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Robust Adaptive Control of a Time-Varying
Heat Equation with Unknown Bounded
Disturbance*

Kyung-Jinn YANG**, Keum-Shik HONG***,
Wan-Suk YOO*** and O-Kang LIM***

In this paper, a robust model reference adaptive control of a radiative heat
equation with unknown time-varying coefficients and spatiotemporally varying distur-
bance is investigated. In the adaptive control of time-varying plants, the derivative of
a Lyapunov function candidate, which allows the derivation of adaptation laws, is not
negative semi-definite in general. Under the assumption that the disturbance is
uniformly bounded, the propased robust adaptive scheme guarantees the boundedness
of all signals in the closed loop system and the convergence of the state error near to
zero. With an additional perststence of excitation condition, the parameter estimation
errors are shown to converge near to zero as well. Simulation results are provided.
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1. Introductien

In this paper a robust model reference adaptive
control {(MRAC) of a radiative heat equation with
unknown time-varying coefficients and spatictempor-
ally varying disturbance is investigated. The heat
equation is a distributed parameter system (DPS)
governed by a linear parabolic partial differential
equation (PDE). Such DPSs are described by opera-
_ tor equations on infinite dimensional Hilbert (or
Banach) spaces. As in the adaptive control of finite
dimensional systems a robust MRAC, under the
assumption that the structure of the plant is known

and only parameters in the system equation are un-

known, is derived. Distributed sensing and actuation
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are also assumed®1813),

Compared to the adaptive control/identification
of finite dimensional systems, that of infinite dimen-
sional systems is not well developed and has been
recently studied®H@HnOmantansun o the case of
adaptive control for time-varving infinite dimensional -
systems, the MRAC of a linear slowly time-varying
parabolic system was presented in Hong et al."2.

The mathematical models of physical plants that
control engineers adopt for the purpose of designing
control systems normally contain some uncertainty.
This is due to imperfect knowledge on the system
parameters and/or - disturbances. Parameter time-
variations may be due to unmodeled dynamics, for
instance, neglected frictions, neglected high order
dynamics, etc., and may also arise from linear approx-
imations along different motions over a wide range of
operating conditions. Studies on the control of linear
parabolic PDEs with uncertainty include H™ algo-
rithms developed in the frequency domain'®®,
Lyapunov-based robust controller design methods®,
and adapative control“*\,

The objective of a MRAC scheme is to determine
a feedback control law which forces the state of a
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plant to asymptotically track the state of a given
reference model. At the same time, the unknown
parameters in the plant model are estimated and used
to update the control law. Typically, the whole
adaptive system is represented as two error systems
describing the evolution of the state error and the
parameter estimation errors. In the infinite dimen-
sional systems the %State error and the parameter
estimation errors take the forms of a partial
differential equation and ordinary differential equa-
tions, respectively. The resulting closed loop system
consisting of the plant, the reference model, and the
estimator will be nonlinear. This is true even if the
underlying plant and reference model, and the
estimator are linear. The nonlinearify arises in the
coupling of error dynamics. Consequently, the scheme
requires a careful stability analysis to ensure that all
signals, both input and output, remain in some sense
bounded. It is also desirable, although not necessarily
essential, that some sort of parameter convergence is
achieved.

To conclude various stabilities in the sense of
Lyapunov, the associated theorems require that the
time derivative of a Lyapunov function candidate, v,
should be at least =0, ie., negative semidefinite.
Therefore, if V allows positive values near an equilib-
rium point, no stability can be asserted. In the MRAC
of time-varying plants, the derivative of a Lyapunov
function, which is introduced to derive adaptation
laws, is not negative semi-definite in general.

