore, 
the uniform ultimate boundedness region of the state 
error e can be made arbitrarily small near to zero by a 
suitable choice of aε , bε , dε , aδ , bδ , dδ , aγ , bγ , 
and dγ . 

 
IV. PARAMETER ERROR CONVERGENCE 

 
Theorem 1 implies that the basic control objective 

is now achieved, i.e., all the signals in the closed loop 
are bounded and the trajectory following is achieved. In 
addition to the state error convergence near to zero, it is 
also desirable to have an adaptive control scheme to pro-
vide parameter estimation error convergence near to zero 
as well, i.e., the parameters â  and b̂  converge near to 
the true parameters a and b as quickly as possible. If the 
parameter error convergence is established, the robust-
ness of the entire adaptive algorithm can be improved. 
To assure this, the following additional persistency of 
excitation condition on the reference model is required. 

Let 1 (0,1)LH H∆ be a Hilbert space that is densely  
and continuously embedded in 2 (0,1)L  [27, p.54-56], 
and *H  be the continuous dual space of H . From (6), 
let 2 *: ( ( ) (0,1) )m mA D A H H H≡ →∩  be the reference 
model dynamic operator such that 

, , , , .m m m mx x m m mA a b Hξ ϕ ξ ϕ ξ ϕ ξ∆ − + ∈  

And, let 2( ) : ( ( ( )) (0,1) )e eA q D A q H H≡ ∩ *H→  be a 
differential operator such that 

1 2( ) , , , , ,e x xA q q q Hξ ϕ ξ ϕ ξ ϕ ξ∆ − + ∈  

where ( )1 2 3, ,q q q q W= ∈ , 2   W Q R∆ × . Using the  
operators mA  and ( )eA q , (6) and (20) can be rewritten, 
respectively, as 
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, , , ,m m mA rξ ϕ ξ ϕ ϕ= +�  (26a) 

, , ( ){ }, ,m e me A e A e f dϕ ϕ θ ξ ϕ ϕ= − + + +�  (26b) 

where ( , , )da b Wθ µ= ∈�� � . Note that the following is 
obtained: 

,maxˆ, ( ) ,d df d f dϕ ϕ µ µ ϕ+ ≤ + ≤ +  

where ,maxˆ ˆ( , ) ( )d df x t tµ µ≤ ≤  for t ≥ 0 with a 
positive constant ,maxˆdµ . 

The following definition is then adopted. 
 

Definition. The reference model (6), or the triple {Am, r, 
ξm0}, is persistently exciting if there exist positive con-
stants 0τ , 0δ , 0ε , and 0c , such that for each q W∈  
with 1

Wq =  and 0t ≥  sufficiently large, there exists 
0,t t t τ∈ +    for which 

( )0

*

 0
0 ,max 

0

ˆ( ){ ( ) ( )}  .t
e m d dt H

A q e d
c

δ δτ ξ τ τ ε µ µ+ + ≥ + +∫  

 (27) 

Theorem 2. If (0, ; )r L H∞∈ ∞  and 0m Hξ ∈ , and if 
the reference model (6) is persistently exciting, then the 
uniform ultimate boundedness region of the parameter 
estimation error vector ( ), , da bθ µ= �� �  can be made ar-
bitrarily small near to zero by a suitable choice of aε , 

bε , dε , aδ , bδ , dδ , aγ , bγ , and dγ . 
 
