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A Suboptimal Algorithm of the Optimal Bayesian Filter Based 

on the Receding Horizon Strategy 
 

Yong-Shik Kim and Keum-Shik Hong 
 

Abstract: The optimal Bayesian filter for a single target is known to provide the best tracking 
performance in a cluttered environment. However, its main drawback is the increase in memory 
size and computation quantity over time. In this paper, the inevitable predicament of the optimal 
Bayesian filter is resolved in a suboptimal fashion through the use of a receding horizon strategy. 
As a result, the problems of memory and computational requirements are diminished. As a pri-
ori information, the horizon initial state is estimated from the validated measurements on the re-
ceding horizon. Consequently, the suboptimal algorithm proposed allows for real time imple-
mentation. 
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1. INTRODUCTION 

In a cluttered environment, the target-tracking 
problem naturally involves uncertainty associated 
with the measurements as well as modeling inaccu-
racy. This uncertainty is related to revealing the origin 
of measurements, since the measurements may not 
have originated from the target of interest [1]. This 
problem was not recognized until the publication in 
1964 of Sittler's first paper [14]. The pioneering work 
of Sittler was motivated by the need to find a reason-
able way of incorporating the measurements of uncer-
tain origin into existing tracks. However, since his 
method was based on a non-Bayesian approach, the 
resulting state estimate and covariance do not account 
for the possibility that the determined decisions are 
incorrect. 

The Bayesian procedures use the “nearest 
neighbor” of the predicted measurement wherein the 
Kalman filter is modified to account for the a priori 
probability that the measurement might be spurious. 
This filter utilizes only the sensor reports that are sta-
tistically close to the predicted track measurement for 
track updating and calculates its data association per-
formance parameters based on averaging over a pri-
ori statistics. Singer and Sea [12] extended the Bayes-

ian approach to develop an optimal tracking filter 
within the class of nearest-neighbor filters that utilize 
a priori statistics for estimating correlation perform-
ance. 

The need to incorporate all the observations lying 
in the neighborhood of the predicted measurement 
was pointed out by Bar-Shalom and Jaffer [2], where 
a suboptimal algorithm using a posteriori probabili-
ties was presented. In [2], it was suggested that a pos-
teriori correlation statistics, calculated on-line and 
based on all reports in the vicinity of a track (i.e., all-
neighbors approach) should be used to obtain the best 
possible tracking performance based on all available 
data provided by the surveillance sensor. 
 In [13], the theoretical formulation of an optimal 
filter using the a posteriori probability and all-
neighbors class was completely carried out. This filter 
requires an expending memory and utilizes the data 
located around the vicinity of the track, accounting 
accurately for the possibility that any particular report 
among these data may either be extraneous or have 
originated from the track. However, this filter is quite 
unsuitable for real-time application in dense multi-
target environments. 
 Several approaches [1, 3, 8] for limiting memory 
growth and computation requirements, while still 
providing a reasonable approximation to the perform-
ance of the optimal filter, were proposed. In [8], the 
optimal a posteriori filter of Singer et al. [13] was 
combined with an adaptive filter. The resulting filter 
requires an expanding memory. A ( , )M N  scan ap-
proximation [8], as opposed to an N  scan approxi-
mation, was used by Singer et al. [13]. This proposal 
was presented in order to obtain an algorithm with 
stable memory requirements. In this approximation 
those measurement histories which were identical for 
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the most recent N  scans and those input histories 
which were identical for the most recent M  scans 
were combined together into new histories. 
 The memory growth and computation problem for 
real-time implementation has also been a critical issue 
in Kalman filtering. Hence, finite memory filters [6, 
10] were suggested as a solution to overcome the 
poor performance or divergence due to the modeling 
errors of the standard Kalman filter. Finite memory 
filters are also useful in situations in which a system 
model is valid over a finite interval. In [9], a receding 
horizon Kalman FIR filter that combines the Kalman 
filter and the receding horizon strategy was presented. 
In their work it was shown that the suggested filter 
processes the unbiased property and the deadbeat 
property irrespective of any initial horizon condition. 
In [5], a receding horizon Kalman FIR filter including 
the estimation of the horizon initial state was investi-
gated. Furthermore, an estimation and detection tech-
nique for the unknown inputs using an optimal FIR 
filter was presented [11]. 
 The optimal Bayesian filter in a cluttered environ-
ment, though it has demonstrated enhanced perform-
ance to other filters, has drawn little attention due to 
exponentially increasing memory and computation 
requirements. The main contributions of this paper 
are: first to derive a suboptimal approach using only 
the measurements in a receding horizon. As a result, 
the increasing memory and computation requirements 
are diminished. Second, the horizon initial state is 
estimated from only validated measurements on the 
receding horizon. Third, the suboptimal algorithm 
solves the real-time implementation problem of the 
optimal Bayesian filter. 
 This paper is organized as follows: In Section 2, a 
suboptimal algorithm for the optimal Bayesian filter is 
derived, and the horizon initial state estimate and its 
covariance are obtained. A posterior probability of the 
validated measurements on the receding horizon is pro-
vided in Section 3. In Section 4, conclusions are stated. 

