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Robust Adaptive Control of a Riser-Vessel System
in Three-Dimensional Space
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Abstract—In this study, an adaptive robust control technique
for an uncertain riser-vessel system in a three-dimensional space
is developed. A projection mapping technique and a hyperbolic
tangent function are exploited to construct novel adaptive robust
controllers based on adaptive laws dynamically updated online
to restrain the vibration, tackle parametric uncertainties, com-
pensate for the unknown upper bound of disturbances, and
ensure robustness of the coupled system. Lyapunov’s method is
adopted to analyze and demonstrate the bounded stability of the
closed-loop system. Simulation results are provided to validate
the feasibility and effectiveness of the proposed approach.

Index Terms—Adaptive control, riser-vessel system, robust
control, vibration control.

I. INTRODUCTION

AS OFFSHORE oil exploration and exploitation
approaches to deep-sea areas in recent years, flex-

ible marine risers have played a critical role as transmission
components connecting surface vessels and wells [1]. A harsh
marine environment causes flexible risers to inevitably and
frequently produce deformation and vibration [2], [3]; thus,
shortening service life. This causes fatigue damage as well
as irreversible environmental pollution [4]. Therefore, an
effective solution should be developed for both marine and
control engineers to dampen vibrations in flexible risers.
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To stabilize the vibrating flexible structure systems, many
scholars have specialized in exploring diverse control tech-
niques, such as the mode-order reduction method (MORM) [5]
and boundary control [6]–[8]. By employing the MORM,
an infinite-dimensional system is discretized into a finite-
dimensional system [9], which may weaken the system
characteristics and cause spillover effects. Boundary con-
trol can remove control-spillover rooting from the MORM.
Furthermore, its actuation and sensing are nonintrusive; thus,
it is regarded as an effective and practical solution [10]–[12].
In [13], a novel boundary control was constructed to restrain
the bending and twisting deflections in a rigid-flexible wing
system and position the wing at a desired angle. In [14], a
boundary controller was presented to weaken the vibration
and eliminate the rate and magnitude constraints in flexi-
ble hoses. In [15] and [16], an adaptive fault-tolerant control
was designed to stabilize a flexible system in the presence
of external disturbances, parameter uncertainties, and actuator
failures. In [17], a flexible string subject to actuator faults,
dead zones, and unknown disturbances was uniformly and
ultimately stabilized by developing an adaptive fault-tolerant
control strategy.

In recent years, new advances in designing boundary con-
troller for stabilizing the oscillation in flexible riser systems
have been significantly achieved. In [18], a riser-vessel system
with coupled (flexible and rigid) dynamics was stabilized by
raising a one-dimensional (1-D) boundary adaptive controller.
In [19], boundary transverse and longitudinal controllers were
proposed to suppress the vibrations of riser-vessel systems
in two-dimensional (2-D) space. In [20] and [21], distur-
bance rejection control schemes were constructed to achieve
elastic vibration control and ensure the external disturbance
attenuation in the riser-vessel system. In [22], the transverse
vibration in flexible riser systems was suppressed by construct-
ing a new boundary controller. In [23], exponential and global
stabilizations of 2-D riser-vessel systems subject to large in-
plane deflections were achieved by constructing boundary
controllers. He et al. [24] and Zhao et al. [25], [26] presented
an anti-saturation design for the vibration attenuation of a
constrained riser-vessel system. In [27] and [28], the barrier
Lyapunov function (BLF) was introduced to solve the output-
restricted problem in a riser-vessel system. In [29] and [30],
the issues of the backlash/deadzone nonlinear constraint in the
riser-vessel system were resolved by constructing an auxiliary
variable-based adaptive control. Adaptive inverse strategies
have been proposed to stabilize the vibrating riser-vessel
system with system uncertainties and input backlash [31].
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In [32], adaptive control methodologies were developed for a
coupled riser-vessel system with hybrid nonlinear constraints.
The aforementioned research focused on the vibration damp-
ening of the riser-vessel system in a 1-D or 2-D space.
Nonlinear vibrational coupling in a three-dimensional (3-D)
space may present increased challenges in designing and anal-
ysis. A novel development of boundary control schemes for
exponential and global stabilizing 3-D flexible riser systems
was presented in [33] and [34]. In [35], a boundary control
technique was designed for 3-D riser systems with hydraulic
actuator dynamics, and the well-posedness of the controlled
system was proven using the Galerkin approximation method.
In [36], the joint angle constraint and vibration suppression
of a 3-D flexible riser system were achieved by presenting
BLF-based boundary controllers. However, the control designs
presented in [33]–[36] were confined to eliminating the oscil-
lation or tackling the constraint in flexible riser systems, and
the approaches are invalid for uncertain flexible riser systems
in the 3-D space. Moreover, Zhang et al. [36] adopted a piece-
wise sign function to address extraneous disturbances, which
can cause undesirable chattering in the control actuators. To
the best of our knowledge, although significant improvements
have been made in boundary control for 3-D flexible risers,
no research has been made on simultaneously exploiting the
projection mapping technique (PMT) and hyperbolic tangent
function (HTF) to develop novel adaptive robust controllers
for the global stabilization of flexible risers in the 3-D space;
thus, the motivation of this research.