Proof. In this proof the following notation is used: 

22 L
⋅ = ⋅ , 

H
⋅ = ⋅ , and ** H

⋅ = ⋅ . For the 
operators defined above, there exist 0 1, 0α α >  and 

0 0K >  such that for 1 2, Hψ ψ ∈  and q W∈  

1 2 0 1 2, ,mA ψ ψ α ψ ψ≤  (28) 

1 2 1 1 2( ) , ,e W
A q qψ ψ α ψ ψ≤  (29) 

1 0 1* 2
.Kψ ψ≤  (30) 

From (18a-c), the parameter estimation error is re-
written as 

{ }
*

0 2

, ( )  ,

ˆ , ,

e mW

W

q A q e e

e g q

θ γ ξ

δθ γ γ θ

= +

+ − + + −

�

�
 (31) 

where γq = (γaq1, γbq2, γdq3), δθ̂ = (δaâ, δb b̂ , δd ˆdµ ), γ0 = 
(0, 0, γd), ( , , 0)a a b bg g gγ γ γ= , and * ( , , )da bθ µ= �� � � . 

Now assume that (0, ; )r L H∞∈ ∞  and 0m Hξ ∈ . 
Then, (0, ; )m L Hξ ∞∈ ∞ , see Theorem 2.2 of [5]. As-
sume that ( )

W
tθ γ  is uniformly bounded by ρ where 

( , , )a b d da bθ γ γ γ µ γ= �� � . Then, from (29) and (31) it  

follows that for 1 ( )tq θ
ρ γ
 

=  
 

 

( ){ }

( )

2

1

2

1

2

1

2 2

1 1

2 1 2 1
1

 

 1

 

 1

 *
0 2 1

  2
1 1 0, ;  

*
0 2

( ) ( ) sup ( ) ( ),

sup ( ) ,

sup  ( ) ( ) , ( )

ˆsup ,

( ) ( ) ( )

1 ˆ ,

W

W

W

W

W W
q

t

t Wq

t
e mt q

t

t Wq

t t
m L Ht t

W

t t t t q

t dt q

A q e t t e t dt

e g q dt

e t dt t e t dt

e g

θ θ θ θ

θ

γ ξ

δθ γ γ θ

α α ξ

δθ γ γ θ θ γ
ρ

∞

≤

≤

≤

≤

∞

− = −

=

≤ +

+ − + + −

≤ +

+ − + + −

∫

∫

∫

∫ ∫

�

�

�

( ) ( )

{ }

2

1

2

1

2 2

1 1

 

 

1 2 2
1 1 2 10, ; 

1
2  2

0 2  

*

 

( ) ( )

1 ˆ( )

, .

t

t

t
m L Ht

t t

t t

W

dt

e t dt t t t

e t dt e

g dt

α α ξ

δθ γ
ρ

γ θ θ γ

∞ ∞
≤ + −

⋅ + − +

+ −

∫

∫

∫ ∫

�

 (32) 

For 2 1t t> , (26b), (28), (29), and (30) imply that 

( ){ }

( ) { }

( ) { } ( )

2

1

2 2

1 1

2

1

2

1

2

1

 
2 1* * *

  

**  

11 2 22
0 2 0 1 0 2 12 2  

 
0 2 0 1* 2 2 

11 2 22
0 2 1 2 

( )  ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )  ( )

( ) ( ) ( ) ( )

ˆ ( )  

t
e mt

t t
mt t

t

t

t

t

t
d dt

A t e t t dt e t e t

A e t dt f t d t dt

K e t K e t t t e t dt

f t d t dt K e t K e t

t t e t dt t t

θ ξ

α

α µ µ

+ ≤ +

+ + +

≤ + + −

+ + ≤ +

+ − + + −

∫

∫ ∫

∫

∫

∫ ( )1 .

 

 (33) 

Once again assume that lim ( ) 0
Wt

tθ
→∞

> , and let  

{ } 1k k
t ∞

=
 be an increasing sequence of positive numbers  

for which lim kk
t

→∞
= ∞  and  

( ) 0 , 1, 2, ,k W
t c kθ ≥ = "  (34) 

for some 0 0c > . Assume further that the reference (6) is 
persistently exciting, and for each 1,2,k = " , let 

0,k k kt t t τ∈ +    be such that 

( )0 0
0 ,max 

0
*

( ) ˆ( )  .
( )

k

k

t k
e d dt

k W

t
A t dt

t c
δ θ δξ ε µ µ

θ
+  

≥ + +   
∫ (35) 
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Then, using (28), (29), (32) and (33) we obtain the esti-
mate 

