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Abstract—We propose an adaptive neural-network-based fault-
tolerant control scheme for a flexible string considering the input
constraint, actuator gain fault, and external disturbances. First,
we utilize a radial basis function neural network to compen-
sate for the actuator gain fault. In addition, an observer is used
to handle composite disturbances, including unknown approx-
imation errors and boundary disturbances. Then, an auxiliary
system eliminates the effect of the input constraint. By integrating
the composite disturbance observer and auxiliary system, adap-
tive fault-tolerant boundary control is achieved for an uncertain
flexible string. Under rigorous Lyapunov stability analysis, the
vibration scope of the flexible string is guaranteed to remain
within a small compact set. Numerical simulations verify the
high control performance of the proposed control scheme.

Index Terms—Actuator gain fault, adaptive fault-tolerant
boundary control, auxiliary system, flexible string (FS), neural-
network composite disturbance observer (NNCDO).

I. INTRODUCTION

IN RECENT decades, flexible structure systems have
attracted considerable research interest because of their
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excellent features, such as low energy consumption, high flex-
ibility, and low weight. Such systems are being widely used in
various fields, including aeronautics and astronautics, machine
manufacturing, and medicine. However, controlling the vibra-
tions of flexible structures remains a challenging task, for
which many excellent solutions have been developed [1]–[11].
However, their solutions did not consider actuator faults, which
may severely degrade the performance of the closed-loop
system and even lead to instability. Thus, we propose an effec-
tive method for handling actuator faults in flexible structure
systems.

Research on the actuator fault has notably advanced
over the past years. The global stability of a linear, cas-
caded ordinary-differential-equation-beam system with actua-
tor faults is addressed in [12], where a robust adaptive control
law is employed to compensate for unknown actuator faults.
An adaptive fault-tolerant boundary controller was derived for
a flexible aircraft wing in [13]. A projection algorithm avoids
control performance degradation due to actuator faults in the
closed-loop system of the flexible aircraft wing. In [14], an
adaptive fault-tolerant control scheme was introduced to esti-
mate the unknown gain of actuator faults for a single-link
flexible manipulator. In [15], a flexible satellite was described
using several partial and ordinary differential equations. For
the obtained model, an adaptive control scheme was derived
to regulate the vibration of the satellite under actuator faults.
However, these studies on flexible systems have considered
the fault control-rate coefficient as a constant, which is unsuit-
able for a time-varying coefficient. In practice, actuator faults
generally interact with the system states; however, research
on adaptive fault-tolerant control for flexible systems with a
time-varying fault rate coefficient is lacking, thus motivating
our study.

Input constraints represent a challenging and urgent
problem, and many excellent solutions have been proposed
in the past few years [16]–[22]. In [23], an adaptive tracking
control method was developed to prove the uniform, ulti-
mate boundedness of uncertain MIMO nonlinear systems. The
integration of an auxiliary system with an adaptive control
algorithm allows handling input constraints and external dis-
turbances, based on which boundary control was developed
for a flexible aerial refueling hose [1]. A boundary controller
compensates for the input constraints and mitigates external
disturbances by using a Nussbaum function. In [6], boundary
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antidisturbance control was applied to a spatially nonlinear
flexible string (FS) system, in which second-order disturbance
observers were included to compensate for unknown exter-
nal disturbances. In [24], a fault-tolerant control based on
linear matrix inequality optimization was used for a class
of flexible air-breathing hypersonic vehicles. Although some
methods to handle actuator faults or input constraints for flex-
ible structure systems have been developed, to the best of
our knowledge, few studies have addressed unknown actua-
tor fault, input constraint, and external disturbances in an FS
system. Moreover, FS systems are widely applied in a variety
of industries, such as the flexible crane system [25], suspen-
sion cable system [26], and refueling hose system [27]. Thus,
the study of the FS systems is a meaningful topic. This fact
motivates our proposal.

