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An Open-Loop Control for Underactuated Manipulators Using
Oscillatory Inputs: Steering Capability of an Unactuated Joint

Keum-Shik Hong

Abstract—An open-loop control for underactuated mechanical robot hands. The equations of these systems are drift-free with
systems using oscillatory inputs with amplitude and frequency inputs entering linearly. The second class of systems charac-
modulations is investigated. Once all actuated joints are moved to terized by dynamic coupling is provided by numerous exam-
their desired positions, oscillatory inputs are applied to an actu- . .
ated joint to move the remaining unactuated joints. The steering PI€S; & crane system, the classical cart-pole system, an acrobot,
force of the unactuated joints is achieved by utilizing the dynamic @nd manipulators with flexible elements. The equations of the
coupling between actuated and unactuated joints. Such a dynamic second class involve a drift term accounting for gravitational,
coupling occurs due to the oscillatory motions of an actuated joint. centripetal, Coriolis, and/or elastic forces with inputs entering
Once the frequency of the oscillatory input is decided, the ampli- a¢finaly. The class of underactuated systems considered in this

tude is determined by analyzing a time-invariant system, which .
is derived from the unactuated joint dynamics by the method PaPer belongs to the second class. It is also noted that under-

of averaging. A systematic way, via a generating equation and a actuation does not always imply uncontrollability. The control-
coordinate transformation derived from the generating equation, lability depends on the structure of the system considered. All
for converting the unactuated joint dynamics into the standard previous examples are controllable. However, in the case of a
form of averaging is prpposgq. In the event of an actuator failure planar manipulator with a free joint [12], [21], [29]-[31], the

in outer space, the falled_Jomt can be steergd by adopyng the i ized i ¢ fi nti h trollabl
method proposed. lllustrating examples are given. Experimental Inearized equation at any operating pointis not controfiable.
results are provided. Several researchers have investigated underactuated systems
with passive joints. Arai and Tachi [1] proved that the number

of active joints must be equal to or greater than the number of
passive ones in order to control the passive ones. A Cartesian
space controller to bring all the joints to their desired set points

. INTRODUCTION was also developed [2]. Saiédal.[22] developed a two link un-

N underactuated mechanical System refers to a Systgﬁfactuatecj braChiating robot which is Capable of mOVing along
with less number of actuators than the degree-of-freeddifPssbars using only one actuator. Bergerman and Xu [9] inves-
of the System considered. Therefore7 manipu|at0rs with passﬂ@ted a variable structure control for a three-link manipulator
or free joints are underactuated systems because the numb&¥ifif one passive joint in both joint and Cartesian spaces.
control inputs is smaller than the number of generalized coordi-Compared with the works for the systems with passive joints,
nates. Recent focuses in the area of underactuated systems €@ftrols of the systems with free joints are very rare. Spong
trol are a reduction of the number of actuators and/or sensors &l investigated the swing up control problem for the acrobot
an improvement of the reliability through a fault-tolerant desig#sing partial feedback linearization and energy-based method.
of fully actuated manipulators that are working in hazardodgecently, a scholastic work by Nakamurgal. [21], see also
areas or with dangerous materials. It is particularly importaf9]-[31], investigated the application of periodic oscillations
for a space robot working in outer space to have the ability 19 control the manipulators with free joints. An oscillatory con-
control the failed joint in the event of an actuator failure.  trol based on Poincare map analysis has also appeared in [30].
An active (or actuated) joint is one that s fully controlled witHPe Lucaet al.[18] have proposed a constructive open-loop con-
an actuator, while a passive joint is one which has no actuatitfl strategy that involves nilpotent approximation and iterative
but is equipped with a passive element like a damper or a brakEps.
A free joint is one that can move freely. Underactuated systemsComparing the work of this paper and the work of Suzuki
are defined as those with passive and/or free joints. and Nakamura [29]-{31], the tools used for analysis are the
Control of the unactuated parts of underactuated mechanigame, i.e., partial feedback linearization technique and aver-
systems is, in general, achieved by utilizing either kinematic 8ging method [3]-[8], [10], [13]-[17], [19], [24], [25] are used.
dynamic couplings [1]-[3], [9], [12], [18], [20]-[23], [28]-[31]. Also, a planar 2R manipulator is taken as an illustrating ex-
Examples utilizing kinematic coupling are first-order nonholeample. But, important differences are: In this paper, a systematic
nomic systems such as wheeled mobile robots and dexterégsign method of input amplitudes and frequencies is proposed.
The utilization of a generating equation and a coordinate trans-

. . _ formation, which converts the equations of unactuated joints dy-
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and Nakamura [29], the averaged system of the 2R manipulafor Partially Linearized Form

involves the input frequency. However, in this work, the aver- the sieering force for an unactuated joint is invoked by ap-
aged system involves input amplitude and is free of input frgying neriodic vibrations to its adjacent actuated joint. To see
quency. Also, the reciprocal of the input frequency appears gty the oscillatory inputs applied to an actuated joint causes
front of the averaged equation. Hence the closeness of the g\t qynamic coupling (the steering force), a partially linearized
eraged system and the original system is assured by increasiigh, of the system is derived.