( ) ( )

( ) ( )

( ){ }

0

0 0

0

0
0 0 ,max 0 0 0 ,max

0

 

 

*

  

  * *

 

 *

0 0 02 2

ˆ ˆ0   

( )
( ) ( )

( )

( ) ( ) ( ) ( )

( ) ( )  ( ) ( )

( ) ( )

k

k

k k

k k

k

k

d d d d

t k
k eW t

k W

t t
e k et t

t
e k mt

k k

c c
c

t
t A t dt

t

A t t dt A t t dt

A t t e t t dt

K e t K e t

δ

δ δ

δ

δε µ µ δ ε µ µ

θ
θ ξ

θ

θ ξ θ ξ

θ θ ξ

δ

+

+ +

+

 
< + + = + + 

 

 
≤    

= ≤

+ − +

≤ + + +

∫

∫ ∫

∫

{ }
( )

{ }

{ } ( )

( )

0

0

0

0 0

1
2 2

0 0  

,max 0 1 0 0

 
0 0 02 2 

1
2 2

0 0 ,max 0 

 2
1 1 0, ; 

 2
1 0 0  

( )

ˆ ( ) ( )

 ( ) ( )  ( ) ( )

ˆ( )  

( ) ( )

( )

k

k

k

k

k

k

k

k

k

t

t

d d k k W

t
m k kt

t
d dt

t
m L Ht

t

e t dt

t t

e t t dt K e t K e t

e t dt

e t dt t

e t dt

δ

δ

δ

τ δ

α δ

µ µ δ α θ τ δ θ

ξ δ

α δ µ µ δ

α α ξ

α τ δ

∞

+

+

+

+ +

∞

+ + + + + −

⋅ + ≤ + +

+ + +

+

+ × ⋅ +

∫

∫

∫

∫

{ }

{ } ( )

0 0

0 0

0

1
2

 *
0 2 

1
2 2

0 0 0, ; 

1 ˆ ,

( ) ( ) .

k

k

k

k

k

t

t

t W

t
m L Ht

e g dt

e t dt t

τ δ

τ δ

δ

δθ γ γ θ θ γ
ρ

δ δ ξ
∞

+ +

+ +

+

∞

 
 
 
 
 
 
 
+ − + + − 
 

 
× + 
 

∫

∫

∫

�  

 (36) 

Note that (36) is rewritten as 

0 00 c ε<  

{ }0
1

2 2
0 0 0 0 02 2  

( ) ( ) ( )k

k

t
k k t

K e t K e t e t dtδδ α δ +≤ + + + ∫  

( )

{ }

0 0

0 0

0 0

 2
1 1 0 00, ; 

1
2 2

1  

 *
0 2 

( ) ( )

( )

1 ˆ ,

k

k

k

k

k

k

t
m L Ht

t

t

t

t W

e t dt t

e t dt

e g dt

τ δ

τ δ

τ δ

α α ξ τ δ

α

δθ γ γ θ θ γ
ρ

∞

+ +

∞

+ +

+ +

 + + 
 
 

+ × ⋅ 
 
 
+ − + + − 
 

∫

∫

∫ �

 

{ } ( )
0

1
2 2

0 0 0, ; 
( ) ( ) .k

k

t
m L Ht

e t dt tδδ δ ξ
∞

+

∞

 
× + 
 

∫  (37) 