The present paper makes the following contribu-
tions: To the authors’ best knowledge, this paper is
the first treatment of an infinite dimensional system
with unknown time-varying parameters and additive
spatiotemporally varying disturbance in the frame of
robust MRAC. The unknown time-varying parame-
ters are not required to be slow, which can he allowed
to vary arbitrarily fast, and the disturbance is allowed
to vary in both time and spatial variables. The well
posedness of the closed loop system is established.
Using an appropriate Lyapunov function candidate,
the tracking error convergence near to zero is estab-
lished. With the additional assumption of persistence
of excitation, the convergence of parameter errors
near to zero is established as well,

The paper has the following structure. In section
2, the standard MRAC of a radiative heat equation
with time-varying coeflicients is reviewed. In section
3, a robust MRAC algorithm in the presence of hound-
ed disturbance is proposed. The derived control law
guarantees its robustness with respect to the inacces-
sible disturbance and yields the desired equations of
motion, thereby ensuring the adaptability of the con.
troller. In section 4, with the persistence of excitation
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condition, the adjustable parameters in the adaptive
controller are shown to admit convergence to their
nominal values when an appropriate reference signal
is used. In section5, computer simulations are pro-
vided. Conclusions are given in section 6.

2. Problem Formulation

In this section, the standard MRAC algorithm for
a linear, I-dimensional, radiative heat equation with
time-varying coefficients and bounded disturbance is
formulated. As in the adaptive control of finite dimen-
sional systems, under the assumption that the structure
of the plant is known and only parameters in the system
equation are unknowrn, the MRAC is investigated.

The heat equation is a DPS described by a linear
parabolic PDE with time-varying coefficients as

E(x, t)y=alt)eulz, )+ ()&, ¢}

+ulx, Y+ olx, £) (1)

where x<[0, 1), £>0, a(t) and &(f) denote the con-
ductivity coefficient and the radiation coefficient,
respectively, and are unknown time-varying
coefficients that are not necessarily slow-varying,
&(x, t) is the distributed state of the plant, ie.; the
temperature at position x at time ¢, £=0£/0t, &=
#&/axr®, u{x, t) is the control input function, and
¢(x, #) is the inaccessible external disturbance. Note
that ¢(x, {) is a spatiotemporally varying function.
Boundary conditions are given as

£, H=h(8), &1, H=ht).
Initial condition is given as

&z, 0)=&(x).
The output ¥ of Eg.(1) in general is given by #{z, t}
=G&{(x, ), where G: C{0,1]xR")-C(RC[0,1]x
R*) is a linear bounded time invariant operator with
the form depending an the characteristics of the sen-
sor. The following assumptions are made.

Assumptions: (i) The structure of Eq.(1)

(plant) is @ prioi known. (ii} Boundary conditions
are g priort known and A(-), k- )= C[0, 00), (iii)
Distributed sensing and actuation are available, and
the observation operator ( is a priori known (G=1
may be assumed, where [ denotes the identity opera-
tor from C{[0, 1] X R*) onto itself). (iv)} Coeficients
a(t) and 5(¢) are unknown and uniformly bounded
with vniformly bounded derivatives. However, a{#) >
0 is assumed, due to the parabolicity condition of the
plant. (v} Disturbance o(z, ¢) is unknown but uni-
formly bounded.

Now, the reference model with the same bound-
ary cenditions is defined as

ém(-r, t)=aw£m(-r, t)+balnlx, t)+rix, 1),

(2)
Ea(0, £)=i(t), &n(l, )=ha2),
&nlx, 0)=Eno(x)
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where the subscript » indicates variables and parame-
ters related to the reference model, and »{(z, ¢) is the
reference input which is analytic on [0, 1]X[0, ), It
is assumed that @» >0 and bx< gar®. "It is known that
if 7(, +) is analytic in [0, 1] %[0, o), the solution of
Eq.(2) is analytic in [0, 1] X{0< ¢t < T <oo}®,

The control objective for MRAC can now be
stated as follows: Find a bounded control signal
ulx, ¢) that drives &(z, 1)} to &«(x, £) asymptotically
and keeps all signals in the closed-loop hounded. Now
adopting the procedure in Hong and Bentsman®V,
consider a control law of the form

u(x, )=(an—a(t)éxlz, ) +{bn—b(t))&(x, 1)

+7(z, ¢) (3)
where & and & are adaptive estimates to be specified
in the sequel. Substituting Eq.(3) into Eq.{1} yields
the following closed loop plant equation

E=(an—D)rs+(bn—b)e+r+o (4)
where d=d—a and 6= b— b are parameter estimation
errors. Note that if 4=5=0and ¢=0, then Eq.(4) is
exactly the same as Eq.(2).

Introducing the state error e =& — &n,-the follow-
ing state error equation is obtained.

