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An Open-Loop Control for Underactuated Manipulators Using
Oscillatory Inputs: Steering Capability of an Unactuated Joint

Keum-Shik Hong

Abstract—An open-loop control for underactuated mechanical
systems using oscillatory inputs with amplitude and frequency
modulations is investigated. Once all actuated joints are moved to
their desired positions, oscillatory inputs are applied to an actu-
ated joint to move the remaining unactuated joints. The steering
force of the unactuated joints is achieved by utilizing the dynamic
coupling between actuated and unactuated joints. Such a dynamic
coupling occurs due to the oscillatory motions of an actuated joint.
Once the frequency of the oscillatory input is decided, the ampli-
tude is determined by analyzing a time-invariant system, which
is derived from the unactuated joint dynamics by the method
of averaging. A systematic way, via a generating equation and a
coordinate transformation derived from the generating equation,
for converting the unactuated joint dynamics into the standard
form of averaging is proposed. In the event of an actuator failure
in outer space, the failed joint can be steered by adopting the
method proposed. Illustrating examples are given. Experimental
results are provided.

Index Terms—Asymptotic method, averaging, open-loop con-
trol, underactuated manipulator, vibrational control.

I. INTRODUCTION

A N underactuated mechanical system refers to a system
with less number of actuators than the degree-of-freedom

of the system considered. Therefore, manipulators with passive
or free joints are underactuated systems because the number of
control inputs is smaller than the number of generalized coordi-
nates. Recent focuses in the area of underactuated systems con-
trol are a reduction of the number of actuators and/or sensors and
an improvement of the reliability through a fault-tolerant design
of fully actuated manipulators that are working in hazardous
areas or with dangerous materials. It is particularly important
for a space robot working in outer space to have the ability to
control the failed joint in the event of an actuator failure.

An active (or actuated) joint is one that is fully controlled with
an actuator, while a passive joint is one which has no actuation
but is equipped with a passive element like a damper or a brake.
A free joint is one that can move freely. Underactuated systems
are defined as those with passive and/or free joints.

Control of the unactuated parts of underactuated mechanical
systems is, in general, achieved by utilizing either kinematic or
dynamic couplings [1]–[3], [9], [12], [18], [20]–[23], [28]–[31].
Examples utilizing kinematic coupling are first-order nonholo-
nomic systems such as wheeled mobile robots and dexterous
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robot hands. The equations of these systems are drift-free with
inputs entering linearly. The second class of systems charac-
terized by dynamic coupling is provided by numerous exam-
ples; a crane system, the classical cart-pole system, an acrobot,
and manipulators with flexible elements. The equations of the
second class involve a drift term accounting for gravitational,
centripetal, Coriolis, and/or elastic forces with inputs entering
affinely. The class of underactuated systems considered in this
paper belongs to the second class. It is also noted that under-
actuation does not always imply uncontrollability. The control-
lability depends on the structure of the system considered. All
previous examples are controllable. However, in the case of a
planar manipulator with a free joint [12], [21], [29]–[31], the
linearized equation at any operating point is not controllable.

Several researchers have investigated underactuated systems
with passive joints. Arai and Tachi [1] proved that the number
of active joints must be equal to or greater than the number of
passive ones in order to control the passive ones. A Cartesian
space controller to bring all the joints to their desired set points
was also developed [2]. Saitoet al.[22] developed a two link un-
deractuated brachiating robot which is capable of moving along
crossbars using only one actuator. Bergerman and Xu [9] inves-
tigated a variable structure control for a three-link manipulator
with one passive joint in both joint and Cartesian spaces.

Compared with the works for the systems with passive joints,
controls of the systems with free joints are very rare. Spong
[28] investigated the swing up control problem for the acrobot
using partial feedback linearization and energy-based method.
Recently, a scholastic work by Nakamuraet al. [21], see also
[29]–[31], investigated the application of periodic oscillations
to control the manipulators with free joints. An oscillatory con-
trol based on Poincare map analysis has also appeared in [30].
De Lucaet al.[18] have proposed a constructive open-loop con-
trol strategy that involves nilpotent approximation and iterative
steps.