From the adaptive laws (18a-c) and (24b,c) we can have 

*ˆ , ( ),
W

g tδθ γ θ θ γ υ′− + − ≤�  

where 

2

2

1( ) ,

1 ,

a
a a b bQ Q Q Q

a a

b
Q Q

b b

t a a a a b

b b b

δυ ε µ ε µ
γ γ

δ
γ γ

′ = + + + + +

+ +

�

�
 

and ( )tυ′  can be made arbitrary small near to zero by 
making sufficiently small aε , bε , aδ , bδ , and suffi-
ciently large aγ , bγ . Now, from Appendix B, for any  
M > 0,  2

 
lim ( ) 0t M

tt
e s ds+

→∞
≈∫ . Therefore, letting k → ∞  

in (37) and sufficiently small dε , aε , bε , aδ , bδ , 
dδ , and sufficiently large aγ , bγ , dγ , Theorem 1 and 

Appendix B imply that  

{ }

( )

{ }

0

0 0

0 0

0 0

0 0 0 0 02 2

1
2 2

0 0  

 2
1  

1 0 00, ;

1
2 2

1  

 
0 2 

*

0 lim ( ) lim ( )

lim ( )

lim ( )

( )

 lim ( )

1 ˆlim

,

k

k

k

k

k

k

k

k

k kk k

t

tk

t

tk

m L H

t

tk

t

tk

W

c K e t K e t

e t dt

e t dt

t

e t dt

e

g dt

δ

τ δ

τ δ

τ δ

ε δ

α δ

α

α ξ τ δ

α

δθ γ
ρ

γ θ θ γ

∞

→∞ →∞

+

→∞

+ +

→∞

∞

+ +

→∞

+ +

→∞

< ≤ + +

+




+ +

+ × ⋅

+ −

− +


∫

∫

∫

∫

�

{ } ( )
0

1
2 2

0 0 0, ; 
lim ( ) ( ) 0,k

k

t
m L Htk

e t dt tδδ δ ξ
∞

+

∞→∞







 
 
 
 
 
 
 
 
 

 
× + ≈ 
 

∫

 

which is a contradiction, and the theorem is proved.  
 

V. SIMULATIONS 
 
To illustrate the application of the algorithm de-

veloped in the previous sections, a heat transfer equation 
with a time-varying coefficient and a spatiotemporally 
varying disturbance is chosen. Let the heat transfer equa-
tion be given with known homogeneous boundary condi-
tions as 

( , ) ( ) ( , ) ( , ) ( , ), [0,  1],  > 0,

(0, ) (1, ) 0, 0, and

xxx t a t x t u x t d x t x t

t t t

ξ ξ

ξ ξ

= + + ∈

= = >

�
 

0( ,0) ( ) 0.2sin(2 ),x x xξ ξ π= =  (38) 
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where a(t) is the time-varying conductivity and d(x, t) is 
the spatiotemporally varying latent heat of transforma-
tion which is treated as disturbance. a(t) and d(x, t) are 
unknown, but for simulation purpose a(t) = 3 – 2.5sin(3t) 
and d(x, t) = 0.3 + 0.5sin(3πx)sin(5t) are assumed. The 
reference model is chosen as 

( , ) 0.5 ( , ) 5, [0,1], 0,

(0, ) (1, ) 0, 0, and

( ,0) sin( ).

m mxx

m m

m

x t x t x t

t t t

x x

ξ ξ

ξ ξ

ξ π

= + ∈ >

= = >

= −

�

 (39) 

The control gains in (17), (18a), and (18c) are chosen as 
dε = 0.1, aδ = 0.01, aγ = 50, aµ = 0.2, aε = 0.01, 
dδ = 0.1, and dγ = 30. Figure 1 shows the convergence 

of the state error ( , )e x t  near to zero. Figure 2 shows 
the convergence of the estimated parameter ˆ( )a t  near 
to the plant parameter ( )a t . Figure 3 shows the conver-
gence of the estimated parameter ˆ ( )d tµ  near to the 
bounded value of the disturbance norm ( , )d x t . 