é=(am" é)é‘xx""(bm i 5)9 “(dme:+ 55»1)')’" &,

e, =el(l, £)=0, elr, 0)=~E&(2)— &nlx). (5}
Now, consider a functional V : L0, 1) X B*— R* such
that

Ve, 4, b)— +<e, e>+— +%52 (6)
Yo

where 7. and 7. are pos1twe constants, which will

become the adaptation gains later. €+, -> is the inner

product in the space LA0,1) defined as <k go=
j:lk(.r)g(x)dr and with the induced norm |-|.

Differentiating {6) with respect to £ along {5)
yields :

Vit)=¢e, e>+———aa+-55
—‘ﬂm<€, e.r:>+bm<€, €>
+a —<e, ex>—<e Gnee>+-14)
t 1 ya

+5(—<e.e>—<e,5m>+i£)+<e,¢>. (1)
¥s

Let the differential equations of the adaptive
estimators in Eq.(3) be given as
G=7ra(<e, exd+<e, fns), (8.2)
b=n<e, e>+<e, &nd). (8.b)
From Eqgs.(8.a), (8.b) the differential equations of the
errors of the adaptive estimates are given as
G=7a(<e, ex>+<e, End)— 4, (9.2)
b=y,({e, e>+<e, &ad)—b. (9.h)
Then, substituting Eqs.(9.a), (3.b) into Eq.{7) yields:

V< —{(gan?—bn)lel? it L {e, p>.
7.2 ?'b
(10}
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“Now, from Eq (10) the followmg observations
are made.

“Case (1) Assume that the system coeﬂiments a
and b are constant, i.e., d=5=0, and the disturbance
@=0. Then, Eq.{(10) becomes V<0, ie., negative
semidefinite, which implies that Eq.{ 6 } is a Lyapunov
function. Therefore, the stahility of an equilibrium
point (e, &, £)=(0, 0, 0) is guarahteed. Furthermore,
the convergence of the state error € to zero is also
guaranteed by the uniqueness and semigroup prop-
erties of the solution™,

Case {2) Assume that ¢=0, but z and & are time-
varying. Then, Eq.(10) becomes

V< —(ant?=ba)lelf-tai—-L85. (10.a)
) Ya s
In this case, V may take positive values because of
&4/ ya+ b5/ ys. Hence, no stability conclusion can be
drawn from the Lyapunov function candidate Eq.( 6 ).
But, further assume that

(a) &and b are bounded and 4, & L.. Then, the

integration of both sides of Eq.(10.a) gives

[ (@nm® = badleldt < V(0)— V(o)

+[ (—~aa+*—-bb)a’t<oo

Therefore, the tracking error e{{) converges to zero
as t—oo, '

(b) Naw, if only the boundedness of @d and &b is
assumed, then no asymptotic convergence to zero can
be asserted. However, if dd/ya+bb/ys is sufficiently
small, then it is guaranteed that e is uniformly ulti-
mately bounded within an arbitrarily small neighbor-
hood of zero!'®,

Remark 1: In order to have the boundedness of
@/ va+ b6/ ¥s, the boundedness of individual 4, &, 4,
and b ig required. The boundedness of ¢ and
depends on the plant, which can be assumed. Also, in
the case that ¢ and # are slowly varying, the bounded-
ness of @ and b was shown through averaging analy-
sig"?, A successful adaptation is possible as long as
the plant parameters vary slowly. Now, more general
problem would be one in which @, &, ¢ and & vary in
unknown fashion but bounded (no slow varying
assumption). The aim of this paper is to show not
only the boundedness of all signals in the closed loop
including & and & but also the convergence of 4 and §
to zero.