In this study, we develop an adaptive robust control of
an uncertain riser-vessel system. Compared with the existing
research, the main contributions are as follows.

1) In contrast to literatures [33]–[35], [37], a PMF is
employed to construct novel adaptive robust controllers
along with adaptive laws dynamically updated online to
suppress vibrations, eliminate parametric uncertainties,
and ensure robustness in the coupled system.

2) In comparison to articles [36], a smooth HTF is
exploited to generate adaptive robust controllers with
online updates to compensate for the unknown upper
bound of disturbances, which circumvents the chattering
derived from the piecewise sign function.

II. PROBLEM STATEMENT

A. System Model

Fig. 1 shows the riser-vessel system in the 3-D space, where
OPQR denotes the reference frame. t and s denote the indepen-
dent time and space variables, respectively. p(s, t), q(s, t), and
r(s, t) denote the transverse, longitudinal, and vertical vibra-
tions of the riser, respectively, deflecting at length l. fp(s, t),
fq(s, t), and fr(s, t) denote the distributed disturbances on the
riser system in the three directions. dp(t), dq(t), and dr(t)
denote the extraneous disturbances on the vessel in the three
directions. u, v, and w represent the control inputs acting on the
vessel with a mass M. For simplification, the following nota-
tions are used: (�) = (�)(s, t), ˙(�) = ∂(�)/∂t , (�)′ = ∂(�)/∂s,
˙(�)′ = ∂2(�)/∂s∂t. (�)′′ = ∂2(�)/∂s2, (�)′′′ = ∂3(�)/∂s3,

Fig. 1. Riser-vessel system.

(�)′′′′ = ∂4(�)/∂s4, ¨(�) = ∂2(�)/∂t2, (�)0 = (�)(0, t), and
(�)l = (�)(l, t).

In this study, the dynamics of the riser-vessel system under
consideration are formulated as [37]

ρp̈ = Tp′′ + EA
(
r′′p′ + p′′r′) + 3

2
EAp′2p′′

+ 1

2
EA

(
p′′q′2 + 2p′q′q′′) − EIp′′′′ + fp (1)

ρq̈ = Tq′′ + EA
(
r′′q′ + q′′r′) + 3

2
EAq′2q′′

+ 1

2
EA

(
q′′p′2 + 2q′p′p′′) − EIq′′′′ + fq (2)

ρ r̈ = EAr′′ + EAp′p′′ + EAq′q′′ + fr (3)

p0 = q0 = r0 = 0 (4)

p′′
0 = q′′

0 = r′′
0 = 0 (5)

p′′
l = q′′

l = r′′
l = 0 (6)

u + dp = Mp̈l + Tp′
l + 1

2
EAp′3

l + EAp′
lr

′
l

+ 1

2
EAp′

l

(
q′

l

)2 − EIp′′′
l (7)

v + dq = Mq̈l + Tq′
l + 1

2
EAq′3

l + EAq′
lr

′
l

+ 1

2
EAq′

l

(
p′

l

)2 − EIq′′′
l (8)

w + dr = Mr̈l + EAr′
l + 1

2
EAp′2

l + 1

2
EAq′2

l (9)

where ρ, T , EA, and EI represent the riser’s uniform mass
per unit length, tension, axial stiffness, and bending stiffness,
respectively.

B. Preliminaries

The following lemmas and assumptions are provided for
convenience of subsequent design and analysis.