the input frequency. Consider & degree-of-freedom manipulator with € R™

Under the name of vibrational control, an open-loop contrgltated joints angh € R! unactuated joints, whete= k —m
technique utilizing parametric excitations with amplitude mods follows:

ulation has been extensively investigated [4]-[8], [14]-[17], ) ) )
[19]. Note that the active joint variables appearing in an Mi()d + Mi2(9)de + Ci(q, ) + Gi(9) =7 (1)
unactuated joint’s dynamics can be considered as time-varying  Ma1(q)d1 + Ma22(g)d2 + Ca(q, §) + G2(q) =0.  (2)

parameters. Therefqre, a pgriodic motion of an actiye jOilfﬁ_'e vector function€; (¢, 4) € R™ andCy(q, ) € R! contain

acts as a p'a-rametrlc' V|b'rat|onal control for contr.olllng thEoriolis and centripetal térms,thevectorfuﬁctidhig) e Rm
unactuated joint. .In wbratpngl control, th'e. averaging theo@ndGQ(q) € R! contain gravitational terms, ande R™ rep-
plays a key roll in determining the stability properties. A$egents the input generalized force producedrbgctuators at

far as controlling a planar manipulator with a free joint ighe active joints. Itis assumed that each joint has a single degree

concerned, the input shaping method [26] is not applicablg:freedom and all joint variables are measured. A feedback lin-
Every linearized plant is not controllable by the definition oganzmg control law [28] is introduced as follows:

controllability for linear systems. Furthermore, the notion of . .
natural frequency is not available since the second free joft (Mi1 — Mi2Mzp Mar) u+ (C1 — M12M;; )
is moving in the horizontal plane. No conventional control + (G4 —M12M2_21G2)

tmhgzzgie';CIUdlng the input shaping method can be app||6dv5?1ereu € R™ is an additional control input to be yet specified.

he substitution of into (1) yields a partially linearized system
In this paper the steering problem of an unactuated joint vlg follows: Ly P y y

a parametric vibrational control is investigated. The control
procedure consists of two stages. The first stage linearizes the G =u, )
system partially, and applies a proper control technique to drive Ma2(q)da + Calq, §) + Ga(q) = — My (q)u. (4)
the active joints to their desired locations. At the end of first

stage, the positions of unactuated joints will be arbitrary. Theg,bservmg (4), itis clear thap -terms behave as parameters in

periodic vibrations are introduced to an actuated joint to mo\gé-dynamms. Therefore, if an oscillatory input to an actuated

the unactuated joint to its target position. The magnitudesjofnt is applied, its motion becomes time-varying parameters in
' e equations of unactuated joints.

the oscillatory inputs are determined from an averaged systemlt is now assumed that all actuated joints have reached their

The contributions of this paper are as follows. This paper, points with an appropriate control input, i.e..= g —

discusses a novel open-loop control technique that providei1 6 — i1a) — Aa(qr — i) would suffice this goal, where

viable tool when the conventional control schemes are not 8191' and A, are design parameters. During this transition, the

plicable and/or actuator failure occurs. Averaging analysis is &ositions of unactuated joints will be governed by the dynamics
tended to the systems with the derivatives and antiderivativesgf 4y,

vibrations. And, a systematic method of obtaining a generating
equation and a coordinate transformation that lead to an avBr- Selection of a Vibratile Parameter
aged system of unactuated joint dynamics is developed. A masyjith an oscillatory motion ofy;, the unactuated joint dy-
nipulator in outer space with a failed joint can be controlled iRamics can be written as
this fashion.
Mao(q25 q1)Go + Co (g2, 425 g1, 1) + G2(q25 1)

+Ma1(q2;91)G1 =0 (5)

whereqy, ¢1, andg, are time-varying parametersin (5). Itis also

_ The class of underactuated systems focused in this pPapgl, - ied that because the input is periodic and the amplitude of
is such systems that the conventional control methods are ot yinration is very small, the original set point of the actuated
readily applicable. Examples of this class include a planﬁ\{im can be kept within a specified error bound.

manipulator with a free joint, a two-link manipulator of which  pefine the state vector of (5) as=[¢2  ¢2]* € R", where

the actuated link is in the horizontal direction but the unactuatgd— 9;. Then, the state equation becomes (6a)—(c) shown at the
link is in the vertical direction, etc. Particularly, a manipulatopottom of the next page, wher®: R* — R™. q1, ¢1, and{;

in outer space with a failed joint belongs to this class, becauge now considered as system parameters in (6b). In (6c), the
there is no gravity in outer space. Since vibrational control &/mbol X is introduced to emphasize the fact that there exists

an open-loop control method, a precise mathematical modelafe selective parameter in which vibrations can be introduced.
the system is needed. Itis also remarked that only a subset{gf, 41, G } may appear

Il. VIBRATIONAL CONTROL OF AN UNDERACTUATED SYSTEM
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in (6a) depending on the structure of the underactuated systerhe second term of (11) is a collection, or a partial collection,
considered. of the terms that are multiplied by. The decomposition in