Comparing the work of this paper and the work of Suzuki
and Nakamura [29]–[31], the tools used for analysis are the
same, i.e., partial feedback linearization technique and aver-
aging method [3]–[8], [10], [13]–[17], [19], [24], [25] are used.
Also, a planar 2R manipulator is taken as an illustrating ex-
ample. But, important differences are: In this paper, a systematic
design method of input amplitudes and frequencies is proposed.
The utilization of a generating equation and a coordinate trans-
formation, which converts the equations of unactuated joints dy-
namics into the standard form of averaging, is suggested. How
the generating equation can be deduced from the equations of
unactuated joints dynamics is also explained. A step-by-step de-
sign procedure of control inputs is demonstrated using a planar
manipulator with a passive joint as well as a free joint. In Suzuki
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and Nakamura [29], the averaged system of the 2R manipulator
involves the input frequency. However, in this work, the aver-
aged system involves input amplitude and is free of input fre-
quency. Also, the reciprocal of the input frequency appears in
front of the averaged equation. Hence the closeness of the av-
eraged system and the original system is assured by increasing
the input frequency.

Under the name of vibrational control, an open-loop control
technique utilizing parametric excitations with amplitude mod-
ulation has been extensively investigated [4]–[8], [14]–[17],
[19]. Note that the active joint variables appearing in an
unactuated joint’s dynamics can be considered as time-varying
parameters. Therefore, a periodic motion of an active joint
acts as a parametric vibrational control for controlling the
unactuated joint. In vibrational control, the averaging theory
plays a key roll in determining the stability properties. As
far as controlling a planar manipulator with a free joint is
concerned, the input shaping method [26] is not applicable.
Every linearized plant is not controllable by the definition of
controllability for linear systems. Furthermore, the notion of
natural frequency is not available since the second free joint
is moving in the horizontal plane. No conventional control
methods including the input shaping method can be applied to
this system.

In this paper the steering problem of an unactuated joint via
a parametric vibrational control is investigated. The control
procedure consists of two stages. The first stage linearizes the
system partially, and applies a proper control technique to drive
the active joints to their desired locations. At the end of first
stage, the positions of unactuated joints will be arbitrary. Then,
periodic vibrations are introduced to an actuated joint to move
the unactuated joint to its target position. The magnitudes of
the oscillatory inputs are determined from an averaged system.

The contributions of this paper are as follows. This paper
discusses a novel open-loop control technique that provides a
viable tool when the conventional control schemes are not ap-
plicable and/or actuator failure occurs. Averaging analysis is ex-
tended to the systems with the derivatives and antiderivatives of
vibrations. And, a systematic method of obtaining a generating
equation and a coordinate transformation that lead to an aver-
aged system of unactuated joint dynamics is developed. A ma-
nipulator in outer space with a failed joint can be controlled in
this fashion.

II. V IBRATIONAL CONTROL OF ANUNDERACTUATED SYSTEM

The class of underactuated systems focused in this paper
is such systems that the conventional control methods are not
readily applicable. Examples of this class include a planar
manipulator with a free joint, a two-link manipulator of which
the actuated link is in the horizontal direction but the unactuated
link is in the vertical direction, etc. Particularly, a manipulator
in outer space with a failed joint belongs to this class, because
there is no gravity in outer space. Since vibrational control is
an open-loop control method, a precise mathematical model of
the system is needed.

A. Partially Linearized Form

The steering force for an unactuated joint is invoked by ap-
plying periodic vibrations to its adjacent actuated joint. To see
that the oscillatory inputs applied to an actuated joint causes
the dynamic coupling (the steering force), a partially linearized
form of the system is derived.