Authorized licensed use limited to: Pusan National University Library. Downloaded on July 28,2021 at 00:20:15 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHAO et al.: ROBUST ADAPTIVE CONTROL OF RISER-VESSEL SYSTEM IN THREE-DIMENSIONAL SPACE 3

Assumption 1: Suppose that there exist positive constants
Fp, Fq, Fr, Dp, Dq, Dr satisfying | fp(s, t) |≤ Fp, | fq(s, t) |≤
Fq, | fr(s, t) |≤ Fr ∀(s, t) ∈ [0, l] × [0,+∞), and | dp(t) |≤
Dp, | dq(t) |≤ Dq, | dr(t) |≤ Dr ∀t ∈ [0,+∞) [38]–[40]. It
is a reasonable assumption because disturbances possess finite
energy, that is, dp(t), dq(t), dr(t), fp(s, t), fq(s, t), fr(s, t) ∈ L∞.

Lemma 1 ([41], [42]): Let χ1(s, t), χ2(s, t) ∈ R with
(s, t) ∈ [0, l] × [0,+∞); for ∀θ > 0

χ1χ2 ≤ θχ2
1 + 1

θ
χ2

2 . (10)

Lemma 2 [43]: Let χ(s, t) ∈ R with (s, t) ∈ [0, l] ×
[0,+∞) satisfy the condition χ(0, t) = 0. Then, we derive

χ2 ≤ l
∫ l

0 χ ′2ds (11)
∫ l

0
χ2ds ≤ l2

∫ l
0 χ ′2ds. (12)

Lemma 3: For any ν(t) ∈ R, we have the following
inequality [44]:

0 ≤ |ν(t)| − ν(t) tanh(ν(t)) ≤ b (13)

where b = 0.2785.

III. CONTROL DESIGN

When the vessel mass M and upper bounds of disturbances
Dp, Dq, and Dr are unknown, the PMT is adopted to develop a
novel robust adaptive control for guaranteeing the stabilization
of the riser-vessel system and tackling system uncertainties.

A. Robust Adaptive Control

To achieve the control objectives, the following robust
adaptive control laws are proposed:

u = −M̂klṗ′
l − tanh

(
ṗl + klp′

l

)
D̂p − 2κpṗl (14)

v = −M̂klq̇′
l − tanh

(
q̇l + klq′

l

)
D̂q − 2κqq̇l (15)

w = −M̂klṙ′
l − tanh

(
ṙl + klr′

l

)
D̂r − 2κrṙl (16)

where k, κp, κq, κr > 0, M̂, D̂p, D̂q, and D̂r are the estimated
values of M, Dp, Dq, and Dr, respectively.

The dynamically adaptive-updating laws are designed as
follows:

˙̂M = ProjM
{(

kl
[
ṗ′

l

(
ṗl + klp′

l

) + q̇′
l

(
q̇l + klq′

l

)

+ṙ′
l

(
ṙl + klr′

l

)])} − μ1M̂ (17)
˙̂Dp = (

ṗl + klp′
l

)
tanh

(
ṗl + klp′

l

) − μ2D̂p (18)
˙̂Dq = (

q̇l + klq′
l

)
tanh

(
q̇l + klq′

l

) − μ3D̂q (19)
˙̂Dr = (

ṙl + klr′
l

)
tanh

(
ṙl + klr′

l

) − μ4D̂r (20)

where μi > 0, i = 1, . . . , 4, and Proj(�) denotes the projection
mapping, which is defined as follows:

Proj	 (�) =
⎧
⎨

⎩

0, if 	̂ ≥ 	max and (�) > 0
0, if 	̂ ≤ 	min and (�) < 0
(�), otherwise

(21)

where 	 denotes a symbol replaced by the scalar M.

Thereafter, we define the estimation errors as

M̃ = M − M̂, D̃p = Dp − D̂p

D̃q = Dq − D̂q, D̃r = Dr − D̂r. (22)

Remark 1: The signals r(s, t), q(s, t), p(s, t), ṙ(s, t), q̇(s, t),
ṗ(s, t), r′(s, t), q′(s, t), p′(s, t), ṙ′(s, t), q̇′(s, t), and ṗ′(s, t) in
the derived control laws (14)–(16) are obtainable during exe-
cution. r(s, t), q(s, t), and p(s, t) can be measured using laser
displacement sensors, while r′(s, t), q′(s, t), and p′(s, t) can
be measured using inclinometers. Moreover, we can exploit
backward difference algorithms to acquire the signals ṙ(s, t),
q̇(s, t), ṗ(s, t), ṙ′(s, t), q̇′(s, t), and ṗ′(s, t) with the aid of the
measured values.

