250 Int. J. of Vehicle Design, Vol. 32, Nos. 3/4, 2003

Smooth shift control of automatic transmissions
using a robust adaptive scheme with intelligent
supervision

Deok-Ho Kim

Microsystem Research Center, Korea Institute of Science and
Technology, P.O. Box 131, Cheongryang, Seoul, 130-650, Korea
Fax: 822958 6910

E-mail: kim-dh@kist.re.kr

Kyung-Jinn Yang and Keum-Shik Hong*

School of Mechanical Engineering, Pusan National University,
30 Changjeon-dong, Kumjeong-ku, Busan, 609-735, Korea
Fax: 82 51 514 0685

E-mail: {jinnky, kshong}@pusan.ac.kr

*Corresponding author

Jin-Oh Hahn

Department of Mechanical Engineering, Faculty Board, Korea Air
Force Academy, P.O. BOX 335-2, Ssangsu, Namil-Myeon,
Cheongwon-Gun, Choongbook, Korea

E-mail: stardust@afa.ac kr

Kyo-Il Lee

School of Mechanical and Aerospace Engineering, Seoul National
University, Shillim-dong, Kwanak-gu, Seoul, 151-742, Korea
Fax: 82 2 883 1513

E-mail: Iki@snu.ac.kr

Abstract: In this paper, a robust adaptive control scheme with an intelligent
supervisor for vehicle powertrain systems is investigated. The control objectives
are to provide smooth shift transients for passenger comfort and to improve
components durability. The reaction carrier speed and the turbine speed during
the inertia phase are controlled to track their desired speeds, respectively.
The boundedness of all signals in the closed loop system and the convergence of
the reaction carrier speed error near to zero are guaranteed by applying the
Lyapunov stability analysis. The adaptive compensation controller with an
intelligent supervisor is implemented to keep the turbine speed error near to zero
and the deviation of the shift duration within an allowable range. The proposed
control algorithm is implemented and evaluated on an experimental test setup.
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1 Introduction

Nowadays, an automatic transmission is more often used than a manual one in passenger
cars. Thus, the smooth and precise gear shifting of an automatic transmission becomes
more and more essential to improve the ride quality and mechanical efficiency.
The purposes of powertrain control are primarily to reduce the shock occurring during the
gear shifts for passenger comfort and to prevent an excessive slip, which may cause
unnecessary wear -of the prismatic parts. In the conventional method, testing and
calibration have been done to tune the gains of a controller. But such an approach does
not assure the optimal shift quality at all times due to the variations in the hydraulic
system and external disturbances.

During the shift of gears, there always exists a shock, and this shock may degrade the
passenger feeling. An active pressure control of hydraulic actuators is essential to
improve the shift feeling by achieving the smooth torque transition during the gear shifts.
However, the hydraulic part of an automatic transmission is one of the most complicated
components in the entire vehicle, which involves many uncertain parameters and model
complexity. It consists of a large number of power and control elements, for example, a
torque converter, clutch actuators, orifices, planetary gear sets, etc. The shift quality is
also greatly affected by the variation of engine torque. If the engine speed is not
controlled during a gear shift, the transmission controller will try to overcome the
excessive torque transmitted from the engine during the inertia phase. This causes a
decrease in fuel efficiency and results in a mismatch between clutch speeds [1].

In addition to the difficulties existing in the analysis and control of the shift
mechanism, from the viewpoint of an integrated engine and transmission control, the
vehicle powertrain system involves several uncertain variables that affect the shift
mechanism. Those uncertainties include the change in clutch characteristics, the change
in oil temperature, and disturbances due to input torque loss and external loads.
In particular, the shift process consists of many operating modes and is highly affected by
the nonlinear dynamics of the vehicle powertrain system. The assurance of smooth shift
transitions for all possible operating modes is a challenging issue.

A number of applications of modern control theory to the powertrain system have been
investigated [2-10], and various control algorithms for shifting process have been
extensively studied [11-22]. A torque estimation method of vehicle axle shafts was studied
by using inexpensive speed sensors to facilitate the sliding mode control algorithm [23].
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However, an inaccuracy estimation of the torque, caused by the degraded performance of
engine and a change in torque converter characteristics, may deteriorate shift quality.