In this study, we investigate the boundary control of an
FS considering constrained control input, actuator gain fault,
and external disturbances. First, the unknown actuator gain
fault is approximated by employing a radial basis function
neural network (RBFNN). Then, a neural-network compos-
ite disturbance observer (NNCDO) is introduced to estimate
unknown composite disturbances. Unlike the conventional
NNCDO, the proposed observer can quickly estimate unknown
composite disturbances because it adds derivative estimation
information of the composite disturbances. By using a feed-
forward approach, an auxiliary system was established to
compensate for the input constraint. Then, by combining the
proposed NNCDO and auxiliary system, an adaptive neural-
network-based fault-tolerant control (ANNBFTC) strategy is
introduced to mitigate the vibrations in the FS. By using
the proposed control scheme, the corresponding closed-loop
system for the FS was proved to be uniformly bounded.
Moreover, the FS vibration remains within a small compact
set. The main contributions of the proposed control scheme
are summarized as follows.

1) Different from the conventional NNCDO-based control
scheme in [28] and [29], we introduce an NNCDO-based
ANNBFTC for FS systems to handle the composite dis-
turbances. As an unknown composite disturbance and its
derivative are estimated simultaneously, a better control
performance can be achieved by using NNCDO-based
ANNBFTC than the conventional NNCDO-based con-
trol scheme. The advantage of the developed NNCDO-
based ANNBFTC is verified in Section IV.

2) Regarding the existing auxiliary system [2], [23], if input
saturation occurs, the initial value of the system must
be reset. In contrast, the proposed auxiliary system not
only avoids this weakness but also prevents the effect of
saturation.

3) Unlike the existing methods, we provide NNCDO-based
ANNBFTC aiming to suppress vibrations in an FS con-
sidering the input constraint, actuator gain fault, and
external disturbances.

The remainder of this article is organized as follows. In
Section II, we introduce the current problem and preliminaries.
Section III details the proposed NNCDO-based ANNBFTC,
including the NNCDO design, controller design, and stability
analysis. The effectiveness of the proposed control scheme

Fig. 1. Schematic of an FS system.

was verified through numerical simulations in Section IV. In
Section V, we draw the conclusion and provide directions for
future work.

Notations: R represents the set of real numbers. ϕ(t) ∈
L∞ indicates that the infinite norm of function ϕ(t) is
bounded. Q(t) > 0 indicates that function Q(t) is a posi-
tive definite. C1 represents that the function is continuously
differentiable. λmin{A} denotes the minimum eigenvalue of
matrix A. min{b1, b2, . . . , bn} denotes the minimum value
between b1, b2, . . . , bn, n ≥ 2. Partial differential variables
are denoted as follows: φt(a, t) = ([∂φ(a, t)]/∂t), φtt(a, t) =
([∂2φ(a, t)]/∂t2), φa(a, t) = ([∂φ(a, t)]/∂a), φaa(a, t) =
([∂2φ(a, t)]/∂a2), and φat(a, t) = ([∂2φ(a, t)]/∂a∂t) ∀a ∈
[0, R], t ∈ [0,∞).

II. PROBLEM FORMULATION AND PRELIMINARIES

The diagram of an FS is shown in Fig. 1, where XOY is
the body-fixed coordinate system and φ(a, t) denotes the dis-
placement of the FS with respect to the coordinate system
XOY. As one endpoint of the FS is fixed, φ(0, t) = 0 in
the XOY coordinate system. In addition, d(a, t) represents the
distributed load exerted on the FS along the vertical direction,
and τ(t) and ω(t) denote the boundary control and boundary
disturbance, respectively. The FS parameters are � , T , and
R, which represent the uniform mass per unit length, tension,
and length of the FS, respectively, and ml denotes the mass of
the endpoint load.