Remark 2: The Lyapunov function candidate in the control
design of the system is provided as follows. First, a posi-
tive definite Lyapunov function candidate X(t), including the
system energy term X1(t), auxiliary term X2(t), crossing term
X3(t), and estimation error term X4(t), is selected and proven
to be bounded, as presented in Lemma 4. Subsequently, the
time derivative of the Lyapunov function candidate Ẋ(t) is
proven to be upper bounded by redesigning adaptive robust
controllers and updating laws, as shown in Lemma 5. Finally,
we prove the uniform ultimate boundedness of the system
using Theorem 1.

Remark 3: Contrary to the existing results on adaptive con-
trol [45], [46] or adaptive fault-tolerant control [47]–[50] for
the finite-dimensional system, in this study, the robust adaptive
control design is based on the infinite-dimensional riser-vessel
system; thus, the spillover instability does not appear.

Meanwhile, we provide some lemmas for the stability
analysis.

B. Stability Proof

Set the Lyapunov candidate function as

X(t) = X1(t) + X2(t) + X3(t) + X4(t) (23)

where

X1(t) = 1

2
ρ

∫ l

0

(
ṗ2 + q̇2 + ṙ2

)
ds + 1

2
T

∫ l

0

(
p′2 + q′2)ds

+ 1

2
EA

∫ l

0

(
r′ + 1

2
p′2 + 1

2
q′2

)2

ds

+ 1

2
EI

∫ l

0

(
p′′2 + q′′2)ds (24)

X2(t) = 1

2
M

(
ṗl + klp′

l

)2 + 1

2
M

(
q̇l + klq′

l

)2

+ 1

2
M

(
ṙl + klr′

l

)2 (25)

X3(t) = kρ
∫ l

0
s
(
ṗp′ + q̇q′ + ṙr′)ds (26)

X4(t) = 1

2
M̃2 + 1

2
D̃2

p + 1

2
D̃2

q + 1

2
D̃2

r . (27)

Lemma 4: The constructed function (23) is positive

0 ≤ υ1[W(t) + X2(t) + X4(t)] ≤ X(t)

≤ υ2[W(t) + X2(t) + X4(t)] (28)
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where υ1, υ2 > 0, and

W(t) ≤
∫ l

0

[
ṗ2 + q̇2 + ṙ2 + p′2 + q′2 + r′2

+ p′4 + q′4 + (p′q′)2 + p′′2 + q′′2]ds. (29)

Proof: First, rewriting X1(t) yields

X1(t) = 1

2
ρ

∫ l

0

(
ṗ2 + q̇2 + ṙ2

)
ds + 1

2
T

∫ l

0

(
p′2 + q′2)ds

+ 1

2
EA

∫ l

0
r′2ds + 1

8
EA

∫ l

0
p′4ds + 1

8
EA

∫ l

0
q′4ds

+ 1

2
EA

∫ l

0
r′p′2ds + 1

2
EA

∫ l

0
r′q′2ds

+ 1

4
EA

∫ l

0
(p′q′)2ds + 1

2
EI

∫ l

0

(
p′′2 + q′′2)ds. (30)

Using Lemma 1, 2r′2
l ≤ p′2

l , and 2r′2
l ≤ q′2

l [51], we get

− α

∫ l

0
p′4ds − 1

2α

∫ l

0
p′2ds

≤
∫ l

0
r′p′2ds ≤ α

∫ l

0
p′4ds + 1

2α

∫ l

0
p′2ds

− α

∫ l

0
q′4ds − 1

2α

∫ l

0
q′2ds

≤
∫ l

0
r′q′2ds ≤ α

∫ l

0
q′4ds + 1

2α

∫ l

0
q′2ds (31)

where α > 0.
Selecting an appropriate α to satisfy T − (EA/2α) ≥ 0 and

(1/4) − α ≥ 0, we obtain

0 ≤ λ1W(t) ≤ X1(t) ≤ λ2W(t) (32)

where

λ1 = 1

2
min

[
ρ, T − EA

2α
,

1

2
EA, EA

(
1

4
− α

)
, EI

]
(33)