A robust control algorithm for the turbine speed in the inertia phase during the
1-2 upshift was developed based on a linearized model and its performance was evaluated
by using a nonlinear powertrain model [22]. A robust integrated engine-transmission
control scheme was investigated for the clutch-to-clutch shift to deal with uncertainties in
the vehicle powertrain dynamics [21]. In robust controls, a fixed controller to guarantee
its robust behaviour within a realistic plant variation can be designed. However, the range
of potential modelling error in vehicle powertrain systems is quite large, due to the
fluctuating operation environment, wear of components, deterioration of oil, etc. Therefore,
the application of a nonlinear control strategy to the power transmission control with an
additional adaptation law estimating uncertainties of the system is necessary.

However, it is difficult to use a model-based engine control scheme for smooth power
transmission since the vehicle powertrain system involves complex, uncertain, and highly
nonlinear dynamics. One effective approach in dealing with such complexities and
uncertainties is an intelligent control scheme such as fuzzy and neural network controls.
For the realization of smooth shift control in this paper, an adaptive neuro-fuzzy inference
system (ANFIS) [24] is utilized as a supervisory control and then an adaptive compensation
scheme based upon the shift characteristics is designed for the engine control.

The present paper makes the following contributions: A robust integrated
engine—transmission control of a vehicle powertrain system is investigated for enhancing
shift quality. To analyse the shift transient phenomena, the dynamic models for various
powertrain components, such as engine, torque converter, transmission, hydraulic line,
and drivetrain, are developed. Using the Lyapunov stability analysis, a robust adaptive
control law is derived for the transmission control that reduces the output torque during
the gear shifts. The convergence of the tracking error near to zero is assured. To prevent
an excessive clutch slip, an adaptive learning shift controller is developed for the engine
control by synthesizing several basic ideas from neuro-fuzzy and conventional adaptive
controls. In deriving the control laws, both the engine and automatic transmission
dynamics have been included. The integrated controller proposed uses only angular
velocity signals, which are inexpensive to measure, such as engine speed, turbine speed,
and output speed, instead of torque signals.

The paper is structured as follows: In Section 2, the dynamic models for powertrain
components are developed. In Section 3, by analysing the characteristics of a shift process,
two control objectives are stated. In Section 4, a robust adaptive control scheme in order
to reduce the shift shock is proposed. Using an appropriate Lyapunov function candidate,
the tracking error convergence near to zero is established. Also, an adaptive compensation
scheme to achieve an improved shift quality in the presence of system variations based
upon an intelligent supervisory control using the neuro-fuzzy inference system is described.
In Section 5, the performance of the proposed controller is investigated via experiments.
It is shown via experiments that the controller designed provides much enhanced shift
smoothness and an improved clutch longevity. Conclusions are given in Section 6.

2 Vehicle powertrain model

Figure 1 shows the vehicle powertrain system considered in this paper. It consists of an
engine, a torque converter, a power transmission, a driveline, and a hydraulic control
system. The power produced by the engine is delivered to the driving wheels through the
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power transmission and the automatic transmission changes gears by engaging and
disengaging the hydraulically driven clutches.

2.1 Engine

The engine is a complex and highly nonlinear sub-system to model. The equation used to
describe the engine dynamics is

Lo, =T(o,,0)-T,, @2.1)

where I, is the engine inertia (kg m’), @, is the engine speed (rpm), « is the throttle
angle (%), 7, is the torque converter pump torque (N m), and 7, is the engine torque that
is a nonlinear function of the engine speed and the throttle angle. Figure 2 shows a typical
engine map, which characterizes the steady state characteristics of the engine torque.

Figure 1 Block diagram of the vehicle powertrain system
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Figure 2 A typical nonlinear engine map
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2.2 Torque converter

The torque converter consists of a pump (input), a turbine (output), and a stator (reaction
member). The pump is attached directly to the engine and therefore turns at engine speed.
Torque is transferred to the turbine as a result of the induced oil flow from the pump.
The steady-state pump torque 7, and turbine torque T, of a torque converter can be
presented as foliows:

T, =C,(0,,0)0,, 2.2)
T =T.(0, )T, , ‘ 2.3)

where C, is the capacity factor and 7, is the torque ratio. C, and 7, are nonlinear functions
of the engine and turbine rotational speeds, respectively, which are provided by the
manufacturer in the form of a look-up table.