Consider a degree-of-freedom manipulator with
actuated joints and unactuated joints, where ,
as follows:

(1)

(2)

The vector functions and contain
Coriolis and centripetal terms, the vector functions
and contain gravitational terms, and rep-
resents the input generalized force produced byactuators at
the active joints. It is assumed that each joint has a single degree
of freedom and all joint variables are measured. A feedback lin-
earizing control law [28] is introduced as follows:

where is an additional control input to be yet specified.
The substitution of into (1) yields a partially linearized system
as follows:

(3)

(4)

Observing (4), it is clear that -terms behave as parameters in
-dynamics. Therefore, if an oscillatory input to an actuated

joint is applied, its motion becomes time-varying parameters in
the equations of unactuated joints.

It is now assumed that all actuated joints have reached their
set points with an appropriate control input, i.e.,

would suffice this goal, where
and are design parameters. During this transition, the

positions of unactuated joints will be governed by the dynamics
of (4).

B. Selection of a Vibratile Parameter

With an oscillatory motion of , the unactuated joint dy-
namics can be written as

(5)

where , , and are time-varying parameters in (5). It is also
remarked that because the input is periodic and the amplitude of
the vibration is very small, the original set point of the actuated
joint can be kept within a specified error bound.

Define the state vector of (5) as , where
. Then, the state equation becomes (6a)–(c) shown at the

bottom of the next page, where . , , and
are now considered as system parameters in (6b). In (6c), the
symbol is introduced to emphasize the fact that there exists
one selective parameter in which vibrations can be introduced.
It is also remarked that only a subset of may appear
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in (6a) depending on the structure of the underactuated systems
considered.

In this paper, is taken as the second highest derivative in the
set . For example, if only and appear in (6a),
then . By choosing the second highest derivative as a
vibratile parameter, the existence of a coordinate transformation
that will transform (6a) into the standard form of averaging is
guaranteed.

Assuming that all , , and appear in (6a), i.e.,
, an oscillatory input is introduced into (6c) as follows:

(7)

where is a constant and is a zero mean -periodic
function in which and denote its amplitude and frequency.
The following relations also hold:

(8)

and

(9)

where and are the derivative and the anti-derivative of,
respectively, and is the desired position of . The substitu-
tion of (7)–(9) into (6) yields

(10)

Note that (10) is a time-varying system. For the given control
task, designing and by analyzing (10) is not simple. This is
the reason why the asymptotic method of averaging is utilized in
the sequel. It will be shown that there exists a lower frequency
bound such that for all , the stability properties of
(10) and those of a time-invariant system associated with (10)
are the same. Therefore, the determination ofand in (7) is
based upon the dynamics of an averaged time-invariant system
representing (10).

C. Transformation and the Standard Form of Averaging

Assume that (10) is decomposed into two parts as follows:

(11)

The second term of (11) is a collection, or a partial collection,
of the terms that are multiplied by. The decomposition in
(11) is always possible because the second highest derivative
among , , and in (6b) has been chosen as the vibratile
parameter and therefore the highest derivative yieldswhen it
is differentiated.

The second term of (11) is now used as a tool for generating a
coordinate transformation that will transform (10) into the stan-
dard form of averaging. Therefore, an equation for generating a
coordinate transformation (in short, a generating equation) takes
the form as

(12)

where denotes the state vector of the generating equation and
is the initial condition. Let

be the general solution of (12). The specification of the initial
condition is not needed in this work, because only the form of

is used as a coordinate transformation. Note that
should be -periodic because is -periodic.

Now, introducing a new variable , a coordinate transfor-
mation is defined as follows:

(13)

Note that and in have been replaced by and ,
respectively. Therefore, the differentiation of both sides of (13)
with respect to yields

(14)

Comparing (11) and (14) and noting thatis the solution of
(12), (14) yields

(15)

To investigate the dynamics of (15) in a slow time scale, an-
other new state vector such that , , where

denotes a slow time scale, is introduced. Then, the following
holds:

where . Therefore, by substituting ,
, , and into (15), the standard

form of averaging [10], [13], and [24] is derived as follows:

(16)

(6a)

(6b)

(6c)



472 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 10, NO. 3, MAY 2002

D. Averaging Analysis

Consider the following differential equation in the standard
form of averaging:

(17)

where , , , and is piecewise contin-
uous in . Note that for a small, the time-variation of is slow
as compared to the time-variation of. The existence of is
also assured in our case becausewas defined by . The ex-
istence of the standard form of averaging for an underactuated
manipulator is stated as follows.