λ2 = 1

2
max

[
ρ, T + EA

2α
, EA, EA

(
1

4
+ α

)
, EI

]
. (34)

Applying Lemma 1 on X3(t) gives

|X3(t)| ≤ kρl
∫ l

0

(
ṗ2 + q̇2 + ṙ2 + p′2 + q′2 + r′2)ds

≤ k1W(t) (35)

where k1 = kρl > 0. Combining (35) yields −k1W(t) ≤
X3(t) ≤ k1W(t). The proper choice of k to satisfies 0 < k <

λ1/(ρl), and we derive 0 < k1 < λ1. Setting k2 = λ1 − k1 and
k3 = λ2 + k1 results in

0 ≤ k2W(t) ≤ X1(t) + X3(t) ≤ k3W(t). (36)

Then, we invoke (23) to derive the following:

0 ≤ υ1(W(t) + X2(t) + X4(t)) ≤ X(t)

≤ υ2(W(t) + X2(t) + X4(t)) (37)

where υ1 = min(k2, 1) > 0 and υ2 = max(k3, 1) > 0.

Lemma 5: The time derivative of (23) is upper bounded as

Ẋ(t) ≤ −υX(t) + β (38)

where υ, β > 0.
Proof: Differentiating (23), we have

Ẋ(t) = Ẋ1(t) + Ẋ2(t) + Ẋ3(t) + Ẋ4(t). (39)

Combining (1)–(9), we derive

Ẋ1(t) =
∫ l

0
ṗ

[
Tp′′ + EA

(
r′′p′ + p′′r′) + 3

2
EAp′2p′′

+ 1

2
EA

(
p′′q′2 + 2p′q′q′′) − EIp′′′′ + fp

]
ds

+
∫ l

0
q̇

[
Tq′′ + EA

(
r′′q′ + q′′r′) + 3

2
EAq′2q′′

+ 1

2
EA

(
q′′p′2 + 2q′p′p′′) − EIq′′′′ + fq

]
ds

+
∫ l

0
ṙ
(
EAr′′ + EAp′p′′ + EAq′q′′ + fr

)
ds

+ EAr′
l ṙl − EA

∫ l

0
r′′ṙds + EAr′

lp
′
lṗl

− EA
∫ l

0

(
p′′r′ + p′r′′)ṗds + EAr′

lq
′
lq̇l

− EA
∫ l

0

(
r′′q′ + r′q′′)q̇ds + 1

2
EAp′2

l ṙl

− EA
∫ l

0
p′p′′ṙds + 1

2
EAp′3

l ṗl

− EA
∫ l

0
q′q′′ṙds − 3

2
EA

∫ l

0
p′2p′′ṗds

+ 1

2
EAp′2

l q′
lq̇l + 1

2
EAq′2

l p′
lṗ

− 1

2
EA

∫ l

0

(
2q′q′′p′ + q′2p′′)ṗds

− 1

2
EA

∫ l

0

(
2p′p′′q′ + p′2q′′)q̇ds

+ 1

2
EAq′3

l q̇l − 3

2
EA

∫ l

0
q′2q′′q̇ds − EIp′′′

l ṗl

+ EI
∫ l

0
p′′′′ṗds − EIq′′′

l q̇l + EI
∫ l

0
q′′′′q̇ds

+ T
(
p′

lṗl + q′
lq̇l

) − T
∫ l

0

(
p′′ṗ + q′′q̇

)
ds + 1

2
EAq′2

l ṙl

=
∫ l

0

(
ṗfp + q̇fq + ṙfr

)
ds + (

u + dp − Mp̈l
)
ṗl

+ (
v + dq − Mq̈l

)
q̇l + (w + dr − Mr̈l)ṙl. (40)

Thereafter, Ẋ2(t) is obtained as

Ẋ2(t) = (
ṗl + klp′

l

)(
Mp̈l + Mklṗ′

l

)

+ (
q̇l + klq′

l

)(
Mq̈l + Mklq̇′

l

)

+ (
ṙl + klr′

l

)(
Mr̈l + Mklṙ′

l

)
. (41)