2.3 Transmission model

The automatic transmission consists of several planetary gears and the associated clutches
and bands. In this paper, a two-state transmission model is considered for power-on
upshift. As shown in Figure 3, the core of the transmission combines two planetary gears.
The detailed operational principles can be found in [25].

Figure 3 Compound planetary gear set arrangement [3]
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The turbine dynamics in first gear is given by

Lo, =T -RR,]T, 249
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where [, =1, +1,+R'I, +R} /R}I,, @, is the turbine speed, R, is the first gear speed

reduction ratio, R, is the second gear speed reduction ratio, R, is the final drive speed
reduction ratio, 7} is the axle torque (both sides combined), 7, is the converter turbine and
chain inertia, /;; is the input sun inertia, I, is the reaction carrier inertia, and I,; is the input
carrier inertia.

When the vehicle reaches a shift speed, the hydraulic control circuit applies pressure
on the second clutch. This initiates the starting of 1-2 upshift. The turbine dynamics
during the torque phase is modelled as

Lo, = T, -RR,T, _(1 +%JTZ2 > (2.5)

1

where 7 is the torque on the second clutch, i.e., oncoming clutch. During the inertia
phase, the dynamics of the converter turbine and the carrier become

Lo, =T, ~-T,, (2.6)
Icr12a.)cr =I£_Rd7; ’ (27)
RZ
where [, =1, +—I%+I—”;.
R R

When the slip speed of the second clutch (Aw,,) reaches zero, the second clutch locks
up. Hence, the state equation in the second gear is modelled as

I,0,=T,-R,RT,, (2.8)

where I, =1, +1,+R}, +R:[RI,,.

2.4 Clutch torque model

The clutch torque T,; is given as a static function of the clutch hydraulic pressure, clutch
geometry, plate friction characteristics, and the clutch slip speed. For clutch torque
calculation, the following equation is used:

T,=4,6-F, 'Sgn(Aa)cz) , (2.9

where

A, =total clutch area of gear x effective radius,

5=6,+6, |Aw,

, 0,0,>0,

P, =hydraulic pressure applied to the clutch,

a)cr
Aw, =, — .
2
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A hydraulic actuating system using electromagnetic valves controls the pressure of
clutches and brakes. Since the hydraulic system has a large system order and high
nonlinearities, it is not easy to model the hydraulic system for the analysis and control of
shift transients. Thus, the model based on the steady-state characteristics of the shift
hydraulic system from a look-up table is widely used for shift control. The power
transmission control system with several uncertainties is illustrated in Figure 4.

Figure 4 Uncertainties in power transmission control system
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2.5 Driveline model

The angular velocity of the final drive output shaft is the input to the axle shafts. The axle
shaft is modelled as a lumped parameter torsional spring:

T =K,(R,0, -®,), (2.10)

where K, is the torsional stiffness and o, is the wheel speed. The rotational dynamics of
the driving wheel is given by ’

ILo,=T-T,, @.11)

s

where I, is the vehicle inertia, T} is the shaft torque, and 77 is the driving load.

3 Control strategies

A typical shift sequence and control parameters during a power-on upshift are illustrated
in Figure 5. The power-on upshift begins with a decrease in output shaft torque in the
torque phase, followed by a transition to an increase in output shaft torque in the inertia
phase. The desired clutch pressure is adjusted by shift control parameters such as the fill
time [A], the fill pressure [D], and the entry pressure to each phase and its duration [B],
[C], and [E]. The desired clutch pressure is continuously updated by the updated control
parameters. It is well recognized that the shift transient torque in output shaft is dominant
in the inertia phase. Thus, supervision and control during the inertia phase shift are
focused in this paper.
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Figure § Typical transient characteristics of the variables involved during a shift
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A typical pattern of an up-shift is shown in Figure 6. It is observed from the shift
characteristics that there is a correlation between the shift shock and the inertia phase
duration. During the inertia phase, if the torque increase is too large, passengers may
experience an undesirable shock. On the other hand, if the torque increase is not
sufficient, the total shifting time will increase. If the shifting time is too long, the clutch
components may deteriorate. Thus, two control objectives are given as follows: One is to
minimize the transmission output torque and jerk levels to enhance the ride comfort.
Another is to minimize the clutch energy d1551pat10n to enhance the durability of
frictional elements.