Theorem 1: Consider the underactuated system (1) and (2).
Then there exist a parametric vibration and a coordinate trans-
formation with which the dynamics of unactuated joints can be
represented in the standard form of averaging as (17).

Proof: All developments above are already self-explana-
tory. Since the actuated joint variables are treated as vibratile
parameters in unactuated dynamics (6a), it is always possible
to introduce vibrations like (7). Among the three variables

that would possibly appear in the right-hand side
of (6a), the second highest term has been selected as a vibratile
parameter. This allows the existence of-term in (11). The
existence of a coordinate transformation that converts system
(11) into the standard form of averaging is evident from the
existence of a generating equation (12). Finally, system (16) is
the desired form.

Theorem 1 opens only the possibility of vibrational control
for an underactuated system. It does not say yet whether the vi-
brations would stabilize the system or steer an unactuated joint,
etc. It is also not obvious yet which joint has to be vibrated or
how many joints need to be vibrated. These questions can be
answered only when (16) is fully analyzed. Because the aver-
aging method allows us to investigate the stability properties of
(17) via a time-invariant system derived from (17), the averaging
procedure for (17) is performed as follows.

The mean value of is defined as follows:

(18)

It is assumed that the limit in (18) exists uniformly inand .
Then, the averaged system associated with (17) is defined as

(19)

where denotes the state vector of the averaged system. The
following results are readily available in the literature.

Basic Averaging Theorem (See [25, p. 172]):Let systems
(17) and (19) satisfy the following assumptions: 1) is
an equilibrium point of system (17); 2) is locally Lip-
schitz continuous in both and ; 3) is an equilibrium
point of system (19); 4) is locally Lipschitz continuous in
; and 5) is piecewise continuous

in , has bounded and continuous partial derivatives in, and
, for all . Moreover, and

have zero mean values. Then, there exists a continuous and
strictly increasing function with such that for
a given

for some , and for all and .
Remark 1: The basic averaging theorem establishes the

closeness of the two trajectories of (17) and (19) on the time
interval , where is arbitrarily small. The error is
in the order of which can be made arbitrarily small by
decreasing . Although the interval is unbounded as

, the result does not allow us to compare the stability
properties of the two systems yet.

Exponential Stability Theorem (See [25, p. 173]):Let sys-
tems (17) and (19) satisfy assumptions 1)–5) of the basic av-
eraging theorem. Assume further that system (19) satisfies 6)

has continuous and bounded first partial derivatives in
and 7) is an exponentially stable equilibrium point. Then,

of (17) is exponentially stable forsufficiently small.
Remark 2: The exponential stability theorem states how a

local exponential stability result for (17) can be deduced from
(19). It is also noted that the global exponential stability can
be stated if the averaged system is globally exponentially stable
and if all assumptions are valid globally.

Remark 3: The existences of an upper bound,, in the basic
averaging theorem and a sufficiently smallin the exponential
stability theorem are all guaranteed in our case, becausewas
defined by . By increasing , the frequency of vibration,
the closeness of the two solutions or the stability properties of
the two systems are assured oncepasses over the critical fre-
quency. The question such that how smallshould be, or how
large should be, can be reasonably answered by computer
simulations. This is because analytic methods sometimes give
very conservative results that are not meaningful for real appli-
cations. In Section III-B, a lower bound for a 2R manipulator
is estimated.

Remark 4: The method in this paper illustrates one sys-
tematic way of obtaining an averaged system. It is noted that
the coordinate transformations and averaged systems are not
unique. However, obtaining a meaningful averaged system that
provides stability results for the original system is important.
Even though a general procedure for vibrational control for
an underactuated mechanical system has been described in
Section II, the questions like what joint has to be vibrated or
how many joints need to be vibrated are problem-dependent.