3. Robust MRAC : Stahility

As discussed in section 2, the adaptation laws
(8.a), (8.b) with the boundedness of d&{¢) and 5(¢) were
not able to assure the boundedness of e, & and b due
to disturbance and unknown time-varying behavior.
In this section, the control and adaptation laws are
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modified so that the boundedness of all signals in the
closed loop system and the convergence of the state
error € near to zero can ‘be assured. . "Assume that
ez, ¢} is uniformly bounded by g, i.e.; ge2le(x, £),
where p is a positive constant that is unknown. The
main idea is to consider the worst case of the uncer-
tainties in the form of possibie bounds. Based upon
the worst case, the following control algorithm is
proposed.
Control Law
ulz, y=(an—alf))erlz, t)
+(brb(t))£(x, O+r(x, )+f(x, )  (11)

where the additional term f(z, ¢) is regarded as a new
input signal to be determined based on robust control
strategy. Let the additional input f{z, ¢} be given by

1. 0=~ 1e, o e, °@ O )

where .20, and /. is the estimate of z..
Adaptation Laws

é: — Qo+ }’a((@. exx>+<€, Em.r:)'i'ga) (133)
b=—dsb+ 7:{<e, e>+<e, Ex0tgs) {13.b)
ﬁ= *5eﬁ¢+7e”€" (13(:)
where
2
8:>0, ge= —m‘:ﬁa,

£a >0, #a2|frz{s fﬂé_vﬁa(a+ 5:1)

2

_ 5,
|6 s+ €

Eb>0, ﬂb2|fb|, fbé_%(b‘i"’g:),

de>0, and 7. >0,
Note that the adaptation laws (13.a)-{13.c) are im-
plementable. The terms — a2, — 6, and ~ Sefe in
Eqs.{13.a)-(13.c) are purposely inserted to enhance
the convergence of 4, &, and ., respectively: gs and
¢» are introduced to cope with the variations of a and
b, respectively. Since a, 4, b and & are assumed to be
bounded, #: and #: can be selected at reasonable
values by making y. and y» sufficiently large. It is
also noted that the control magnitudes pa, ts, and /.
are to compensate the maximum possible bounds of
fa, fs, and @, respectively, for both positive and nega-
tive cases.

Substituting Eq.{11) into Eq.{1) yields the fol
lowing closed loop plant equation.

E=(an— et (ba—b)E+r+f+yp. (14)
Then, the following state error equation is derived.

é’:(ﬂm_é)ex.r+(bm—b-)e_'(d&'m.rx'i'gfm)‘i‘f‘l—qv,

e(0, H)=e(l, )=0, elz, 0)==E(x)— Enolx). (15)
Now, consider a functional Vi: L0, )X RP=R*
such that

Vole, 4, )= **(e e)+

s >0, go=r—

]. 2 1 -3
7bb+27’eﬂe'

(16)
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Differentiating (16) -with respect’ to “F along (15)
yields:

| VHO=amte, exd+bate, >+ e, >
- 1 AL a— _ 1z
e, Gued +-d)+ B —Ce, e>—Ce, a2+

+<e, +<e, ¢>+rl,a¢;ie. (17

From Eqs.(13.a), (13.b} and d=d—d and b=4—5, the
differential equations of the adaptive estimates errors
are given as

a=—Sad+ 7al<e, x> <€, Emea> +9a)—d

b=—8:b+7:(Ke, ed>+<e, &> +gs)—b.
Therefore, Eq.(17) yields :

‘1'4:(:)=—a,..<e:, e+ bale, e>+(f er+<e, e>

1

g N e .’-‘eﬂe"f‘

+_7_b( “ aob + ngb) ‘“be
= —amfez, ecr+ bnle, e)+4F, e>+<p, e>
+ folif Ye— Acl®+ Gfat A9 — AsbB®+ Bfs + Bgs
(18)
From Eq.(18), the

a( Sad+ Yaga) ——aa

where Aa=08a/7. and As=38s/7s.
following inequality is derived.
Vo(£) < —(amm®— balelP+ < £, >+ ol el
+ el vellel — Befle)/ ve— AalP+ Bfa + dga — Anb®
+ 5fb + 59:,
< —(ant*—bulelf +<f, &>+ pefel
+ el yell el = Bofie)/ ve— A+ Ifilﬁa + dga— afs
= aga—-ﬂab +|b|ﬂb+ b(}b —bfo—