Invoking (1)–(9) leads to

Ẋ3(t) = −3

8
kEA

∫ l

0
p′4ds − 3

8
kEA

∫ l

0
q′4ds
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− kEA
∫ l

0
r′p′2ds − kEA

∫ l

0
r′q′2ds

− 3

4
kEA

∫ l

0

(
p′q′)2

ds − 3

2
kEI

∫ l

0
p′′2ds

− 3

2
kEI

∫ l

0
q′′2ds − 1

2
kT

∫ l

0
p′2ds

− 1

2
kT

∫ l

0
q′2ds − 1

2
kEAl

(
1

2
p′2

l + 1

2
q′2

l + r′2
l

)2

− 1

2
kTlp′2

l − 1

2
kTlq′2

l + 1

2
kρl

(
ṗ2

l + q̇2
l + ṙ2

l

)

− 1

2
kEA

∫ l

0
r′2ds − 1

2
kρ

∫ l

0
ṗ2ds − 1

2
kρ

∫ l

0
q̇2ds

− 1

2
kρ

∫ l

0
ṙ2ds + klp′

l

(
u + dp − Mp̈l

)

+ klq′
l

(
v + dq − Mq̈l

) + klr′
l(w + dr − Mr̈l)

+ k
∫ l

0
s
(
p′fp + q′fq + r′fr

)
ds. (42)

Applying (17)–(22) on Ẋ4(t) yields

Ẋ4(t) = −M̃ProjM
{(

kl
[
ṗ′

l

(
ṗl + klp′

l

) + q̇′
l

(
q̇l + klq′

l

)

+ṙ′
l

(
ṙl + klr′

l

)])} + μ1M̃M̂

− D̃p
(
ṗl + klp′

l

)
tanh

(
ṗl + klp′

l

) + μ2D̃pD̂p

− D̃q
(
q̇l + klq′

l

)
tanh

(
q̇l + klq′

l

) + μ3D̃qD̂q

− D̃r
(
ṙl + klr′

l

)
tanh

(
ṙl + klr′

l

) + μ4D̃rD̂r. (43)

Considering M̃(�) − M̃ProjM(�) ≤ 0, 2r′2
l ≤ p′2

l , and 2r′2
l ≤

q′2
l [51], and Lemmas 1–3, we derive

Ẋ(t) ≤ −
(

1

2
kρ − 1

δ1

)∫ l

0
ṗ2ds −

(
1

2
kEA − klδ6

) ∫ l

0
r′2ds

−
(

1

2
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) ∫ l

0
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(
3

8
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2δ7
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0
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−
(

1

2
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) ∫ l

0
ṙ2ds −

(
3
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2δ8
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0
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(

1
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4

) ∫ l
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1
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q
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(

δ1 + kl

δ4
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f 2
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0
f 2
q ds
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f 2
r ds − κp

(
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l

)2 + μ4

2
D2
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− κq
(
q̇l + klq′

l

)2 − κr
(
ṙl + klr′

l

)2 − 3

2
kEI

∫ l

0
p′′2ds

− 3

2
kEI

∫ l

0
q′′2ds − 3

4
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∫ l

0
(p′q′)2ds

−
(

1

4
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)
p′2

l −
(

1

4
kTl − κqk2l2

)
q′2

l

−
(

kTl − κrk2l2
)

r′2
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(
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)

− 1
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kEAl

[
1

2

(
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l

)2 + 1

2

(
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l
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l
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2
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+ μ1

2
M2 − μ2

2
D̃2
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2
D̃2
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2
D̃2

r (44)

where δ1 ∼ δ8 > 0 and the parameters k, κp, κq, κr, δi, i =
1, . . . , 8, and μj, for j = 1, . . . , 4 are chosen to satisfy

ϑ1 = 1

2
kρ − 1

δ1
> 0, ϑ2 = 1

2
kρ − 1

δ2
> 0 (45)

ϑ3 = 1

2
kρ − 1

δ3
> 0, ϑ4 = 1

2
kT − klδ4 − kEAδ7

4
> 0

(46)

ϑ5 = 1

2
kT − klδ5 − kEAδ8

4
> 0, ϑ6 = 1

2
kEA − klδ6 > 0

(47)

ϑ7 = 3

8
kEA − kEA

2δ7
> 0, ϑ8 = 3

8
kEA − kEA

2δ8
> 0 (48)