III. EXAMPLES OF CONTROL LAW DESIGN

In this section, to illustrate control system design for under-
actuated mechanical systems, the procedure of Section II is ap-
plied to a planar 2R manipulator. As shown in the sequel, this
method can steer a passive joint as well as a free joint to their
target positions. Note that the linear control methods are not ap-
plicable to these examples, because the linearized system of a
planar 2R manipulator is not controllable. Note also that if one
actuator of a manipulator in outer space fails, then all masses of
the links before and after the failed joint can be combined into
two equivalent masses. Therefore, the problem can be reduced
to the problem of controlling a two-link manipulator.

A. A Planar Manipulator With a Free Joint

Fig. 1(a) shows a schematic diagram of the planar manipu-
lator in which the second joint is free. Fig. 1(b) shows an exper-
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(a)

(b)

Fig. 1. A planar 2R manipulator with an unactuated joint. (a) Schematic
diagram of a planar 2R manipulator. (b) An experimental 2R manipulator setup
and its parameters.

imental manipulator together with parameter values tabulated
below. Using the Lagrange equation, the following equations of
motion are obtained:

(20)

where

Note that the gravity term does not appear in the equations,
and check that the linearized equation at an operating point

is not controllable.
Following the procedure of Section II-A, a partially linearized

system, (3) and (4), is derived as follows:

(21a)

(21b)

where is a constant. Now, assume
that the active joint has been positioned at its desired location
with an appropriate control action. For instance

would suffice, in which and are position and velocity
gains. While the active joint moves to its target position, the
position of the free joint will be governed by (21b). Now, the
control task is restricted to controlling the free joint. With the
state variables defined by and , the state equa-
tion of (21b) becomes

(22)

Note that (22) corresponds to (6a). Observing thatis the
second highest derivative appearing in (22), introduce vibrations
according to law (7) as follows:

(23)

Hence, and have been selected. The
following also holds:

(24)

and

(25)

Equation (24) implies that once and are determined, the
first joint must oscillate with amplitude and frequency .
Hence, by increasing , the amplitude of vibrations will get
smaller. The substitution of (23)–(25) into (22) yields

(26)

Note that (26) is in the form of (11). Therefore, the generating
equation of (12) takes the form

(27)

The general solution of (27) is given by

(28)
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A coordinate transformation that will convert (26) into the stan-
dard form of averaging is defined using (28) as

(29)

Note that and are replaced by and , respectively.
Therefore, differentiating (29) with respect to time, i.e., ap-
plying (15) to (26), yields (30) shown at the bottom of the
page. In slow time , with a new variable as
defined in (16), the following standard form is obtained in (31)
at the bottom of the page, where .

Finally, by applying the definition of averaging, (18), the fol-
lowing averaged system is obtained:

(32)

The control system design in Section III-B is now totally based
upon (32) instead of (26). It is noted that the initial conditions
of the averaged system does not have to be, in general, the same
as those of the original system. It is also noted that a sufficiently
small can always be obtained sincewas defined by .

B. Control Strategies for a Free Joint

Fig. 2(a) shows the trajectories of transformed system (30),
with and rad/s, departing from various initial
conditions in its phase plane. It is noted that two equilibrium
points are centers. It is also observed that fast fluctu-
ating signals are added on top of slow varying signals. Fig. 2(b)
shows the phase portrait of averaged system (32) using the same
initial conditions as Fig. 2(a). Comparing Fig. 2(a) and (b), it is
observed that the slow varying signals in the behavior of (30)
is well described by that of (32). Fig. 3 shows the trajectories
of the averaged system for variouss. It is observed that by in-
creasing , the reachable set expands in the vertical direction
but the trajectory comes back to its original initial position for
all s. In this paper, an amplitude modulation technique is uti-
lized for reaching an arbitrary point in the state space.