In this paper) is taken as the second highest derivative in tHd1) is always possible because the second highest derivative
set{q1, ¢1, G }. For example, if onlyy; andg; appear in (6a), amongqi, ¢1, andg; in (6b) has been chosen as the vibratile
then A = ¢;. By choosing the second highest derivative as@arameter and therefore the highest derivative yieleghen it
vibratile parameter, the existence of a coordinate transformatisrdifferentiated.
that will transform (6a) into the standard form of averaging is The second term of (11) is now used as a tool for generating a

guaranteed. coordinate transformation that will transform (10) into the stan-
Assuming that ally;, ¢;, andg, appear in (6a), i.eA(t) = dard form of averaging. Therefore, an equation for generating a
¢ (t), an oscillatory input is introduced into (6¢) as follows: coordinate transformation (in short, a generating equation) takes
M) = do + af(wt) % the form as
where), is a constant and.f(wt) is a zero meaff-periodic £(t) = X1(8,1), €(0)=c 12)
function in whicha andw denote its amplitude and frequency. ) )
The following relations also hold: where¢ denotes the state vector of the generating equation and
¢ € R™is the initial condition. Leth(¢,¢): R x R* — R
g1 = aw f'(wt) (8) bethe general solution of (12). The specification of the initial
and condition is not needed in this work, because only the form of
o h(t,c) is used as a coordinate transformation. Note H{atc)
q = aF(wt) + Aot + q14 (9) should bel*-periodic becaus&; is I’-periodic.

Now, introducing a new variablg(t), a coordinate transfor-
where f/ and F' are the derivative and the anti-derivative of mation is defined as follows:
respectively, and, , is the desired position af;. The substitu-

tion of (7)—(9) into (6) yields z(t) = h(wt,p(t)). (13)
x :){(37? Ao + af(wt)) i Note thatt ande in h(t, ¢) have been replaced byt andp(¢),
. T2 respectively. Therefore, the differentiation of both sides of (13)
—May' (1, 2F(wt) + Aot + q1a) with respect ta yields
x < Cy (371,372, %’F(w) + dot + qia, Mo + af(wt)) . dh dp Oh Owt oh . oh
_ w -, e _ o = 14
= { : P opot Tawt ot~ apt Yo M

+G2 (.Z‘l, %F(wt) + )\ot + q1d)
Comparing (11) and (14) and noting thatis the solution of
+awMo (a:l, 21 (wt) + Aot + qld) f’(wt)} (12), (14) yields

(10) , Oh(wt,p(t))] ™" 1
o | i) = | PP (e popn, ) a5)
Note that (10) is a time-varying system. For the given control D w

task, designing: andw by analyzing (10) is not simple. This isTo investigate the dynamics of (15) in a slow time scale, an-
the reason why the asymptotic method of averaging is utilized ™ '

h L It will be <h hat th ) I ’ dther new state vector such thetr) = p(7), 7 = wt, where
the sequel. It will be shown that there eX|st.s. a lower requentyyenotes a slow time scale, is introduced. Then, the following
boundwg such that for allb > wg, the stability properties of

holds:
(10) and those of a time-invariant system associated with (10

are the same. Therefore, the determination @ndw in (7) is 4 duwt
based upon the dynamics of an averaged time-invariant system PO= "0t at =
representing (10).

dz(wt) dwt
| defet)det _

where>’ = dz(7)/dr. Therefore, by substituting = wz’,
A

C. Transformation and the Standard Form of Averaging ~ #(7) = p(t), 7 = wt, ande = 1/w into (15), the standard

Assume that (10) is decomposed into two parts as foIIows:]corm of averaging [10], [13], and [24] is derived as follows:

—1
z=Xo <a:, wt, %) + wX1(z,wt). (11) Z(r)y=c¢ {W} Xo (h(r,2(7)),7,€).  (16)
&= { - 2 . } (6a)

—Msy (w1, @) {C2(x1, %2, q1, ¢1) + G221, 1) + Mar(z1,91)G1 }
£X (25 q1,q1, 1) (6b)

2X(x;)) (6¢)
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D. Averaging Analysis for somebr > 0, g > 0 and for allt € [0,T/<] ande < .
Consider the following differential equation in the standard Rémark 1:The basic averaging theorem establishes the
form of averaging: closeness of the two trajectories of (17) and (19) on the time
interval [0,7/¢], where e is arbitrarily small. The error is
#(t) = eg(z(t),t,¢), 2(0) =z (17) in the order ofe(e) which can be made arbitrarily small by

decreasing:. Although the interval0,T’/¢] is unbounded as
e — 0, the result does not allow us to compare the stability
properties of the two systems yet.