The shift quality is very closely related to the output shaft torque and the engine
torque. It has well been recognized that a nonlinear closed loop control algorithm can be
developed, which yields a better shift quality provided that the accurate information on
the shaft torque is available [26]. However, torque sensors cannot be used in production
vehicles because they are expensive and their durabilities are poor in harsh environment.
But, speed sensors for measuring the engine speed, the turbine speed, and the output
speed are inexpensive and they are already being used. The operating torque of the torque
converter depends on both the impeller speed and the turbine speed.

It is not simple to design an integrated engine—transmission controller for the purpose
of enhancing shift quality due to the complexity, nonlinearity, and uncertainty of the
system. Also, due to the actuator bandwidth limitation, achievable performance levels
inevitably decrease as model uncertainties become larger. Thus, in this work a robust
shift control strategy for the integrated engine and transmission system is investigated to
overcome the unmodelled dynamics. Apart from the ease of handling nonlinear
modelling results, a key attribute of the robust approach is the ability to incorporate
modelling uncertainties directly into the control laws.
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Figure 6 Examples of two extreme up-shift characteristics
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4 Robust shift control

The purposes of shift control are primarily to reduce the shock occurring during the gear
shifts and to prevent an excessive slip which may cause unnecessary wear of the
frictional parts. Since the reaction carrier speed (or the transmission output speed), @, is
fairly easy to measure and is directly related to the smooth acceleration of the vehicle, an
error e is first defined as follows:

-0, - 4.1

cor cr,des

where @, 4 represents the desired reaction carrier speed. To keep the reaction carrier
jerk, @, at zero during the inertia phase, the carrier speed must have a constant slope
during the inertia phase with the starting and end times, # and #, respectively. Thus,
Wer.des 18 given by

a)cr,des (t) = wcr,t, + a.)cr,t‘ ( f- tl) " (42)

To improve durability of the frictional components, the clutch energy requirement and
shift duration must also be considered. Since the shift duration and the slip speed directly
influence the energy dissipation, control of the slip speed of the on-coming clutch must
be considered. Therefore, another error e, is defined as
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eZ = chZ - chZ,des

w @ cr,des
=| @ — [ In) _ae ) 43
( ! Rz J ( t,des R2 J ( )

where Awc;qes and @, 4, denote the desired slip speed and the desired turbine speed,
respectively. Note that the clutch slip speed is uniquely defined by the trajectory of the
converter turbine and reaction carrier speeds. Since the reaction carrier speed is
controlled by e, during the inertia phase, i.e., assuming @., = @4, €2 can be modified to

eZ = 60, _a)t,des . (44)

When a shift is completed, the turbine speed and the reaction carrier speed must be

synchronous to satisfy the kinematic constraint, @, 1) = Wcry Z/RZ' Thus, @, ,, is obtained by
)
a)r,des = wr,t, — = ( t_tl)
L - tl
— (0,,,] __1_ é)cr.ll _ a)cr,des,lz ( [— t])
At R R,
_ 1 a)cr‘rl wcr,tl + d)cr,l, ( tZ - tl)
—wt,r,—_ - (t_tl)
At R R,
20 1 1 @,
=w,, +{—2 ——— [+ (-1, 4.5)
" At{R, R R,

where A t=¢, -1, denotes the shift duration.

To minimize the shaft torque and jerk levels during the shifts, the reaction carrier
speed error e; can be considered by assuming that the clutch torque is an input control
variable. Also, to minimize the clutch energy dissipation, the turbine speed error e, can
be considered by assuming that the engine torque is an input control variable.

Note that the engine torque is controlled normally by adjusting the throttle angle (),
and the clutch torque is controlled by adjusting the pressure command (or duty cycle) in
practice. That is, in the power transmission system, a hydraulic control circuit applies
pressure on the clutch plates, and the friction between the plates provides the control
torque, so the actual control variable is the pressure. However, the hydraulic and
clutch characteristics are specific to a given transmission and implementation method.
If the clutch torque is assumed to be a control variable, all power transmissions share the
same dynamic equations presented in Section 2, and the control problem is completely
generic to all power transmissions. Therefore, the two control variables for the integrated
engine-transmission control system are: the clutch torque (7;) to minimize the
transmission output torque and the throttle angle (@) to minimize the clutch energy
dissipation.
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4.1 Transmission control: ride comfort

To minimize the jerk levels during the shifts, the reaction carrier speed error e, needs to
be minimized.
From (2.7) @, is derived as