In deriving an averaged system like (32), i.e., in applying (18)
to (31), the size of input frequency has not been discussed
yet. Because the averaging is performed for a period, the input
frequency does not matter as far as the final form of averaged

(a)

(b)

Fig. 2. Comparison of the trajectories of (30) and (32) (� = 0:5,
! = 4 rad/s). (a) Trajectories of transformed system (30). (b) Phase portrait
of averaged system (32).

system is concerned. But, if the input frequency is too low, the
resulted averaged system may not capture the original dynamics
well. Fig. 4 shows the discrepancy between the two systems
when the input frequency is not fast enough. The trajectory in
the left half-plane was not captured by the averaged system.
However, the averaging theory assures that for all frequencies
above some frequency, i.e., , the averaged system
can describe the dynamics of the original system well. Also, by
increasing , the amplitude of , as can be seen from (24),

(30)

(31)
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Fig. 3. Trajectory variations of averaged system (32) with various�’s (! =
4� rad/s).

Fig. 4. A discrepancy between two trajectories when the input frequency is
not fast enough (� = 1, ! = 2 rad/s).

gets smaller and the Poincare map becomes dense. Therefore,
more precise movement can be achieved by increasing.

Now, the question is what is the lowest frequency such
that beyond that frequency all averaged systems capture the
dynamics of the original system well. The answer to the 2R
manipulator can be retrieved from (26). Because what we want
is that the slow dynamics dominates the fast dynamics, the
second term can be set to dominate the first term for selecting
sufficiently large . Therefore, the following relation can be
deduced:

Approximating the above equation, the following lower bound
is suggested:

where is a design parameter, which is normally chosen to be
bigger than ten from experience.

Let be the present state and be the desired
state. The integration of (32) from to yields
the following relationship:

(33)

Observing Fig. 2(b), hovering trajectories are defined as those
trajectories in oval form. Therefore, once the initial and target

(a)

(b)

Fig. 5. Two basic steering strategies depending on initial and target positions.
(a) When the target distance is greater than�=2. (b) When the target distance
is less than�=2.

positions are given inside the hovering region,is uniquely
determined by (33). Therefore, the amplitude of a vibration that
steers from to is calculated as follows:

(34)

Now, an insightful analysis of Figs. 2 and 3 suggests two basic
steering strategies that depend on initial and target positions. If
the target distance, i.e., , is more than rad, then
Fig. 5(a) is suggested. If the target distance is within rad,
then Fig. 5(b) is suggested. Based upon these two strategies, four
control patterns for steering a free joint are sketched in Fig. 6.
For example, consider the steering problem from an initial state

to a desired state , which corresponds to the
case of Fig. 6(a). An initial vibration with frequencyand am-
plitude is applied to the active joint . When reaches ,
i.e., becomes , the amplitude of the vibration is switched
from to for the purpose of reducing traveling time to
the target state. If begins to decrease, which corresponds to
the point that the averaged trajectory crosses the horizontal axis,
the amplitude is switched again to which is supposed to be
smaller than . Finally, when becomes for the second
time, the amplitudes are continuously modulated, according to
law (34), in each oscillation. The quarter in which amplitudes
are modulated in each oscillation is called a cruising quarter. All
above observations are summarized in Pattern #1 below. Four
different control patterns for various initial and target states are
outlined below and their applications are tabulated in Table I.
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(a)

(b)

(c)

(d)

Fig. 6. Four control patterns for a free joint (x: Initial state, O: Target state).

Pattern #1

Step 1) Set the initial amplitude and frequency at
and , respectively. Fig. 7 shows the

trajectories of the second joint from

to by following Pattern #1.
Fig. 7 is a computer-simulated result. The small
circles appearing at each period indicate the
Poincare map. The initial amplitude and fre-
quency are and .

Step 2) If becomes , change to . In
Fig. 7, .

TABLE I
CONTROL PATTERNS BASED UPONINITIAL AND DESIREDPOSITIONS

Fig. 7. Simulation of the steering problem from initial angle� = 0:5 rad to
target angle� = �=4 rad following pattern #1 (� = 1:3, � = 1:67,
� = 1:3, ! = 6�, ! = 30�).

Step 3) If gets smaller than its previous value,
change to , where . In Fig. 7,

.
Step 4) If passes for the second time, then

vary sequentially in each oscillation ac-
cording to (34) (the cruising quarter).