 
2. A NEW SUBOPTIMAL ALGORITHM 

 Consider the following state-space representation 
of the target motion and observation 

   1k k k kx F x ω+ = + , (1) 
   k k k ky H x ν= + , (2) 

with kω  and kν  being zero-mean mutually inde-
pendent white Gaussian noises with  covariances 

kQ  and kR , respectively. The suboptimal algorithm 
in the sequel does not use all measurements observed 
from the initial time up to the present time k , but 
uses only a set of measurements observed in some 

interval with fixed window-size N , i.e., on the re-
ceding horizon interval [ ,  ]k N k− . 
 Assumption 1: The possibility of a false track ini-
tiation is not considered in this paper. Hence, the ho-
rizon initial estimate and its covariance, as a priori 
information which will be estimated in the suboptimal 
algorithm, are assumed to be in a correct track. 
 Let the set of validated measurements obtained at 
time k  be 

, 1{ } km
k k i iY Y == , 

where km  is the number of measurements in the 
validation region and ,k iY is the set of validated 
measurements obtained at time k  when the number 
of validated measurements are i . Let the set of 
measurements on the receding horizon [ , ]k N k−  at 
time k  be denoted as 

{ }k k
j j k NY Y = −= , 

where a superscript k is used, while a subscript k was 
used in the set of validated measurements. A combi-
nation of measurements on the receding horizon 
[ ,  ]k N k−  at the k -th scan can be denoted as ,k lY . 

Then, ,k lY  is defined as follows: 
, 1,

, , ,{ , , } { , }
l l l

k l k s
k N i k i k iY y y Y y−
− = , 

where 1,k sY −  stands for the combination of meas-
urements up to time 1k −  at the ( 1k − )-th scan and 

, lk iy is the li -th measurement at time k . Denoting 
the event that the l -th history at time k  is the cor-
rect sequence of measurements by ,k lθ , its a poste-
riori probability, conditioned on kY , is given by 

   , ,{ | }k l k l kP Yβ θ= . (3) 

 Now, the following theorem is stated: 
 Theorem 1: When the measurements used are re-
stricted within a receding horizon, the state estimate 
and error covariance equations of the optimal Bayes-
ian filter take the following forms: 
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Proof: The conditional mean of the state at time k  
can be expressed as 



International Journal of Control, Automation, and Systems Vol. 1, No. 2, June 2003 165 

 

, ,
|

1

,
|

1

ˆ  [ | ] [ | , ] { | }

ˆ            

k

k

L
k k l k k l k

k k k k
l

L
l k l
k k

l

x E x Y E x Y P Y

x

θ θ

β

=

=

=

=

∑

∑
(4) 

where ,
|ˆ [ | , ]l k l k

k k kx E x Yθ=  is the history-

conditioned estimate. kL  is the total number of 
measurement histories at time k  as 

   
1
(1 )

k

k j
j

L m
=

= +∏ ,              (5) 

where jm  is the number of measurements at time 
j . For each history, the state estimate conditioned 

upon the measurement history, ,k lY , being correct is 

)ˆ(ˆˆ 1|,1||
s

kkik
l
k

s
kk

l
kk yyKxx l −− −+=      (6) 

where , lk iy  is the measurement at time k  in se-

quence l  and | 1ˆ s
k ky −  is the predicted measurement 

corresponding to history 1,k sY − , with covariance s
kS . 

The gain is 

   1
| 1 [ ]l s s

k k k kK P H S −
− ′= ,           (7) 

and the covariance of the history-conditioned updated 
state is 
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The conditional mean of the state at time k  of (4) 
can be expressed as 
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Combining terms, the final form is 
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mate is 
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(10) can then be represented by 
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The filter at time Nk i+  on the horizon 
[ ,  ]Nk N k k− = is denoted as |ˆ

Nk i kx +  for 
0 1i N≤ ≤ − . The suboptimal algorithm on the reced-
ing horizon [ , ]Nk k  then takes on the following 
form: 
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where the error covariance is obtained from (11) as 
follows: 

(10)
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Remark 1: It is noted that |ˆ
Nk j kx +  in (12), for 

Nk i k+ < , is an intermediate variable to compute 

|ˆk kx  and cannot be used as a real estimate. Only the 

state estimate |ˆk kx  is used as a real estimate of the 

real target kx . 