Exponential Stability Theorem (See [25, p. 173)et sys-
feqs (17) and (19) satisfy assumptions 1)-5) of the basic av-
eraging theorem. Assume further that system (19) satisfies 6)

manipulator is stated as follows. h ) d bounded fi ol derivati .
Theorem 1: Consider the underactuated system (1) and ( .V(y) as cpntmuous and bounde Irst p_a_lrtlg env_atwe; n
id 7)y = 0is an exponentially stable equilibrium point. Then,

Then there exist a parametric vibration and a coordinate tra : . o
— 0 of (17) is exponentially stable farsufficiently small.

formation with which the dynamics of unactuated joints can b’ieTQ K 2:Th ial stability th h
represented in the standard form of averaging as (17). emark 2: The exponential stability theorem states how a

Proof: All developments above are already self-explan ocal exponential stability result for (17) can be deduced from
tory. Since the actuated joint variables are treated as vibra 'ileg)' It is _also noted that the glqbal exponential sta_b|||ty can
parameters in unactuated dynamics (6a), it is always possi Fest_ated ifihe avgraged systgm is globally exponentially stable
to introduce vibrations like (7). Among the three variable@nd if al ﬁs§urﬂptloqs are vah? gIobaIIy.b in the basi
{@1, 1, ¢} that would possibly appear in the right-hand side Rem.ar %T eeX|stdencesf(f? an ulpper Iﬁuﬁ(d,,lnt e as_|c|
of (6a), the second highest term has been selected as a vibré'i‘tY@bragmg theorem and a sufficiently smalh the exponentia

parameter. This allows the existence®f-term in (11). The stability theorem are all guaranteed in our case, becauses

existence of a coordinate transformation that converts systgﬂ'ned byl/w. By Increasingw, the frequency_of V|brat|qn,
e closeness of the two solutions or the stability properties of

(11) into the standard form of averaging is evident from th‘ie q he critical f
existence of a generating equation (12). Finally, system (16)t two systems are assured oncpasses over the critical fre-

the desired form. guency. The question such that how smeadhould be, or how

Theorem 1 opens only the possibility of vibrational contrdﬁrgelw_ShOUI_?hbe_’ CS” be reasorlwa_bly anrs]wdered by (_:ompu'Fer
for an underactuated system. It does not say yet whether theSjjpuiations. This Is because analytic methods sometimes give

brations would stabilize the system or steer an unactuated jo?ﬁ:t’ry conservative results that are not meaningful for real appli-

etc. It is also not obvious yet which joint has to be vibrated &ahons. In Section III-B, a lower bouna for a 2R manipulator

how many joints need to be vibrated. These questions can'E§St'maLed'_ h hod in thi i
answered only when (16) is fully analyzed. Because the aver_Remar 4 The m_e_t od in this paper | ustrate_s one sys-
atic way of obtaining an averaged system. It is noted that

aging method allows us to investigate the stability properties ) .

(17) via a time-invariant system derived from (17), the averagiﬁ M coordinate transfo_r ”.‘a“o”s anq averaged systems are not
procedure for (17) is performed as follows. unique. Howe_vgr, obtaining a meaqlqgful averaggd ;ystem that
The mean value of(z, #, ) is defined as follows: provides stability results for the original §yst§m is important.

- Even though a general procedure for vibrational control for
Gue(7) 2 lim — t°+Tg(z 5,0)do. (18) an u_nderactuated mecha_nical sysfce_m has been o_lescribed in
= T=o0 T Jy, T Section Il, the questions like what joint has to be vibrated or
how many joints need to be vibrated are problem-dependent.

wherez € R™,t > 0,0 < £ < g9, andg is piecewise contin-
uous int. Note that for a smak, the time-variation of is slow
as compared to the time-variation @f The existence ofy is
also assured in our case becasises defined byl /w. The ex-

It is assumed that the limit in (18) exists uniformly#fnandz.
Then, the averaged system associated with (17) is defined as

u(t) = egav(y(t)), 5(0) =20 (19) . . . .

In this section, to illustrate control system design for under-
wherey denotes the state vector of the averaged system. Th&uated mechanical systems, the procedure of Section Il is ap-
following results are readily available in the literature. plied to a planar 2R manipulator. As shown in the sequel, this

Basic Averaging Theorem (See [25, p. 172]et systems method can steer a passive joint as well as a free joint to their
(17) and (19) satisfy the following assumptions:1)= 0 is  target positions. Note that the linear control methods are not ap-
an equilibrium point of system (17); 2=, ¢, <) is locally Lip-  plicable to these examples, because the linearized system of a
schitz continuous in botl ande; 3) y = 0 is an equilibrium  pjanar 2R manipulator is not controllable. Note also that if one
point of system (19); 49,y () is locally Lipschitz continuous in actuator of a manipulator in outer space fails, then all masses of
y; and 5)e(z,t) = g(z,t,0) — gav(2) is piecewise continuous he |inks before and after the failed joint can be combined into
in ¢, has bounded and continuous partial derivatives,iand two equivalent masses. Therefore, the problem can be reduced
e(0,¢) = 0, forallt > 0. Moreover,c(z,t) andde(z,)/0z o the problem of controlling a two-link manipulator.
have zero mean values. Then, there exists a continuous and

strictly increasing functionp(e) with (0) = 0 such that for 5 A planar Manipulator With a Free Joint
agivenT > 0

[ll. EXAMPLES OF CONTROL LAW DESIGN

Fig. 1(a) shows a schematic diagram of the planar manipu-
|2(t) — y(®)]] < p(e)br lator in which the second joint is free. Fig. 1(b) shows an exper-
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Note that the gravity term does not appear in the equations,
and check that the linearized equation at an operating point

0:,65,61, 922‘ = (1,6, 0,0) is not controllable.