The governing equation of an FS is described as [2]

�φtt(a, t) = Tφaa(a, t) + d(a, t) ∀a ∈ (0, R) (1)

under boundary equations

φ(0, t) = 0 (2)

mlφtt(R, t) = −Tφa(R, t) + τ(t) + ω(t). (3)

Nonlinear actuator faults are likely to occur in the FS.
Hence, we consider the nonlinear actuator gain fault described
in [19]

τf (Z) = ø(	)τ(t), t ≥ Tf (4)

where Z and 	 denote vectors composed of the FS system
state variables [Z and 	 are, respectively, given by (14)
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and (37)], Tf is the unknown fault moment, and ø(	) is the
nonlinear fault control rate coefficient given by

ø(	) = 1 − 1

1 + αe−ι(	)
(5)

where α ≥ 0 and ι(	) are an unknown constant and an
unknown function related to the FS system state variables,
respectively.

When an actuator gain fault occurs, τ(t) may lose effect,
and this loss is denoted by τf (Z). Thus, the actual operation of
the actuator is described by τ(t)− τf (Z) [19]. Then, boundary
equation (3) can be rewritten as

mlφtt(R, t) = −Tφa(R, t) + τ(t) − τf (Z) + ω(t). (6)

Moreover, the actuator can be saturated due to physi-
cal limitations, and its corresponding output τ(t) can be
described as

τ(t) = Sat(u(t)) =
⎧
⎨

⎩

τu, if u(t) ≥ τu

u(t), if τl < u(t) < τu

τl, if u(t) ≤ τl

where τu > 0 and τl < 0 are the known upper and lower
saturation levels of actuator input u(t), respectively.

By defining saturation error �u(t) = u(t)− τ(t), (6) can be
rewritten as

mlφtt(R, t) = −Tφa(R, t) + u(t) − �u(t) − τf (Z) + ω(t).

(7)

The control objective in the proposed control scheme
involves the mitigation of the vibration in an FS in the
presence of an input constraint, an actuator gain fault, and
external disturbances. The following assumptions and lemmas
are conducive to determine the stability of the closed-loop FS
system.

Assumption 1: For the ideal plant (i.e., no input saturation,
no actuator fault, and no disturbance), the existence of a con-
trol scheme is referred to the literature. For the considered
plant in (1)–(3), the existence of a control scheme is initially
assumed. However, by assuring the negative semidefiniteness
of the time derivative of the Lyapunov function candidate to
be developed, the blow up of the state upon actuator fault and
disturbance will be eliminated.

Assumption 2 [30], [31]: Distributed disturbance
d(a, t) ∀a ∈ (0, R) satisfies |d(a, t)| ≤ F̄ for constant
F̄ > 0.

Assumption 3 [26]: Boundary disturbance ω(t) satisfies

ω(t), ω̇(t), ω̈(t) ∈ L∞.

Assumption 4 [23]: Input constraint error �u(t) is bounded
and, hence, there exists a positive constant μ such that
|�u(t)| ≤ μ.

Lemma 1 [32]–[34]: Let κ(0, t) = 0. There exists constant
πo > 0 such that

κ2(a, t) ≤ R
∫ R

0
κ2

a (a, t)da

κ1(a, t)κ2(a, t) ≤ πoκ
2
1 (a, t) + 1

πo
κ2

2 (a, t) ∀a ∈ [0, R]

with κ(a, t) ∈ C1 being a first-order continuous differentiable
function with respect to a and κ1(a, t), κ2(a, t) ∈ R.

Lemma 2 [28]: For a first-order continuous differentiable
function �(ξ(t)) > 0, there are constants δ1 > 0 and
δ2 > 0 such that: 1) the initial value of �(ξ(t)) is bounded;
2) �1(‖ξ(t)‖) ≤ �(ξ(t)) ≤ �2(‖ξ(t)‖) with �1(‖ξ(t)‖)
and �2(‖ξ(t)‖) are class-K functions; and 3) �̇(ξ(t)) ≤
−δ1�(ξ(t)) + δ2 for ξ(t) to be uniformly bounded.

Remark 1: We only consider the transverse deflection of the
FS. Although the transverse model can describe the dynamic
characteristics of the FS to some extent, a 3-D model would
more accurately describe the FS vibration. We will explore a
3-D model for the FS in future work.