<~ (aur~ b)feli- —fnng?muen
_%fieﬂe_/‘aa-z'l'“é“ﬂa_'lﬁﬁ_?_?ﬂuafﬂ

2 24 7|2
+m—haa Abb +[b|ﬁb Eﬂ%‘l‘g*bfh

z
++L"
|66+ €0 o i
< —(ant®— ba)| e[~ Aad®— Asb®
~ Aefis {Ea+i“ 2+Laa+|afpa+eb+3”bz
1., de
+—bb+|bmf,+ee+2—%ue}. (19

where Ade=0e/7ve. Therefore, the derivative of the
Lyapunov function candidate is bounded as follows:
Vo —(ann®— bu)l| el — 2a@ — Asb®— Actie+ v(2)
(20)

3a 1 s

where v(t)—sﬁ-y a +y—aa+|a|pa+sb+

+%b6 + Bty + £ +26—7¢;ze. Nite frat:ale) i brunded

because of the assumption that a, b, &, b, and u. are
bounded.

Remark 2: The existence and uniqueness of the
solutions for coupled nonautonomous dynamical
systems (15) and (13.a)-(13.c) are addressed in
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Appendix A. Since v(¢#) is bounded, the solutions ¢, 4,
and & are uniformly ultimately bounded®, v

Remark 3: The equations of |fal and [fe] can be
rewritten as

ifalv-r —(a+ )| :

andifb|~‘— (b+5)| 11 Sub+b).

From #a2|fsl and 2|5, ta and #» can be chosen at
reasonable values according to | /| and |/sl, respective-
Iy. Thus, v(#) can be pushed in an arbitrarily small
boundedness region by making sufficiently small &a,
€5, Ee, Oa, O, 8¢ and sufficiently large ¥a, 7s, 7e.

All the above developments are now summarized
as follows:

Theorem 1: Consider the coupled nonautonomous
dynamical system (15) and (13.a)-(13.c). Then all
signals in the system are bounded. Furthermore, the
uniform ultimate boundedness region of the state
error e can be made arbitrary small near to zero by a
suitable choice of £q, €», €6, 8a, 05, 8¢, 7a, 75, and 7e.

—8aa+ 4

4. Parameter Error Convergence

Thecrem 1 implies that the basic control objec-
tive is now achieved, i.e., all the signals in the closed
loop are bounded and the trajectory following is
achieved. In addition to the state error convergence
near to zero, it is also desirable to have an adaptive
control scheme to provide parameter estimation error
convergence near to zero as well, i.e, the parameters
d and b converge near to the true parameters a{¢) and
b(¢) as quickly as possible. If the parameter error
convergence is established, the robustness of the
entire adaptive algorithm can be improved. To assure
this, the following additional persistency of excitation
condition on the reference model is required,

Let Ha H'(0, 1) be a Hilbert space such that £, £.
& H which is densely and continuously embedded in
L0, 1), and H* be the continuous dual space of H.
Let AnSL{H, H*) be the reference model dynamic
operator, i.e., Anl and®/dx*+ bn, and A(g): H~H*
be a differential operator such that A{q)a q.0%/dz"
+aq for each ¢=(qu gz G)EQ, QAR And, let
Dom{Aw)={¢=H: An¢=L:} and Dom{A(qg))=
{¢€H: Alg)¢<Ly). The following definition is
adopted.

Definition : The reference model { 2 ), or the triple
{Am, 7, E€m}, is persistently exciting if there exist
positive constants f, do, &, and ¢, such that for each
gEQ with |gle=1 and ¢=0 sufficiently large, there
exists ! €[¢, t + m] for which

| aoea], zerlad+w @
Theorem 2: If rEL{0, ¢; H) and &m&H, and if
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the reference model (2) is persistently ‘exciting, then
the .uniform ultimate boundedness region of the
parameter estimation error vector 8=(d, b, /) can be
made arbitrarily small near to zero by a suitable
choice of &q, £b, £o, 6a, 85, 8¢, 72, 75, and 7e.

Proof : In this proof, the following notation is used
|'|z=|f'“h. ﬂ"z"“m and [*|s=l]s.. For the opera-
tors defined above, there exist a, a1 >0 and K> 0 such
that for ¢, &S H and qE¢

[<Anth, ¢3] < all ¢l o, (22)
KAL@) b, | <aalaldullll, (23)
il « < Kol ¢t (24)

From Eqs.(13.a)-(13.c}, the parameter estimation
error system is rewritten as

<6, @>e=CAlygte +&n}, e>+<{— 38+ plel.