X - Following the procedure of Section II-A, a partially linearized
A system, (3) and (4), is derived as follows:
6, =u (21a)
S Free joint 92 = — (1 + d cos 92)91 — dHf sin 92 (Zlb)
m, I, > whered = myl;ly./ (mQch + IQ) is a constant. Now, assume
4 that the active join#; has been positioned at its desired location
" Active joint with an appropriate control action. For instance
@ w="04+k, (91d - 91) + kp(61a — 61)

would suffice, in whichk, andk, are position and velocity
gains. While the active joint moves to its target position, the
position of the free joint will be governed by (21b). Now, the
control task is restricted to controlling the free joint. With the
state variables defined by = 6, andx, = 65, the state equa-
tion of (21b) becomes

&1 =x2, 1(0) =z10

. . N2
29 =— (14 dcosxy)f; — dsina; (91) , 2(0) = zg0.

(22)
Parameters link 1 link 2 Note that (22) corresponds to (6a). Observing thais the
) second highest derivative appearing in (22), introduce vibrations
mass(10~ kg) 200 255 according to law (7) as follows:
. -3 .
Inertia(10~ kgm?) 3.097 3.499 A(t) = 61(8) — 0+ asinwt. (23)

Length(10™° m) 185 135

Hence Ao = 0 and« f(wt) = asin wt have been selected. The

Distance t i :
istance <_>3mass 103 60 following also holds:
center (107" m)

la%
61(t) = —— coswt + 014 (24)
(b) w
Fig. 1. A planar 2R manipulator with an unactuated joint. (a) Schema&nd
diagram of a planar 2R manipulator. (b) An experimental 2R manipulator setup .
and its parameters. 61(t) = cw coswt. (25)

. ) ) Equation (24) implies that once andw are determined, the
imental manipulator together with parameter values tabulatgg joint must oscillate with amplitude: /w and frequency.
below. Using the Lagrange equation, the following equations pfence, by increasing, the amplitude of vibrations will get

motion are obtained: smaller. The substitution of (23)~(25) into (22) yields
Mus(62)61 + Mia(62)8; + Cy (62,61,6) =, i _ ©
. . .. To —da? sin zq sin® wt
Mi2(62)01 + Moo (02)02 + Co (92, 01, 92) =0 0
(20) tw [—acoswt(l—i—dcosxl)}
1
where 2 Xo <a: wt, ;> + wX (z,wt). (26)

M11(62) =mil2, + mal? + mal2, + 2malyly cosf,  NOte that (26) is in the form of (11). Therefore, the generating
equation of (12) takes the form

+ 1 + 127 ‘
Mi(02) =mol3, + malocly cosby + I |:§1:| _ [ 0 } ey = [cl} @
Moo(62) =mal3, + I &2 —a CO.S tH1+ dcols 51? ¢
Cy (92, b1, 92) = — mala.ly sin 6y (29'19'2 + 9‘5) The general solution of (27) is given by
P . B hl(t,c) _ o
C (92, 61, 92) =2moalo.l1 67 sin 6. h(t,c) = [112@7 C)} = [02 (14 deosey) sint} . (28)
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A coordinate transformation that will convert (26) into the stan-  radisec *°° ! : ; ; VL\‘H_
dard form of averaging is defined using (28) as ' SN T A e '

|:-Tl(t):| _ |: pl(t) (29)
xo(t) | | p2(t) — (1l +dcospy(t))sint |
Note thate; and e, are replaced by; and po, respectively.
Therefore, differentiating (29) with respect to time, i.e., ap-
plying (15) to (26), yields (30) shown at the bottom of the
page. In slow time- = wt, with a new variable:(t) = p(t) as
defined in (16), the following standard form is obtained in (31)
at the bottom of the page, where= 1/w.

Finally, by applying the definition of averaging, (18), the fol-
lowing averaged system is obtained:

y1(t) =ey2(t),  11(0) = z10
2 2
sin2y1(t), 12(0) = 0. (32)

in(t) :Ed o
The control system design in Section IlI-B is now totally based
upon (32) instead of (26). It is noted that the initial conditions
of the averaged system does not have to be, in general, the same
as those of the original system. It is also noted that a sufficiently \A
smalle can always be obtained sineavas defined byl /w.