 
VI. CONCLUSIONS 

 
A robust MRAC algorithm for a linear parabolic 

system with unknown spatiotemporally varying coeffi-
cients and disturbance was developed. The coefficients 
were assumed to be uniformly bounded with uniformly 
bounded derivatives, but they were allowed to vary arbi-
trarily fast. The unknown disturbance was also assumed 
to be uniformly bounded. Under the unknown plant pa-
rameters and external disturbances, the robust MRAC 
law developed in this paper assured the closed loop sys-
tem to track a desired signal which comes from a refer-
ence model. Because the derivative of a Lyapunov func-
tion candidate was not negative semidefinite, only uni-
form ultimate boundedness would have been concluded. 
However, further analysis in this paper has shown that 
the state error, which remains in the derivative of the 
Lyapunov function candidate, converges near to zero. 
Also, with the additional persistence of excitation condi-
tion, the algorithm guaranteed the convergence of the 
adjustable controller parameters near to their nominal 
values. The application of the robust MRAC scheme 
proposed can be extended to flexible robots/structures 
including MEMS which are described by linear hyper-
bolic systems. 

However, any feedback controller for such a DPS 
must be a finite-dimensional (and discrete-time) system 
to be implemented with on-line digital computers with a 
finite number of actuators and sensors. Therefore, the 
research issues like how to synthesize finite-dimensional 
controllers that can be implemented by a finite number 
of actuators and sensors and on-line computers and how 
to assess the stability and performance of these control-
lers with the actual DPSs are left for future work. 
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Fig. 1. Convergence of state error ( , )e x t  near to zero. 
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Fig. 2. Convergence of an estimated parameter ˆ( )a t  (solid line) near 

to the true plant parameter a(t) (dashed line). 
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Fig. 3. Convergence of an estimated parameter ˆ ( )d tµ  (solid line) 

near to a bounded value of disturbance norm ( , )d x t  
(dashed line). 

 
APPENDIX A. 

 
Existence and uniqueness of the coupled system. 

 
Let 1* (0,1)LH  be the algebraic dual space of 

1 (0,1)LH , and let  
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2 1 1*
1 1: ( ( ) (0,1) (0,1)) (0,1)L LA D A H H H≡ →∩  

and 

2 1 1*
2 2( ) : ( ( ) (0,1) (0,1)) (0,1)L LA t D A H H H≡ →∩  

be differential operators such that 

1 2and ( ) .m mA a b A t a b
x x x x
∂ ∂ ∂ ∂   ∆ ∆+ +   ∂ ∂ ∂ ∂   

 

Then, nonlinear coupled system (20) and (18a-c) can be 
rewritten as follows: 

( )

( )

1 2
ˆˆ, , ( ) , , ,

, , , , ,

x x

mx mx

e A e A t e ae be

a b f d

ϕ ϕ ϕ ϕ ϕ

ξ ϕ ξ ϕ ϕ ϕ

= + − −

− − + +

�

��
 (A1) 

( )
ˆ ˆ, ,

, , , ,

a a a QQ

a x x a mx x a a aQ Q Q

a p a p

e e p e p g p

δ

γ ξ

= −

− + −

�

 

 (A2) 

( )

ˆ ˆ, ,

, , , ,

b b b
QQ

b b m b b bQ Q Q

b p b p

ee p e p g p

δ

γ ξ

= −

+ + +

�

(A3) 

ˆ ˆ ,d d d d d d dr r e rµ δ µ γ= − +�  (A4) 

where dr R∈ . From the system (A1)-(A4), the follow-
ing is obtained: 

( ) ( )

( )
( )

1 2

ˆˆ ˆ, , ,

ˆˆ, ( ) , , ,

ˆˆ ˆ ˆ, , ( ) ,

ˆ( ) , , ,

, , ,

, , ,

a b d d
Q Q

a a b bQ Q

d d d x mxx x

m

a x x a mx x a a aQ Q Q

b b m b b bQ Q Q

e a p b p r

A e A t e a p b p

r ae be a a

b b f d

e e p e p g p

ee p e p g p

ϕ µ

ϕ ϕ δ δ

δ µ ϕ ϕ ξ ϕ

ξ ϕ ϕ ϕ

γ ξ

γ ξ

+ + +

= + − −

− − − − −

− − + +

− + −

+ + +

�� ��

 