+ 79— 6% 2o (25)
where 7¢=(7aq1, 7582, Yeqs), 00 =844, Bub, Befic}, 7o=
(0,0, 7a), y9={7aga, ¥og5, 0), and 6*=(d, b, ze).

Now assume that »ELs(0,00: H) and mEH.
Then, EnS L(0,90: H), see Theorem 2.2 of Bohm
et al.®. Assume that 16(¢}/7f¢ is uniformly bounded
by © where 8/y=(&/ va, b/ ¥s, fie/ e). Then, from Egs.
(23) and (25) it follows that for q=%(5 ¢ ))

e
18(&)—8(H)q SUD|<9(£'2)“‘9U1).Q>O[
—Sup

)

< Sup<A.(rq){e(t)+$w(t) e(t)|d!

+ sup|< 88+ volela+ ya— 6*, ¢>dldt

4o iglg:

Sm_[l le(NFae

+ Ol [ le(lat + [ "o
— plela—yg+ 6%, 6/ r>dldi
<a [ “le(IFdt +all nl eumini{ti— 112

x{ [{"ue(:)ﬂwr}”ﬁ% [ 186~ rlel— s

+ 6%, 8/v>oldt. 26)
For &> #, Eqs.(15), (22), (23), and (24) imply that

|["aemena],
=| [ acoonen+ e,
<l ettt [ lane(Dleat+ [ 1)
+ @ Dl e dt = Kole(to)la+ Fole(f)2
+alti— 7| [ letorar}”
+ [ O+ oDl
< Kile{ )|+ Kole( )]

+ake= 0" [ “le(lar] " +ad+ w)n— 1.
(27
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Once again assume that 1‘1_1516(:)19>0, ‘and et

{#x}7=1 be an mcreasing sequence of positive numbers
for whlch hm t;.—OO and

Iﬁ(h)[qéﬁ'ﬂ, k= 1 2 ; (28)
for some co>9. Assume further that the reference
model (2) is persistently exciting, and for each £=1,
2,0, let hE[fﬁ, fﬁ"r“fu] be such that

' :m Al(&fﬁ;)é(:)dt”‘ = g+ (e + #e)%:_
. N )

Then, using Egs.(22), (23), (26) and (27), we obtain
the estimate
0< cosot (e + 12e) 6o

=cu(5o+(|ﬁel+pe)i)

a8 0],

=| /. ,w(:k))e.(r)dtﬂ*

<| 2" akeuneal,

S IR O OR R P |
< Kole( 8o+ 8ol + Kol e{ £z

+an/&{ [ e dt] "+l + 15
‘+‘G’1|5( fk+ 7o+ o)

~6(Rlo [ " leoll+en Dl at
SKa|e( f_k+ 50)|2+ Kn[E( f-.«)iz

ta/B{ [T et ar)”

(i + udet- x| a [ * Lol at

=+ ﬂ'lﬂfw(f)"!. (D n-mm B

(L7 Netorteae) "+L [ 5 "co8~ plely

~rg+ 6", e/mldt}[w_o{ [ etoar)”

+ Enloctomn]. (30)

Note that Eq.(30) is rewritten as
< cogo

< Kale( tet 8o)lo+ Kole( Bl + anv'Ss {f o

xleelide} +ax|a [ le(o)at

fx+ Tg+ o 2
+ || Enl )] Laivomanr ¥ l'n'f‘ao{f le (f)Hde}
+%j;:'”°”°l<aé— rolel— rg+ 6%, 6'/J'>ola't]

<[ Va [ et} bl Ol |

(31}
From the adaptive laws (13.a)-{13.c), we can have
K88 —yg+ 6%, B/ yde< v (t)

<|6(t)le
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where v {#)=e.+
Ya

a’+%ad+|a|ua+£a+ K3 bt

+";i’5b.+lblﬂb and (¢} can be made arbitrary small

near to zero by making sufficiently small &g, &5, 02, &5,
and sufficiently large 7., 7. Now, from Appendix B,

t+L i
for any L >0, l‘i_gl j; " le(s)Pds=0. Therefore, letting

k-0 in Eq.(31) and sufficiently small eq, 26, &, S, 0,
8, and sufficiently large ra, s 7., Theorem 1 and
Appendix B imply that
0< cogn _
<K Liﬂ]e( txt 8ol