rad/sec =

B. Control Strategies for a Free Joint

Fig. 2(a) shows the trajectories of transformed system (30),
with o = 0.5 andw = 4« rad/s, departing from various initial
conditions in its phase plane. It is noted that two equilibrium
points(+n /2, 0) are centers. It is also observed that fast fluctu-
ating signals are added on top of slow varying signals. Fig. 2(b) (b)
shows the phase portrait of averaged system (32) using the s@fge2. comparison of the trajectories of (30) and (32) (= 0.5,
initial conditions as Fig. 2(a). Comparing Fig. 2(a) and (b), itis = 4 rad/s). (a) Trajectories of transformed system (30). (b) Phase portrait
observed that the slow varying signals in the behavior of (38faveraged system (32).
is well described by that of (32). Fig. 3 shows the trajectories
of the averaged system for variotis. It is observed that by in- system is concerned. But, if the input frequency is too low, the
creasingx, the reachable set expands in the vertical directiorsulted averaged system may not capture the original dynamics
but the trajectory comes back to its original initial position fowell. Fig. 4 shows the discrepancy between the two systems
all as. In this paper, an amplitude modulation technique is utivhen the input frequency is not fast enough. The trajectory in
lized for reaching an arbitrary point in the state space. the left half-plane was not captured by the averaged system.

In deriving an averaged system like (32), i.e., in applying (18Jowever, the averaging theory assures that for all frequencies
to (31), the size of input frequency has not been discussedabove some frequency, i.ef,w > wyp, the averaged system
yet. Because the averaging is performed for a period, the inmatn describe the dynamics of the original system well. Also, by
frequency does not matter as far as the final form of averagedreasingv, the amplitude of,(¢), as can be seen from (24),

o [on(wt, pt)] 1
p(t) - ap XO h(thp(t))7Wt7 w

[ 1 0] | p2(t) — asinwt — adsin wt cos py (t)
| —adsinwtsinp;(f) 1 —a?dsin py (t) sin® wt

pa(t) — asinwt — aed'sin wi cos py (1)

T | —adpy(t) sinwtsin py (t) + o?d? sin® wtsin p; () cos py (t) } ’ (30)

fn 22(7) — asinT — ad sin 7 cos 21 (7) 2(0)| | =0
#(r)=e —adzy(7) sin 7sin 21 (1) + @?d? sin? 7 sin 21 (7) cos 21 (1) | 7 o (31)
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: 7l2
Q 05 1 15 2 25 3 (@)
Y1 rad
Y2
Fig. 3. Trajectory variations of averaged system (32) with varioss(w =
47 rad/s.
radisec [T
e iyt AT
> N

7/2
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Fig. 5. Two basic steering strategies depending on initial and target positions.
(a) When the target distance is greater thdR. (b) When the target distance
is less thanr /2.

#1 i rad

‘ _ o _ positions are given inside the hovering regienjs uniquely
Fig. 4. A discrepancy between two trajectories when the input frequencydﬁtermmed by (33). Therefore, the amplitude of a vibration that
not fast enoughd{ = 1, w = 2 rad/s). .
steers from(y1, y2) t0 (y14, y24) is calculated as follows:

2(y3 — ¥34) (34)

more precise movement can be achieved by increasing .
cos? y1q — cos? yl)

Now, the question is what is the lowest frequency such
that beyond that frequency all averaged systems capture thf{low, an insightful analysis of Figs. 2 and 3 suggests two basic

dy”"’?m'cs of the or|g|n§1I system well. The answer to the 25 ering strategies that depend on initial and target positions. If
manipulator can be retrieved from (26). Because what we w. target distance, i.e 8,, is more thanr/2 rad, then
y L&Ipd — U2, ’

is that the slow dynamics dominates the fast dynamics, tpe . 5(a) is suggested. If the target distance is withj rad,

. . Fl

second term can be set to dominate the first term for selecti h(g, . . .

sufficiently largew. Therefore, the following relation can be{1 nFig. 5(b)is suggesteq. Based upgnthese two strat_eg|e_s,four
control patterns for steering a free joint are sketched in Fig. 6.

deduced: . : L
For example, consider the steering problem from an initial state
wa coswt(1l + deoszy) > do® sin zy sin® wt, (0.5,0) to a desired statér/4,0), which corresponds to the
gase of Fig. 6(a). An initial vibration with frequeneyand am-
plitudec is applied to the active joirdt,. Whené, reaches /2,
i.e.,y; becomesr/2, the amplitude of the vibration is switched
wo > Koda from «; to .y fOr the purpose of reducing traveling time to
) . L the target state. I, begins to decrease, which corresponds to
whereKo Is a design param_eter, which is normally chosen to k?ﬁe point that the averaged trajectory crosses the horizontal axis,
bigger than ten from experience. , the amplitude is switched again t@ which is supposed to be
Let (yl,y?) be thg present state afwha, y24) be the dgswed smaller tham; . Finally, whend, becomesr /2 for the second
state. The integration of (32) froy:, v2) 10 (y1a, y2¢) Yi€ldS 0 o 2 molitudes are continuously modulated, according to
the following relationship: j amp S y Mot ) ing
law (34), in each oscillation. The quarter in which amplitudes
d?a? cos? g 4 12 = d?o? are modulated in each oscillation is called a cruising quarter. All
(SR above observations are summarized in Pattern #1 below. Four
Observing Fig. 2(b), hovering trajectories are defined as thodiferent control patterns for various initial and target states are
trajectories in oval form. Therefore, once the initial and targeutlined below and their applications are tabulated in Table I.

gets smaller and the Poincare map becomes dense. Therefore,
_

Approximating the above equation, the following lower boun
is suggested:

cos® y1q + ygd. (33)




476 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 10, NO. 3, MAY 2002

N\
Y2
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/2
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a, a’s
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Fig. 6. Four control patterns for a free joint (x: Initial state, O: Target state).