Step 5) Finally, if where is an error
bound, switch to a higher frequency . In
Fig. 7, .

Pattern #2

Step 1) Set initial values: and .
Step 2) If becomes , then change sequen-

tially in each oscillation according to (34) (the
cruising quarter).

Step 3) Finally, if , then switch to a
higher frequency .

Pattern #3

Step 1) Set initial values: and .
Step 2) If becomes , choose

, where is
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the magnitude of vibration whose averaged
trajectory passes through .

Step 3) If becomes , switch to .
Step 4) If becomes less than its previous value,

switch to , where .
Step 5) If becomes , change sequen-

tially in each oscillation according to (34) (the
cruising quarter).

Step 6) Finally, if , switch to a higher
frequency .

Pattern #4
Step 1 and Step 2 are the same as Pattern #3.
If becomes , change sequentially in each
oscillation according to (34).
Finally, if , switch to .

Finally, it is noted that the first link has to be stopped at an
exact period of input in order to keep it at its desired position.
It is also noted that, once the free link crosses over its target
position, it has to go all the way around again, following Pattern
#1, since there is no backward movement. This is because the
trajectories move only in clockwise direction, as seen in Fig. 2.
Therefore, just before getting to the target position, the input
frequency has to be increased to yield precise movements. The
achievement of a precise landing at the target position is shown
during the last stage of the cruising quarter of Fig. 7 and from the
tiny oscillations at the last stage of the control input of Figs. 8
and 11.

C. A 2R Planar Manipulator With a Passive Joint

Let the nonconservative friction force existing at the second
joint be , where is the viscous friction coefficient
in the bearing and is the Coulomb friction. Then, (21a) and
(b) can be written as

(35a)

(35b)

where , . In case
that the mass and inertia term of the second link are much larger
than the Coulomb friction, can be practically neglected. The
frictional effects normally stabilize a system. But in our case
the frictions hinder the movement of the joint by dragging it to
its equilibrium point. Therefore, the control inputs have to be
modified to compensate the existing frictions.

Applying vibrations according to law (11), (23) takes the
form as

(36)

(a)

(b)

Fig. 8. Vibrational control of a free joint:� = 1:3,� = 1:67,� = 1:3,
! = 6�, ! = 30�. (a) Position control of a free joint following Pattern #1
(experimental results). (b) Control input used for (a) (experimental results).

Therefore, the generating equation for a passive joint takes the
same form as the case of a free joint. The standard form of av-
eraging of (36) now becomes (37) shown at the bottom of the
page. Finally, the averaged system is derived as follows:

(38)

D. Control Strategies for a Passive Joint

Fig. 9(a) shows the trajectories of (37) for various initial
conditions. It is found that are two stable foci.
Fig. 9(b) shows the phase portrait of (38) for the same initial
conditions as Fig. 9(a). As can be seen in Fig. 9(a), the am-
plitudes decrease due to friction while an individual trajectory
goes to an attractor. The overall control strategies for a passive

(37)
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(a)

(b)

Fig. 9. Comparison of the trajectories of (37) and (38) (� = 1,
! = 10� rad/s). (a) Trajectories of transformed system (37). (b) Phase
portrait of averaged system (38).

joint will be the same as the case of a free joint. However,
the main obstacle is how to compensate the energy dissipation
due to friction. An idea is to increase the amplitudes of vibra-
tions for the purpose of compensating the energy dissipation.
Normally it would be difficult to know the exact friction. The
exact friction may be identified by some parameter estimation
scheme. But, this issue is out of the scope of this paper. In
practice, the trend in Fig. 9(a) can be measured using existing
sensors. As discussed in Section III-B,gets smaller near the
target position. Therefore, if is too small, the trajectory may
stick to and becomes unable to move out. There-
fore, it is necessary to keep the current trajectory outside an
orbit that might be too close to .