Remark 2: The form of the nonlinear fault control rate coef-
ficient ø(	) = 1 − (1/[1 + αe−ι(	)]) given by (5) can ensure
that ø(	) ∈ [0, 1). ø(	) belongs to [0, 1) and ø(	) = 0
when α = 0. Hence, there exists no unknown nonlinear actu-
ator gain fault in this case. In addition, the actuator is almost
at a complete failure when αe−ι(	) → +∞. Moreover, as
actuator fault interacts with the system states, the form of the
nonlinear gain fault given by (4) is more reasonable [19].

Remark 3: Controllability is defined as the precondition of
controller design for an FS justifying Assumption 1. If the
external disturbance, its derivative, and its second-order deriva-
tive are unbounded, the system may become uncontrollable,
conflicting with Assumption 1. Thus, Assumption 3 is also
feasible. Similar assumptions have been made in [35]–[37]. In
Assumption 2, the energy of the distributed disturbance exerted
on the FS is limited because the FS is controllable. In addition,
the energy provided by the actuator is finite given its physical
limitations, indicating the suitability of Assumption 4.

III. NNCDO-BASED ANNBFTC DESIGN AND

STABILITY ANALYSIS

The proposed RBFNN approximates the unknown function,
τf (Z), in (7), which is related to the system state variables.
Then, the NNCDO handles a composite disturbance, which
includes an unknown boundary disturbance and the approx-
imation error of neural networks. Furthermore, an auxiliary
system compensates for the input constraint error �u(t).
Finally, by considering the NNCDO and auxiliary system, we
derive an ANNBFTC mechanism by using the Lyapunov sta-
bility analysis. Under the proposed control scheme, the closed-
loop FS system will be shown to be uniformly ultimately
bounded.

A. NNCDO Design

To achieve high FS control performance, we first define
τnf (Z) = λτf (Z) for a constant, λ > 0. Then, to approximate
unknown function τnf (Z), the RBFNN is applied [11]

τnf (Z) = �∗Tϒ(Z) + ι (8)

where �∗ ∈ Rn denotes the optimal weight vector, and
ϒ(Z) = [ϒ1(Z), ϒ2(Z), . . . , ϒn(Z)]T ∈ Rn is the basis
function with ϒj(Z) = exp([−(Z − κ1j)

T(Z − κ1j)]/κ2
2j), κ1j

and κ2j, respectively, express the center and width of the
neural cell for the jth hidden layer, j = 1, 2, . . . , n. Z =
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[Z1, Z2, . . . , Zm]T ∈ Rm is the RBFNN input, and ι is the
optimal approximation error satisfying |ι| ≤ ε for constant
ε > 0.

Given an unknown actuator gain fault, the form of a distur-
bance observer cannot be employed in [26]. Let D(t) = ω(t)−
(ι/λ) be a composite disturbance. From Assumption 3, the
second-order derivative of D(t) is bounded, that is, |D̈(t)| ≤ δ

for constant δ > 0. To compensate for the effects of the
composite disturbance D(t) on the FS, we formulate the
NNCDO as

D̂(t) = ζ1(t) + ς1mlφt(R, t)

ζ̇1(t) = −ς1

{
−Tφa(R, t) + τ(t) − �̂T(t)ϒ(Z)

λ
+ D̂(t)

}

+ ˆ̇D(t)
ˆ̇D(t) = ζ2(t) + ς2mlφt(R, t)

ζ̇2(t) = −ς2

{
−Tφa(R, t) + τ(t) − �̂T(t)ϒ(Z)

λ
+ D̂(t)

}

(9)

where ζ1(t) and ζ2(t) are intermediate variables, �̂T(t)ϒ(Z)

denotes the approximation function of τnf (Z), D̂(t) and ˆ̇D(t)
represent the estimates of D(t) and Ḋ(t), respectively, and
ς1 > 0 and ς2 > 0 are constants.