Pattern #1

Step 1) Set the initial amplitude and frequencyat
a1 andw = wq, respectively. Fig. 7 shows the
trajectories of the second joint fro 1,92 =
(0.5,0) to (w/4,0) by following Pattern #1.
Fig. 7 is a computer-simulated result. The small
circles appearing at each period indicate the
Poincare map. The initial amplitude and fre-
quency arex = 1.3 andw = 67.

Step 2) If62(t) becomesr/2, changea to cpax. IN
Fig. 7, amax = 1.67.

TABLE |
CONTROL PATTERNS BASED UPON INITIAL AND DESIRED POSITIONS
IGAERIES D

92(0) 2 2 2 2

[o, %] #1 #2 #3 #4

[% n) # #1' 4 43

kY4
[,;, —2—j #3 #4 #1 #2
[37” 27r) wa # # 4

1) ’'denotes the reversed patterns in which initial and desired

positions are reversed.

2) 6,(0)=86,, =0 are assumed.

15

rad/sec
"

05

pyo

05

| Fig. 7. Simulation of the steering problem from initial angle= 0.5 rad to
i target angl#d, = =/4 rad following pattern #1¢; = 1.3, amax = 1.67,
i asz = 1.3,w; = 67, wy = 307).

Step 3) If62(¢) gets smaller than its previous value,
changea to a3, whereas < «;. In Fig. 7,
3 = 1.3.

Step 4) Iff,(t) passesr/2 for the second time, then
vary « sequentially in each oscillation ac-
cording to (34) (the cruising quarter).

Step 5) Finally, if{flx(¢) — 62| < 6 Whereé is an error
bound, switchw to a higher frequency,. In
Fig. 7,ws = 307.

Pattern #2

Step 1) Setinitial valuest = «; andw = wy.

Step 2) Ifé,(t) becomesr/2, then changer sequen-
tially in each oscillation according to (34) (the
cruising quarter).

Step 3) Finally, iflf2(t) — 64| < &, then switchu to a
higher frequencyws.

Pattern #3

Step 1) Setinitial valuest = «; andw = wy.

Step 2) If6,(t) becomesr/2, choosexy > a(w,0) =
V(2y2)/(?(1 — cos? y1)), where a(r,0) is
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the magnitude of vibration whose averaged
trajectory passes througf, 0).

Step 3) If62(t) becomesn /2, switcha 10 cyyax.

Step 4) If62(t) becomes less than its previous value,
switcha to vy, Whereay < aj.

Step 5) If 65(t) becomes3w/2, changea sequen-
tially in each oscillation according to (34) (the
cruising quarter).

Step 6) Finally, if#2(¢)—624| < 6, switchw to a higher
frequencyws,.

Pattern #4

Step 1 and Step 2 are the same as Pattern #3.

If 65(t) becomes3w /2, changex sequentially in each

oscillation according to (34).

Finally, if |02(t) — 624] < 6, switchw to w,.

Finally, it is noted that the first link has to be stopped at an
exact period of input in order to keep it at its desired position.
It is also noted that, once the free link crosses over its target
position, it has to go all the way around again, following Pattern
#1, since there is no backward movement. This is because the
trajectories move only in clockwise direction, as seen in Fig. 2.
Therefore, just before getting to the target position, the input
frequency has to be increased to yield precise movements. The
achievement of a precise landing at the target position is shown
during the last stage of the cruising quarter of Fig. 7 and from the
tiny oscillations at the last stage of the control input of Figs. 8
and 11.

C. A 2R Planar Manipulator With a Passive Joint

Let the nonconservative friction force existing at the secor’lzﬂ)g
joint be—b, 0> —
in the bearing and is the Coulomb friction. Then, (21a) and
(b) can be written as

25

rad

0.15
rad
01

005

-0.05

0.1

477

sec

(b)

8. Vibrational control of afreejointi; = 1.3, ap.x = 1.67, a3 = 1.3,
= 67, wy = 30w. (@) Position control of a free joint following Pattern #1
bc, whereb, is the viscous friction coefficient (experlmental results). (b) Control input used for (a) (experimental results).

Therefore, the generating equation for a passive joint takes the
same form as the case of a free joint. The standard form of av-
eraging of (36) now becomes (37) shown at the bottom of the
page. Finally, the averaged system is derived as follows:

(35a)
dﬁf sin 92 - fuéQ - fc (35b)

91 =U
92 = — (1 + dcos 92)91 —

wheref, = b,/ (m2l3, + I5), f. = bc/ (ma2l3, + I5). In case 91(t) =eya(t), dy(0) = =10
that the mass and inertia term of the second link are much larger d2a2
than the Coulomb frictionf can be practically neglected. The #2(t) =¢ < sin 2y (t) — foy2(t) — fc) , 42(0) = 0.
frictional effects normally stabilize a system. But in our case (38)
the frictions hinder the movement of the joint by dragging it to
its equilibrium point. Therefore, the control inputs have to be
modified to compensate the existing frictions. D. Control Strategies for a Passive Joint
Applying vibrations according to law (11), (23) takes the
form as
T1|
HE!