+ K Ll_l:gle( t-l)|2
+anBalim " *e(0)lar) "
+a X [lhiﬁQlj;'ﬁ“”ao"e(f)“zdt + ] Enl ) Lawonty

X m{lim f T et}

+—1~11m

+6*, 6/ r>aidt][Ja_o { lim f_ﬁ‘-‘”"||e(:)[|2dz}”

+ &l Em(f)ﬂf..cu.a-,m] ()

which is a contradiction, and the theorem is proved.
O

Fu+to+dy

l(ﬁg‘— 7’0[6!2—

5. Simulations

To illustrate the application of the theory devel.
oped in the previous sections the heat transfer equa-
tion is chosen to have a time-varying coefficient and a
spatiotemporally varying disturbance, Let the heat
transfer eguation be given with known homogeneous
boundary conditions as

=a(t)eutut+e, r[0,1], >0

&0, H=2(1, H=0, >0

&(z, 0)=&(x)=0.2 sin (2nx) (32)
where a(f) is the time-varying conductivity and
¢(x, t) is the spatiotemporally varying latent heat of
transformation which is treated as disturbance. a{?}
and ¢(x, t) are unknown, but for simulation purpose
a(t)=3-25sin(3¢f) and ¢z, {)=0.3+0.5sin (3xxr)
sin (5¢) are assumed. The reference model is chosen
as

En=058nz+5, [0, 1], £<0

&n(0, )=2n(L, 1)=0, >0

En{x, 0)=—sin (xx). (33)

In this case, the houndary conditions establishes
H2aHy(0,1). The contro! gains in Egs.(12), (13. a)
and (13.c) are chosen as &.=0.1, 8,=0.01, y.=
#e=0.2, £,=0.01, 3.=01, and y.=30, respectwely.
Figure 1 shows the convergence of the state error
e{x, t) to zero. Figure 2 shows the convergence of the

Series C, Vol. 44, No. 3, 2001
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Fig. 2 Convergence of an estimated parameter d(?)
{(solid line) to its true value a{?) (dashed line)
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Fig. 3 Convergence of an estimated parameter g.(¢)
(solid line) to a bounded value of disturbance
norm [|@(x, ¢)| (dashed line)

estimated parameter 4(f) to the plant parameter a(Z).
Figure 3 shows the convergence of the estimated
parameter @{¢) to a bounded value of disturbance

Series C, Vol. 44, No. 3, 2001

norm fig(z, &),
6. Conclusions

A robust MRAC algorithm for a radiative heat
equation with unknown time-varying coefficients and
spatiotemporally varying disturbance was developed.
The time-varying coefficients were assumed to be
uniformly bounded with uniformly bounded deriva-
tives, but they were allowed to vary arbitrarily fast.
The disturbance was also assumed to be uniformly
bounded. Under the unknown plant parameters and
external disturbances, the robust MRAC law devel-
oped in this paper assures the closed loop system to
track a desired signal that comes from the reference
model. Because the derivative of a Lyapunov function
candidate was not negative semidefinite, only uniform
ultimate boundedness would have been concluded.
However, further analysis in this paper has shown
that the state errot, which remains in the derivative of
the Lyapunov function candidate, converges near to
zero. Also, with the additional persistence of excita-
tion condition, the algorithm guaranteed the conver-
gence of the adjustable controller parameters near to
their nominal values. The feasibility of using a finite
number of sensors and actuators is under investiga-
tion.
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Appendix A : Existence and Uniqueness

Rewrite nonlinear error equations (13} and
(13.a}-(13.c) in the following form

2=A(t)z+ F{t, 2), 2(0)=2 (A1)
where z=(e, 4, b, g)7, d=d+a, b=5b+b, f.=j.
+ tte, and

(am+a)§ax—ez+(bﬂ+b) ¢ 0 0

A= 0 ~8: 0 90
0 ¢t =68 0
0 0 0 -4
Aty 0 ¢ 0
6 —& 0 0
0 0 =& 0|
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F (t zj‘
_aexx ‘be'l‘(a a)sm"'(b b)5m+f+@
c<e en>+ 7’a<€ Em::) + Yada
e, >+ 7uke, Endtregs
el

where'’ Ao(t)é(am+a}-—-.r+(bm+ b)

space as W& Li{0, _I)XRa. and

D{A)Y={{e, 4, b, HHEW : eSH*0, DN H(0,1)