1

4
kTl − κpk2l2 ≥ 0,

1

4
kTl − κqk2l2 ≥ 0, kTl − κrk2l2 ≥ 0

(49)

β =
(

δ1 + kl

δ4

)
lF2

p +
(

δ2 + kl

δ5

)
lF2

q +
(

δ3 + kl

δ6

)
lF2

r

+ μ1

2
M2 + μ2

2
D2

p + μ3

2
D2

q + μ4

2
D2

r

+ b
(
Dp + Dq + Dr

)
< +∞. (50)

Invoking (45)–(50), we obtain

Ẋ(t) ≤ −ϑ1

∫ l

0
ṗ2ds − ϑ2

∫ l

0
q̇2ds − ϑ3

∫ l

0
ṙ2ds

− ϑ4

∫ l

0
p′2ds − ϑ5

∫ l

0
q′2ds − ϑ6

∫ l

0
r′2ds

− ϑ7

∫ l

0
p′4ds − ϑ8

∫ l

0
q′4ds − 3

2
kEI

∫ l

0
p′′2ds

− 3

2
kEI

∫ l

0
q′′2ds − 3

4
kEA

∫ l

0

(
p′q′)2

ds + β

− κp
(
ṗl + klp′

l

)2 − μ1

2
M̃2 − μ2

2
D̃2

p − μ3

2
D̃2

q

− κq
(
q̇l + klq′

l

)2 − κr
(
ṙl + klr′

l

)2 − μ4

2
D̃2

r

≤ υ3(W(t) + X2(t) + X4(t)) + β (51)

where υ3 = min(ϑ1, ϑ2, ϑ3, ϑ4, ϑ5, ϑ6, ϑ7, ϑ8, (3/2)kEI,
(3/4)kEA, (2κp/M), (2κq/M), (2κr/M), μ1, μ2, μ3, μ4).

Following Lemma 4 and (51), we obtain

Ẋ(t) ≤ −υX(t) + β (52)

where υ = (υ3/υ2).
Theorem 1: For the riser-vessel system described by (1)–

(9) under the action of the developed adaptive controllers
(14)–(16) and dynamically updating laws (17)–(20), provided
that the initial conditions are bounded and the designed param-
eters k, κi, i = p, q, r, and μj, for j = 1, . . . , 4 satisfy the
constraint conditions (45)–(50), then the closed-loop system
is uniformly bounded.

Proof: Invoking (38), we obtain

X(t) ≤ X(0)e−υt + β

υ

(
1 − e−υt) ≤ X(0)e−υt + β

υ
. (53)

Using X1(t), (29), and Lemma 2, we obtain

1

l
p2(s, t) ≤

∫ l

0
p′2(s, t)ds ≤ W(t) ≤ 1

υ1
X(t) (54)
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Fig. 2. 3-D offset of the riser under no control: p(s, t).

Fig. 3. 3-D offset of the riser under no control: q(s, t).

1

l
q2(s, t) ≤

∫ l

0
q′2(s, t)ds ≤ W(t) ≤ 1

υ1
X(t) (55)

1

l
r2(s, t) ≤

∫ l

0
r′2(s, t)ds ≤ W(t) ≤ 1

υ1
X(t). (56)

Substituting (54)–(56) into (53) gives

| p(s, t) |≤ �, | q(s, t) |≤ �, | r(s, t) |≤ � (57)

with ∀(s, t) ∈ [0, l] × [0,+∞) and � =√
(l/υ1)[X(0) + (β/υ)].

IV. NUMERICAL SIMULATION

To illustrate the effectiveness of the proposed scheme, the
finite difference method [52], [53] is used to approximate the
system solution in this section. The system parameters and
initial conditions are set to l = 1000 m, EI = 1.5 × 107 Nm2,
ρ = 500 kg/m, T = 3.0 × 108 N, EA = 2.0 × 107 Nm2,
c = 1.0 Ns/m2, da = 1.5 × 105 Ns/m, m = 9.6 × 106 kg,
p(s, 0) = q(s, 0) = r(s, 0) = (10s/l), and ṗ(s, 0) = q̇(s, 0) =
ṙ(s, 0)=0. The disturbances are formulated as dp(t) = dq(t) =
[1+0.2sin(0.7t)+0.1sin(0.5t)+0.1sin(0.9t)]×105 and dr(t) =

Fig. 4. 3-D offset of the riser under no control: r(s, t).