.d de rγ+  (A5) 

Define a state space as 2
2 (0,1)Y L Q R∆ × × . The sys- 

tem (A5) is then rewritten as 

1 2

ˆ
,

ˆ

ˆ

( ) 0 0 0
ˆ0 0 0

,ˆ0 0 0
0 0 0 ˆ

a

b

d
d Y

a a

b b

d dd Y

e

a p
pb
r

eA A t
a p

pb
r

ϕ

µ

ϕ
δ

δ
δ µ

                     

 +   
    −     =     −
       −    

�
�

�

�
 

( ) ( )
( )
( )

ˆ ˆˆ ˆ( ) ( )

,

x mx mx x

a x x mx x a

b m b

d

ae be a a b b f d

e e e g
ee e g

e

ξ ξ

γ ξ
γ ξ

γ

 − − − − − − + +
 

− + − +  + + 
  

 

,a

b

d Y

p
p
r

ϕ 
 
 
 
   

 (A6) 

where ( , , , )T
a b dp p r Yϕ ∈ . 

From (A6), the following system in weak form is 
then obtained: 

0, ( ) , ( , ), , (0) ,
Y Y Y

z A t z F t z z zΘ = Θ + Θ =�  (A7) 

where ˆˆ ˆ( , , , ) , ( , , , ) ,T T
d a b dz e a b Y p p r Yµ ϕ= ∈ Θ = ∈ and 

0 ( ) 0 0 0
0 0 0

( ) ,
0 0 0
0 0 0

a

b

d

A t

A t
δ

δ
δ

 
 − =
 −
 − 

 

ˆ ˆˆ ˆ( ) (( ) ) ( )
( )

( , ) ,
( )

x x mx x m

a x x mx x a

b m b

d

ae be a a b b f d
e e e g

F t z
ee e g

e

ξ ξ
γ ξ
γ ξ

γ

 − − − − − − + +
 

− + − =  + + 
  

 

where 0 1 2( ) ( )A t A A t∆ + . 
The weak form (A7) is formally equivalent to the 

system 

0( ) ( , ), (0) .z A t z F t z z z= + =�  (A8) 

Therefore, the existence of a unique solution to the sys-
tem (A7) can be established by establishing the existence 
of a unique strong solution to the initial value problem in 
Y given by (A8). The domain of the operator A(t) is 
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given by 

{
}

2 1
0

ˆˆ ˆ( ) ( , , , ) : (0,1) (0,1)  with

ˆˆ ˆ(0) 0 (1),  and , , ,

d

d

D A e a b Y e H H

e e a b Q R

µ

µ

= ∈ ∈

= = ∈ ∈

∩
 

where the subscript 0 in H denotes η(x) = 0 at both x = 0 
and x = 1 in (4). Note that the boundary conditions of (20) 
have been incorporated in the space 2 1

0(0,1) (0,1)H H∩ , 
which is the domain of the differential operator A0. D(A) 
is dense, and A is a closed operator ([28]). 

For z ∈ D(A) 

( )

22 2

2 22 2
0

2 2 2

22 2
0

22 2

, , , , ,

ˆˆˆ

( )
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( )  

ˆˆ ,ˆ

m x x m x xY

a b d dQ Q

m x m x Q

a b d dQQ

m m Q

a b d dQ Q

z Az a e e b e e ae e be e

a b

a e b e a e b e

a b

a b a b e

a b

δ δ δ µ

β

δ δ δ µ

π β π

δ δ δ µ

= − + − +

− − −

≤ − + − +

− − −

≤ − − + −

− − −

 (A9) 

where β0(a) > 0 such that 2
0, ( ) ,x x xae e a eβ≥ 22 eπ  

2
xe≤ from (14), and 2 2

0 ( )m m Q
a a b bπ β π+ ≥ +  is 

assumed. Hence, from (A9) the following is obtained:  