. with e(0)=0=¢(1), and &, §, 2.SR}. (A2)
Note that the boundary conditions of Eq.(15) have
been incorporated in the space HZ(0,1)NH(0,1),
which is the domain of the differential operator A..
D(A) is dense, and A is a closed operator{®®,

For zED(A)

(z, Az>w=_£]e(.r)[(am+ 0)82451{)'

“Define a state

L
+(bntB)el) |dr
— 8al — 8ub"— Befit
<[~(an+ @+ (ba+ 5] [ Ha)dx

— 8ol — 8pb*— dufi}

= -0z, 2w, (A3)
where Ci=min{(an+ a)7?—(bn+ b), Ba, 6s, 8} >0, and
(am+a)x?>{(bn+b) is assumed. Now by the linearity
of A, we see that w/— A is monotone (accretive) for
every w<C. Hence A: D(AJICW-W is the
infinitesimal generator of a linear process {S(¢}}¢z0=
{(@(t, 00, A(t), B(#), E(t)}e20 on W, see Theorem 3.2,
p. 92, of Walker®®, Note that the first component
@(¢, 0} is generated by As. Note also that @(¢, 0)es is
the strong solution of the evolution equation é(f}=
Ave(t) for every e=D(Ay).

Now set z=(e,d b, ) and zZ=(e’, &, &, i)
Then
|7, 2= F(t, 2 )= a— @) énar+ (b~ £)én

*(62— dnl)ém.r:_(b— b’)sm +f*'f’* §€x:+ CIHIE?;:

—be+b e+ yike, ex>+<e, Ems> —<€, €

+<€’, e.u>_<€’, e.;x>“<€’, gmx.r)"‘Qa‘“g::lz

+yil{e, e>+<e, En>—Ce’, e +<e’, &)

—<e', er~Xe', En>+go—giff+rillel —lle’ll]?

i1 2+ d
<(seaca+16 T+ T

+ 75K el + el + [ Emel?)

+ 7l +le P+ 15D+ 72K3 e - e

+{ Bled+ In?)

Ut ) Yo
éﬂn+€c é’ #a‘l’&a |G a|

2 gb" 2+Ei ‘b N N
+(lel+ 1eal? +— + )i5- 57
AVl (BT 23 )
tefigie] + el fle+ 1z
Ael el + e} (idlel + &,

L
o I , -
where f Al Te. ¢ 94
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L |: i#b:'é:; 2 "eﬂlrslg¢ﬁexﬂ Ilex eAISK,l[e -&'l,
llel—te'l< Kike o
Hence : : LB

"F(t z) F(t "-l)"wS Cz"z 2w, (Ad)

where C: is a constant. Therefore F: W- W ig
locally Lipschitz continuous in W. Thus a unique
solution exists. Finally the solution of Eq.(15) can be
written in the following wvariation of constant for-
mulaflﬁl

e()=0(t,0)e(0) + [ 0(t, )= a(r)eu(r)
= b(r)e(r) = a(7)Emeel 1)
—b(n)en(D)+ F(r)+ (1)) e, (A5)
where @(¢,s) is the evolution operator associated
with Ae in the space L0, 1).

Appendix B: Tracking Error Convergence

From (17) and (20), we have
Vi ~{anes, exy+<{bne, e>+ov(t)

< —anler, e +-B<er, er+0(2)

~(an—85 Jer, e +112)

< — Bollel*+v(e),
where 5 >0 and

6" i

U(f) .t 2 ﬂe+€a+ﬂa|a|+ Ya

L
bb.

¢(¢) can be made arbitrary smail near to zero by making
sufficiently small &., €4, €, 62, 8s, o and sufficiently
large yq, ¥s, Ye and be assumed to be yniformly bounded
by . Thus, the functional V(#) is nonincreasing and
satisfies

Vi + o [ letsFds< o, £20,
where go= 1+ V4(0). ]

+Eu‘+‘ﬂo|b| +ﬁbz+
7o
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