.1 (1,
@, = £ _R,[T. |. 4.6
cr I (RZ d SJ ( )

crl2

Thus, in the ideal case (no uncertainties are involved), the desired command clutch
torque, is analytically derived, by considering ¥, =€’ /2, as follows:

TcZ,com = RZ (Icrlza)

cr des

+RI - 1,), .7

<)

where T, .. makes V,,, =—¢’.

c2,com

However, the measurement of 7T, in (4.7) is not possible in real vehicles.
The uncertainties in clutch torque result from the variations in oil properties and friction
characteristics of the clutch plates. As shown in Figure 7, the variations related to a
solenoid valve can also cause a significant difference in the clutch pressure
characteristics. ‘

Although an ideal actuator assumption is made, an error in the actual control torque
is inevitable (i.e., the difference between the command signal and the actual one).
This inevitable error can be incorporated as follows:

A
AT, = Thua ~ Tocom (4.8)
Figure 7 Variations in shift hydraulics
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Furthermore, assume that this uncertainty is upper-bounded as follows:
AT < AT, 49)
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With the above assumption, (4.6) is modified to

T, +AT,
d) — 1 [ c2,com c2 "Rdnj

- T, 4f, (4.10)

where f £ 1/1,,R, AT, ~R,T,/I,,, . Assume that ||1/Icr12R2 AT, -R,[T /1,
uniformly bounded by p, i.e.,

| is

1 R | IcrlZ

cr125h2

2|71, (4.11)

p

where p is an unknown positive constant to be estimated.

Thus, the clutch torque control law for 7., com and the adaptation law to estimate the
uncertainty bound p are developed so that the boundedness of all signals in the closed
loop system and the convergence of the reaction carrier speed error e; near to zero can be
assured. :

The main idea is to consider the worst case of the uncertainties in the form of possible
bounds. Based on the worst case, the following control algorithm is proposed:

’ -1
1
T = Ae,+a, ..+ D), 4.12
¢2,com (Icrlsz J ( 1 cr,des pl) ( )

where A<0, and p, is regarded as a new input signal to be determined based on the robust
control strategy. Let the additional input p; be given by

___ap A 4.13
pl "61/3”-{—8 * ( )

where £> 0, and p is the estimate of p.
The adaptation law of p is given by

p=7el-, (4.14)

where 36 > 0. Note that the control law (4.12) and the adaptation law (4.14) are
implementable by sensing the reaction carrier speed. The term —&p in (4.14) is purposely
inserted to enhance the convergence of p .

Now, consider a Lyapunov function candidate V for the transmission part during the
inertia phase as follows:
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Vzéelu,_,;z, 4.15)

where p=p—p. The differentiation of (4.15) with respect to ¢ along (4.10) using
(4.12)(4.14) yields:

. 1 ..
V=eé+—pp
Y
. . 1.:
=€ (a)cr _wcr,des)+;pp

1 1 .
= T,+f-o +—
{I R c2 f crdes} ;/pp

crl2

~ A

1
=el{ ( ﬂel +d)"‘des +p1)+f_a>cr,des} +;pp

< a6t =211 o+ 5

.__&p ol sl +.L 52
<l =i Plel+ Plel=plel +2p

- - o .
<26 +e-plal+ p(||el||_;pj

<Ae —%p +(£+%p2] (4.16)

From (4.16), all signals in the closed loop are uniformly ultimately bounded since
(e+80°/2y) is bounded. Furthermore, the uniform ultimate boundedness region and the
uniform stability region can be made arbitrarily small by a suitable choice of ¢, 6, and y.
Namely, if £ and & are sufficiently small and y is sufficiently large, then it is guaranteed
that e; is uniformly ultimately bounded within an arbitrarily small neighbourhood of zero.

Thus, by using the clutch torque control law (4.12) and the adaptation law (4.14)
developed, the trajectory following of the reaction carrier speed @, to the desired speed
@er. 40 can be achieved. This implies that the first control objective, i.e., the minimization
of the transmission output torque and jerk levels to enhance the ride comfort, is achieved.

4.2 Engine control: component durability and shift completion

To minimize the clutch energy dissipation, the turbine speed error e, needs to be zero by
controlling the engine speed besides controlling T¢,.