Fig. 9(a) shows the trajectories of (37) for various initial
conditions. It is found tha{£w/2,0) are two stable foci.
Fig. 9(b) shows the phase portrait of (38) for the same initial
conditions as Fig. 9(a). As can be seen in Fig. 9(a), the am-
plitudes decrease due to friction while an individual trajectory
goes to an attractor. The overall control strategies for a passive

T2
—do? sin xq sin? wt — foxo — fc}

0
et [—a coswi(1l 4+ dcosxy)

} . (36)

zo(7) — acsin T — ad sin 7 cos 21 (7)

Ny —
#(r)=e sin 7 sin 21 (1) + a?d?sin? 7 sin 21 (7) cos 21 (1) —

foalr) - S

[ —adz(r) fo
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Fig. 9. Comparison of the trajectories of (37) and (38 (= 1,
w = 10w rad/s). (a) Trajectories of transformed system (37). (b) Phase
portrait of averaged system (38).
Time(sec)

joint will be the same as the case of a free joint. However, ©

the main obstacle is how to compensate the energy dissipatian 10. A trajectory compensation strategy for a passive joint. (a) A

due to friction. An idea is to increase the amplitudes of vibrgompensation strategy in the presence of friction. (b) Comparison between
compensated and uncompensated trajectories: target position /2, 0.5).

tions for the purpose of compensating the energy dissipatiqg). Input amplitudes modulation for (b) starting from an initial value
Normally it would be difficult to know the exact friction. The as = 0.7402.

exact friction may be identified by some parameter estimation

scheme. But, this issue is out of the scope of this paper. dfljated using (34). Because the fictitious pafittis given by

practice, the trend in Fig. 9(a) can be measured using emsh@gf w2y + ¢'), a is modified as

sensors. As discussed in Section llldBgets smaller near the = "~

target position. Therefore, i is too small, the trajectory may \/
Oy =

2 ((ny + 6/)2 B y§1) (40)
d? (cos? y1, — cos? y1 )

stick to (7 /2,0) and becomes unable to move out. There-
fore, it is necessary to keep the current trajectory outside an

orbi.t that might be too §Iose tet/2,0). . Fig. 10(b) demonstrates the steering capability to the target po-
Fig. 10(a) shows a trajectory compensation strategy for a pagijon by ‘a continuous modulation of input amplitudes in the

sive joint. Let the departure point b(y10, y2,) and the targef[ resence of friction, while Fig. 8(c) shows the increasing trend
point be B(y: s, y25). Let the error between the current poin f input amplitudes according to (40).
(y1, y2--) @nd the target orbit along the vertical directiondde

Then,¢’ is calculated as
¢ IV. EXPERIMENTS

A. Overview

242
e = \/d %0 (cos? Y1, — cos? Y1) + Y202 — y2r.  (39) Fig. 1(b) shows the experimental 2R manipulator. The entire
2 setup consists of a 2R mechanism, a data acquisition board, an
interface board that includes a servo controller and two signal
Now, a fictitious target point is inserted on the desired tra-conditioners, and a PC equipped with a digital signal process
jectory usingB ande¢’. And, a new input amplitude,, is cal- card. The manipulator frame is made of aluminum alloy. The
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Fig. 11. Vibrational control of a passive joint (experimental results)t.

following Pattern #1. The tiny oscillations appearing after 7 s
indicate that the frequency has been increased,te= 30x.
Experimental results agree well with simulation results.

In order to increase friction at the second joint, an adjustable
slip ring has been used. Fig. 11(a) shows an experimental result
of vibrational control of a passive joint for a given initial posi-
tion at 20 and a target position 30Fig. 11(b) shows the input
vibrations used for Fig. 11(a). As seen in Fig. 11(b), the input
amplitudes have been modulated according to (40).

V. CONCLUSION

An open loop vibrational control for an underactuated me-
chanical system has been investigated. To move an unactuated
joint, the dynamic coupling occurred due to the oscillatory mo-
tion of the actuated joint was utilized. A generating equation for
deriving a coordinate transformation was derived from the un-
actuated joint dynamics. The input amplitudes were determined
by analyzing an averaged system representing the unactuated
joint dynamics with a periodic input. The averaging method was
extended to the system with the derivatives and antiderivatives
of vibrations. To demonstrate detailed design steps, a 2R planar
manipulator with a free joint and a passive joint was used. In
zero gravity space, a manipulator with a failed joint can be con-
trolled in this manner. Considering the fact that the method in
his paper can control an uncontrollable system, it will provide

(a) Position control of a passive joint (initial positien 20°, target positon a Viable tool when the conventional control schemes are not

= 30°). (b) Motion in time of the first joint: control input for (a).

applicable.
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