1, , ,
Y Y

z Az C z z≤ −  

where  

{ }2 2
1 0min  ( ) , , ,  >0.m m a b dQ

C a b a bπ β π δ δ δ= − + −  

By the linearity of A, we see that ωI − A is mono-
tone (accretive) for every ω ∈ C1. Hence, A : D(A) ⊂ Y 
→ Y is the infinitesimal generator of a linear process  

{ } { }0
0

ˆ ˆ ˆ( )  ( ( ,0), ( ), ( ), ( ))t
t

S t t A t B t E t≥
≥

= Φ  

on Y, see [28, p. 92, Theorem 3.2]. Note that the first 
component Φ(t, 0) is generated by A0. Note also that Φ(t, 
0)e0 is the strong solution of the evolution equation ė(t) = 
A0e(t) for every e0 ∈ D(A0). 

Now, set  

( ) ( )ˆ ˆˆ ˆ ˆ ˆ, , , and , , , .d dz e a b z e a bµ µ′ ′ ′ ′ ′= =  

Then, 

( ) ( )
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2

2

22

2 22 2

6 2 2
222 2
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ξ

γ ξ ξ
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εµ
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′− − + − − −

′ ′+ − + − + −

′ ′ ′ ′+ − + − − −
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′ +′
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a
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Q

d d d d d
d d

d d d d

b b

e
e

e e
µ µ ε µ µ

µ µ
µ ε µ ε

′−


′ ′+ + ′+ −
′+ +

 

 (A10) 

where 

2 2ˆ
ˆ, ,

ˆ ˆ
d a

a
d d a aQ

f e g a
e a
µ µ

µ ε µ ε
′

′ ′ ′ ′= − = −
′ + +′ ′

 

and 

2
ˆ .

ˆ
b

b
b bQ

g b
b

µ
µ ε

′ ′= −
+′

 

Hence, 

2( , ) ( , ) ,
Y Y

F t z F t z C z z′ ′− ≤ −  

where C2 is a positive constant. Therefore F : Y → Y is 
locally Lipschitz continuous in Y. Thus a unique solution 
exists. Finally, the strong solution of (20) can be written 
in the following variation of constant formula ([22]) 

( ) ( ,0) (0)e t t e= Φ  
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(
)

 

 0
ˆ( , ) ˆ( ( ) ( ) ) ( ) ( ) ( ( ) ( ))

,( ) ( ) ( ) ( )

t

x x mx x

m

t a e b e a

db f d

τ τ τ τ τ τ ξ τ

ττ ξ τ τ τ

+ Φ − − −

− + +

∫ �

�
 

where Φ(t, s) is the evolution operator associated with A0 
in the space L2(0, 1). 

 
APPENDIX B. 

 
Tracking error convergence 

 
From (14), (23), and (25), we have  

0

2

2
0

, , ( )

, , ( )

 ( ),

m x x m

m
m x x x x

V a e e b e e t

b
a e e e e t

e t

υ

υ
π

β υ

≤ − + +

≤ − + +

≤ − +

�

 

where 

2
0, 0,m ma bπ β> >  

and 

2

2

( )
2

1 ,

1 , .

d a
d d a a Q Q

d a

b
b b Q QQ

a b

Q
b

t a a

a a b b

b b

δ δ
υ ε µ ε µ

γ γ

δε µ
γ γ

γ

= + + + +

+ + + +

+

�

�

 

υ(t) can be made arbitrary small near to zero by making 
sufficiently small dε , aε , bε , aδ , bδ , dδ  and suf-
ficiently large aγ , bγ , dγ , and be assumed to be uni-
formly bounded by 0υ . Thus, from Theorem 1 the fol-
lowing is satisfied: 

 2

 
lim ( ) 0 for any 0.t M

tt
e s ds M+

→∞
≈ >∫  
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