264 D.-H. Kim et al.
From (2.6), o, is given by

&, =—(T,-T,). (4.17)

In the ideal case, the desired torque converter turbine torque, which can guarantee the
convergence of e, to zero, can be computed as follows:

T,=10,, +T,—1Le,. 4.18
t 17t des c2 12

From the torque converter model (2.3) with (2.1), T, is rewritten as follows:
T, =T (0,,0)T, =T (0, o) T(0,a)-1,6,). 4.19)

Thus, from (4.18) and (4.19), if all variables are available with no modelling error, the
desired throttle angle can then be derived as follows:

1

n(a)e’acom = N
T (0, )

(1,000 + T~ L)) + L0, , (4.20)

where Qcon is the command throttle angle for the desired engine indicated torque.

However, there exist various uncertainties involved in equation (4.20), i.., calculating
the engine input torque. The input torque to the automatic transmission, which is
generated by the engine, is delivered and amplified by the torque converter. Thus, the
magnitude of this torque is mainly determined by a throttle operation and the torque
converter characteristics. In particular, the turbine torque is transferred to the automatic
transmission as a result of the oil-induced flow in the torque converter, and the oil
properties depend on oil temperature.

Figure 8 shows the effect of oil temperature on the turbine torque. The torque-
controlled AC motor in the experimental test setup, as shown in Figure 12, is used as an
engine. Experimental tests were done for various AC motor torque commands. Test results
for 50%, 60%, 70%, 80%, 90%, and 100% AC motor torque commands are presented in
Figure 8. From Figure 8 it can be seen that the torque converter characteristics are
considerably affected by the temperature of internally induced oil. Results from
experiments indicate that the torque loss caused by the drag torque in the torque converter
due to variations in oil temperature, 30°C and 80°C, is quite significant. Five to 25%
variations of the turbine torque are observed for the oil temperature variations of 30°C
and 80°C. Hence, the effect of solenoid valve characteristics and the drag torque can be
handled by considering the oil temperature. Thus, instead of control law (4.20) described
above, an adaptive learning control method is now pursued in this paper.

The nonlinear relationship between the input variables and the desired outputs
(or control parameters) is modelled using an adaptive neuro-fuzzy supervisor. The control
input pattern which generates throttle angle commands is updated through a learning
process and adaptive compensation law to adjust for each subsequent shift based on
continuous monitoring of shifting performance and environmental changes. The overall
control scheme with the supervisor is shown in Figure 9.
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Figure 8 Variations in turbine torque affected by torque converter oil temperature according to
various driving torque from a torque-controlled AC motor: (a) at oil temperature 30°C,
(b) at oil temperature 80°C
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Figure 9 Supervision and control of the shift process
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A neuro-fuzzy model that supervises the shift process based on the information of duty
cycle and oil temperature is developed. The neuro-fuzzy system for modelling the
nonlinear relationship between the input variables and the corresponding engine control
is a fuzzy inference system built on the framework of a neural network, and the models
for the nonlinear systems can be effectively established with this fuzzy system. It consists
of five layers as shown in Figure 10. The first layer performs the fuzzification operation
for the input variables, and the firing strengths are calculated in the second layer.
The firing strengths are normalized in the third layer, and then the fourth layer performs
the fuzzy inference operation. Finally, the defuzzification operation is carried out
and the overall output of the fuzzy inference is provided in the fifth layer. The adaptive
neuro-fuzzy inference system for supervising a shift control was constructed and is then
trained using experimental data. The architecture of the intelligent supervisor is shown in
Figure 10. The ANFIS used in this paper contains nine rules, with three membership
functions being assigned to each input variables. It has two inputs, i.e., duty cycle and oil
temperature, and Sugeno-type fuzzy inference scheme is used to generate the output,
i.e., control parametric surface.
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Figure 10 An adaptive neuro-fuzzy inference system architecture for supervising the engine
control during the shifts
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Figure 11 shows training results of the proposed intelligent supervisor. Figure 11(a)
“shows the learning curve in mean squares error, which indicates that most of the learning
was done within the first 150 epochs. Figure 11(b) shows a control parametric surface
depending on the duty cycle and oil temperature and demonstrates how the proposed
ANFIS architecture can effectively model a highly nonlinear surface of the control input
during the shifts.