 Remark 2: In this paper, the suboptimal algorithm 
based on the receding horizon will be called a subop-
timal receding horizon Bayesian filter. From (12) and 
(13), the state estimate is obtained from the horizon 
initial state estimate and the covariance and meas-
urement on the receding horizon [ , ]Nk k . However, 
since the past measurements outside the horizon are 
discarded in this algorithm, it is necessary to estimate 
the horizon initial condition without past information. 
Therefore, the horizon initial state estimate and co-
variance are derived from the measurements on the 
receding horizon [ , ]Nk k . In addition, in accordance 
with Assumption 1, the horizon initial track is as-
sumed to be correct. 
 On the receding horizon [ , ]Nk k , to express the 
finite number of measurements in terms of the hori-
zon initial state 

Nkx  the following equations are 
needed: 

   1N N Nk k kx Fx ω+ = + , (14) 

1 1N N N Nk k k ky HFx Hω ν+ += + + , 

and 

   
N N Nk k ky Hx ν= + . (15) 

Consequently, the substitution of (14) into (15) 
yields: 

   1 1 1
N

k k k
kY Hx GW V− − −= + + , (16) 

where 
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 Theorem 2 [5]: Denote the horizon initial condi-
tion |ˆ

Nk kx  of (12) as |ˆ
Nk zx  and horizon initial co-

variance |Nk kP in (13) as |Nk zP . The receding hori-
zon initial state estimate and its error covariance are 
then expressed as follows: 

   1
|ˆ

N
k

k zx ZY − , (17) 

   |Nk z NP Z Z ′= Θ , (18) 

where 1 1 1( )N NZ H H H− − −′ ′= Θ Θ  is a gain matrix of 
the horizon initial state estimator [7] and  

[diag(  )] [diag(  )]N G Q Q Q G R R R′Θ + . 

 Proof: See [5]. 
 Remark 3: Using (17) and (18), the state estimate 
of the suboptimal receding horizon Bayesian filter is 
given by 

1|1| |ˆˆ −=++= Njkjkkk Nxx , 

where the intermediate variable |ˆ
Nk j kx +  is derived 

from the following iterative form: 
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3. A POSTERIORI PROBABILITY OF    

THE FILTER 

 The a posteriori probability of (3) can now be 
dealt with. The following assumptions are needed: 
 Assumption 2: The number of false validated 
measurements is described by a diffuse prior model. 
 Assumption 3: The false measurements are uni-
formly distributed in the gate. 
 First, the vector at each time on the receding hori-
zon [ , ]Nk k  is denoted as 

   [ ]k
k N km m−=m . (19) 

 Theorem 3: Let Assumptions 1-3 hold. Then, the a 
posterior probability of the validated measurements 
on the receding horizon [ , ]Nk k  is given as follows: 

(13)
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where ],,|[ 11 −−= kk
kk YmYpc m  is the normaliza-

tion constant. Under Assumption 3, the first joint PDF 
of the validated measurements on the right hand side 
of (20) is 
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The second density on the right hand side of (20) is as 
follows: 
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where )( kF mµ  is the probability mass function of the 
number of false measurements. Using the diffuse prior 
model by Assumption 2, (22) is rewritten as follows: 
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The third density in (20) is available from the previ-
ous step as follows: 
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where ynC  is the volume of the yn -dimensional 

unit hypersphere and γ  is the threshold of the gate. 
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the validated measurements in the receding horizon 
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4. COMPUTATIONAL COMPLEXITY 

The computational burden of each of the two track-
ing algorithms is presented in this section. The 
scheme of the suboptimal receding horizon Bayesian 
filter derived in Theorem 1 and Theorem 2 is outlined 
in Fig. 1. Using the algorithm in Fig. 1, the computa-
tional complexity and storage requirements of the  
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Fig. 1. One cycle of the suboptimal receding horizon 

Bayesian filter. 

tracking filter can be suboptimally reduced compared 
to the standard optimal Bayesian filter. Tables 1 and 2 
illustrate the computational burden of the suggested 
suboptimal receding horizon Bayesian filter and the 
optimal Bayesian filter, respectively. From the Tables 
it is evident that the computational complexities of 
the suggested suboptimal receding horizon Bayesian 
filter is less than the optimal Bayesian filter using 
flops method [4]. In Table 1, the computational com-
plexity of the suboptimal receding horizon Bayesian 
filter is shown. Table 2 also shows the computational 
complexity of the optimal Bayesian filter. In Table 3, 
an example demonstrates the computational burden of 
each filter for the two- dimensional case with 3=N . 
Although the optimal Bayesian filter of [13] can be 
preferred to the suboptimal receding horizon Bayes-
ian filter in the aspect of performance, the latter has 
less computational complexity than the former. 
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Table 2. Operation summary for the optimal Bayesian 
filter. 

Operation Flops 
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Table 3. Computation example for a 2-dimensional 

system. 
Total Flips Steps, 

k  

# of Validated 
Measurements 

im  OBF RHBF ( 3=N )

    
4 3        32,358  425,604 

5 4       608,166  709,316 

6 2     6,948,006  531,996 

7 3     9,264,006 1,063,920 

8 4  2,076,393,606 1,329,936 

    
 

5. CONCLUSIONS  

In a cluttered environment, the use of the optimal 
Bayesian filter, as a possible solution to the target-
tracking problem, is often recommended. However, 
the computational burden and growing memory are 
known to be the main drawbacks in its use. The 
suboptimal algorithm proposed in this paper uses the 
measurements on the receding horizon and dimin-
ishes the computational complexity and storage re-
quirement. Since prior information outside the hori-
zon was not available, the horizon initial state esti-
mate and its covariance were obtained using the 
measurements in the receding horizon. 
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