Fig. 10(a) shows a trajectory compensation strategy for a pas-
sive joint. Let the departure point be and the target
point be . Let the error between the current point

and the target orbit along the vertical direction be.
Then, is calculated as

(39)

Now, a fictitious target point is inserted on the desired tra-
jectory using and . And, a new input amplitude is cal-

(a)

(b)

(c)

Fig. 10. A trajectory compensation strategy for a passive joint. (a) A
compensation strategy in the presence of friction. (b) Comparison between
compensated and uncompensated trajectories: target position= (�=2; 0:5).
(c) Input amplitudes modulation for (b) starting from an initial value
� = 0:7402.

culated using (34). Because the fictitious pointis given by
, is modified as

(40)

Fig. 10(b) demonstrates the steering capability to the target po-
sition by a continuous modulation of input amplitudes in the
presence of friction, while Fig. 8(c) shows the increasing trend
of input amplitudes according to (40).

IV. EXPERIMENTS

A. Overview

Fig. 1(b) shows the experimental 2R manipulator. The entire
setup consists of a 2R mechanism, a data acquisition board, an
interface board that includes a servo controller and two signal
conditioners, and a PC equipped with a digital signal process
card. The manipulator frame is made of aluminum alloy. The
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(a)

(b)

Fig. 11. Vibrational control of a passive joint (experimental results).
(a) Position control of a passive joint (initial position= 20 , target position
= 30 ). (b) Motion in time of the first joint: control input for (a).

actuator at the first joint is a high-speed dc coreless motor with
a nominal voltage of 12 V and a power consumption of 6 W
(Maker: Maxon, Model: 2326). A planetary gear with a gear
ratio of 32.1:1 is attached to the head of the motor. A servo
controller regulates the input current to the motor, in which the
PWM method with a carrier frequency of 20 kHz is used. The
rotational angles of both joints are measured by potentiome-
ters. The second link is directly attached to the potentiometer.
The damping effect of the potentiometer itself is negligible, but
an adjustable slip ring is used for changing friction. The mea-
sured signals from the potentiometers are filtered by low-pass
filters with a cutoff frequency of 10 Hz before entering the DSP
board. The time delay occurring at the low-pass filters is less
than 10 s.

The control algorithm is executed at a DSP board of dSPACE
DS1102 with a TI chip TMS320C31. In order to compare sim-
ulation and experimental results, the control algorithms are first
coded with MATLAB/SIMULINK. Then, after converting them
to C codes with Real-Time Workshop, they are downloaded to
DS1102 for experiments.

B. Experimental Results

Fig. 8(a) shows the vibrationally controlled motion of a free
joint , in which the initial angle and the target angles were
0.4 rad and rad, respectively. Fig. 8(b) shows the motion of
the first joint used to invoke the steering force to the second
joint, i.e., the control input used for Fig. 8(a). At 2 s, initial
vibrations with amplitude 1.3 and frequency were applied.
At around 4 s, the amplitude was changed to 1.67, and then 1.3

following Pattern #1. The tiny oscillations appearing after 7 s
indicate that the frequency has been increased to .
Experimental results agree well with simulation results.

In order to increase friction at the second joint, an adjustable
slip ring has been used. Fig. 11(a) shows an experimental result
of vibrational control of a passive joint for a given initial posi-
tion at 20 and a target position 30. Fig. 11(b) shows the input
vibrations used for Fig. 11(a). As seen in Fig. 11(b), the input
amplitudes have been modulated according to (40).

V. CONCLUSION

An open loop vibrational control for an underactuated me-
chanical system has been investigated. To move an unactuated
joint, the dynamic coupling occurred due to the oscillatory mo-
tion of the actuated joint was utilized. A generating equation for
deriving a coordinate transformation was derived from the un-
actuated joint dynamics. The input amplitudes were determined
by analyzing an averaged system representing the unactuated
joint dynamics with a periodic input. The averaging method was
extended to the system with the derivatives and antiderivatives
of vibrations. To demonstrate detailed design steps, a 2R planar
manipulator with a free joint and a passive joint was used. In
zero gravity space, a manipulator with a failed joint can be con-
trolled in this manner. Considering the fact that the method in
this paper can control an uncontrollable system, it will provide
a viable tool when the conventional control schemes are not
applicable.
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