Figure 11 Training results of the intelligent supervisor: (a) learning curve, (b) control surface
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Variations in shift quality due to uncertain changes in the engine—transmission system
can be recognized by monitoring the turbine speed error e, and the deviation of the shift
duration from the desired range of shift duration. In order to keep the turbine speed and
the -shift duration within an allowable range in the presence of system variations, the
desired engine torque is adjusted by updating the shift control parameters. In particular,
the feed-forward throttle angle, which generates the engine torque during the inertia
phase, is updated by applying the adaptive compensation law. The shift performance is
continuously monitored in relation to a given desirable shift condition.

A performance index, as a quadratic function of the turbine speed error e, and the
deviation of shift duration At from the desired range of shift duration Az, is defined as
follows:

JzéeTe, 421

where e=(e,,Af)" and AT =At-A t,.. Then, the performance index is minimized
using the gradient descent method. The adaptive updated law is given by

du al ‘

For digital implementation, the adaptive updating law is modified as follows:

u(k+1) = u(k)—n(ﬂ

- J , (4.23)

where u(k) is the command throttle angle for kth shift, and 77> 0 is the adaptation gain.

From Jang [24], it is guaranteed that the error e, i.e., the turbine speed error e, and the
deviation of shift duration Az from the desired range of shift duration Az, tends to a
small value asymptotically. Thus, using the adaptive compensation control method based
on the intelligent supervisor, the trajectory following of the turbine speed @, to the
desired turbine speed ®, 4 as well as the shift duration At to the desired shift duration
Atz can be achieved. This implies that the second control objective, i.e., the
minimization of the clutch energy dissipation to enhance the durability of frictional
elements, is achieved.

5 Experimental studies
5.1 Experimental setup

Experimental studies have been conducted to examine the proposed control method.
Figure 12 shows a schematic diagram of the experimental setup. A photograph of the
experimental test setup is shown in Figure 13. A torque-controlled AC motor is used
as an engine. An inertia load is used for the external driving load. In addition, the
direct clutch pressure control system using the proportional solenoid valve [27] has been
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installed to improve the controllability of the vehicle automatic transmission.
By pulse-width-modulation of the voltage command to the solenoid valve, the real-time
pressure control for each individual clutch can be achieved.

5.2 Experimental results

Bench pressure tests on the solenoid valve were performed. The pressure characteristics
were measured for various pressure commands (i.e., duty cycle). The results are depicted
in Figure 14. The pressure varies fairly linearly with the command duty cycle from 20%
to 80%. The test condition is also shown in Table 1. The sampling time for the control
loop is 10 ms and the oil temperature is around the nominal condition (about 70°C).

Figure 12 Schematic diagram of the experimental setup
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Figure 13 Picture of the experimental test setup
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Figure 14 Hydraulic actuator characteristics
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Figure 15 Comparison of shift transients: with the robust adaptive compensation (solid line) and
without the robust adaptive compensation (dashed line): (a) 1st shift, (b) 3rd shift,
(c) 5th shift and (d) 7th shift
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Experiments were performed for uncertain changes in the power transmission system,
which result in degraded shift performances. Figure 15 compares the subsequent shift
results with the robust adaptive compensation and without the robust adaptive
compensation. As can be seen, actual output torque during the inertia phase is subsequently
reduced when the proposed shift controller is applied, while the conventional controller
cannot improve the undesirable shift performance.
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Table 1 Experimental test conditions

Item Condition

ATF temperature 60 + 5°C

Line pressure 6.5 £ 0.5 bar
Sampling frequency 100 Hz
Filtering 3-pole LPF, 10 Hz cutoff

In terms of the shift shock and inertia phase duration, the shift performances are
evaluated in Figure 16. It shows that a stable shift can be obtained by keeping the
duration of the inertia phase within a certain desired range. It can be seen from the
experimental results that the peak-to-peak values of the shift shocks in the inertia phase
are subsequently reduced when the proposed controller is applied in the shift control.

Figure 16 Shift results: shift shock (N m) vs inertia phase duration (ms)
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6 Conclusions

In this paper, to improve the shift transients and durability of the frictional parts of an
automatic transmission system, a robust adaptive control of the clutch torque with an
adaptive neuro-fuzzy inference system for supervising the engine torque control was
investigated. The experimental results of the integrated control algorithm proposed reveal
that the strategy of controlling the engine during the shifts provides better performance in
shift transients than the conventional transmission control alone. Even though a control
during the inertia phase has been focused in this paper, an integrated control of the output
shaft torque as well as the engine indicated torque during both the torque and inertia
phases would be more fruitful.
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