Fig. 5. 3-D offset of the riser under proposed control: p(s, t).

[3 + 0.2sin(0.5t)] × 104. The chosen distributed disturbances
were the same as those in the literature [36].

When the riser-vessel system is in a free state, that is, there
are no control input forces (u = v = w = 0), and the riser’s
dynamic performance in response to external ocean distur-
bances is shown in Figs. 2–4. From Figs. 2–4, we can observe
that the 3-D riser vibrates freely with a larger amplitude. The
sustained large deformation in risers causes fatigue damage.
Consequently, effective control strategies should be developed
to suppress vibrations in risers.

When the designed controllers (14)–(16) act on the coupled
system by selecting the control parameters κp = κq = 2×106,
κr = 5×105, k = 0.0001, and μ1 = μ2 = μ3 = μ4 = 0.0001,
Figs. 5–7 show the spatiotemporal responses. From Figs. 5–7,
we perceive that the designed control strategies (14)–(16)
overcome the external disturbances’ effects on the system
and ensures that the displacement of the riser system con-
verge to a small neighborhood near equilibrium position. The
time responses of the proposed control inputs are shown in
Figs. 11–13.
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Fig. 6. 3-D offset of the riser under proposed control: q(s, t).

Fig. 7. 3-D offset of the riser under proposed control: r(s, t).

Fig. 8. 3-D offset of the riser with control in (58)–(60): p(s, t).

To further verify the effectiveness of the derived control,
we also provide a simulation with the following adaptive con-
trollers proposed in [37], which employs the symbolic function

Fig. 9. 3-D offset of the riser with control in (58)–(60): q(s, t).

Fig. 10. 3-D offset of the riser with control in (58)–(60): r(s, t).

Fig. 11. Proposed control input u.

to address disturbances:

u = −M̂klṗ′
l − sgn

(
ṗl + klp′

l

)
Dp − 2κpṗl (58)

v = −M̂klq̇′
l − sgn

(
q̇l + klq′

l

)
Dq − 2κqq̇l (59)
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Fig. 12. Proposed control input v.

Fig. 13. Proposed control input w.

w = −M̂klṙ′
l − sgn

(
ṙl + klr′

l

)
Dr − 2κrṙl (60)

˙̂M = ProjM
{(

kl
[
ṗ′

l

(
ṗl + klp′

l

) + q̇′
l

(
q̇l + klq′

l

)

+ ṙ′
l

(
ṙl + klr′

l

)])} − μ1M̂ (61)

where k, κp, κq, κr, μ1 > 0. When selecting the same
design parameters as the proposed control (14)–(16), the
responses of the coupled system are as shown in Figs. 8–
10 and 14–16. From Figs. 8–10, we observe that the control
strategies (58)–(60) can also counteract external disturbances
and achieve the vibration elimination in risers. However, the
control effects are not as effective as those of the proposed
control strategies (14)–(16). In addition, the symbol function
in (58)–(60) causes chattering in the control inputs, as depicted
in Figs. 14–16. This phenomenon is harmful to the system and
should not be practiced.

Therefore, the proposed controllers can dramatically
weaken the vibration in the coupled system with excellent
performance, and the proposed control inputs are relatively

Fig. 14. Control input u in (58).

Fig. 15. Control input v in (59).

Fig. 16. Control input w in (60).

smooth and have no chattering in comparison with the adaptive
controllers in (58)–(60), revealing a satisfactory performance
in stabilizing the coupled system and handling system uncer-
tainties as well as ensuring the system robustness.
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V. CONCLUSION

In this study, adaptive robust control schemes were proposed
for a 3-D riser-vessel system subject to uncertainties in the
system parameters and the upper bound of external distur-
bances. An adaptive robust control methodology and dynam-
ically updating laws were designed to dampen vibrations and
eliminate system uncertainties. By introducing the PMT and
HTF in the design process, system robustness was ensured
and the chattering phenomenon was prevented. The rigorous
Lyapunov analysis guaranteed uniformly bounded stability in
the controlled system. The control performance was verified
by comparing the simulation results. Future interesting top-
ics lie in the intelligent techniques [54]–[56] for controlled
riser-vessel systems.
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