According to ϒj(Z) = exp([−(Z − κ1j)
T(Z − κ1j)]/κ2

2j), we
find that ‖ϒ(Z)‖ is bounded, that is, ‖ϒ(Z)‖ ≤ ϑ for constant
ϑ > 0.

By defining D̃(t) = D(t) − D̂(t) and ˜̇D(t) = Ḋ(t) − ˆ̇D(t),
letting Q̃(t) = [D̃(t), ˜̇D(t)]T , and invoking (7)–(9), Lemma 1,
|D̈(t)| ≤ δ, and ‖ϒ(Z)‖ ≤ ϑ , we obtain

Q̃T(t) ˙̃Q(t) ≤ Q̃T(t)

{

K1 +
(

(ς1�1 + ς2�2)

λ2
ϑ2 + �3

)

I2

}

× Q̃(t) +
(

ς1

�1
+ ς2

�2

)

�̃T(t)�̃(t) + 1

�3
δ2

(10)

where K1 =
[−ς1 1

−ς2 0

]

, I2 = diag{1, 1}, �1 > 0, �2 > 0, and

�3 > 0 are constants.
Remark 4: As ϒj(Z) = exp([−(Z − κ1j)

T(Z − κ1j)]/κ2
2j),|ϒj(Z)| ≤ 1, j = 1, 2, . . . , n. Hence, upper bound ϑ > 0

of ‖ϒ(Z)‖ related to n can be achieved. Moreover, ϑ can be
chosen as

√
n.

Remark 5: We approximate unknown function τnf (Z) =
λτf (Z) instead of τf (Z) to add an adjusting parameter that
easily guarantees the stability of the closed-loop FS system.

B. Controller Design and Stability Analysis

Based on the proposed NNCDO described by (9), the design
principle of ANNBFTC is illustrated in Fig. 2. The controller
design is detailed as follows.

To handle actuator saturation, we used an auxiliary system
given by

η̇(t) = −l1η(t) + �u(t) + T[φa(R, t) + φt(R, t)]

ml
(11)

for constant l1 > 0.

Fig. 2. Block diagram of the proposed ANNBFTC.

Based on the proposed NNCDO and auxiliary system, we
design the following ANNBFTC scheme to mitigate the FS
vibration:

˙̂
�(t) = −g1

{

g2�̂(t) + [η(t) + φt(R, t) + φa(R, t)]
ϒ(Z)

λ

}

(12)

u(t) = −Tφt(R, t) − mlφat(R, t) + l1η(t)

− l2[η(t) + φt(R, t) + φa(R, t)] − D̂(t)

+ �̂T(t)ϒ(Z)

λ
(13)

where g1, g2, and l2 are positive constants and

Z = [φt(R, t), φa(R, t), φat(R, t), ι(	)]T . (14)

To investigate the stability of the closed-loop system, we
choose the following Lyapunov-candidate-function:

�(t) = �1(t) + �2(t) + �3(t) (15)

where

�1(t) = γ1ml

2
η2(t) + γ1ml

2
[η(t) + φt(R, t) + φa(R, t)]2

+ γ1

2g1
�̃T(t)�̃(t) + γ1

2
Q̃T(t)Q̃(t) (16)

�2(t) = γ1�

2

∫ R

0
φ2

t (a, t)da + γ1T

2

∫ R

0
φ2

a(a, t)da (17)

�3(t) = γ2�

∫ R

0
aφt(a, t)φa(a, t)da (18)

with constants γ1, γ2 > 0 satisfying ([min{γ1�, γ1T}]/�R)−
γ2 > 0 and �̃(t) = �∗ − �̂(t).

According to Lemma 2, the positive definiteness of �(t)
should be verified. According to Lemma 1, the cross-term
�3(t) satisfies the following inequality:

|�3(t)| ≤ γ2�R

2

∫ R

0

[
φ2

t (a, t) + φ2
a(a, t)

]
da. (19)

Then, considering ([min{γ1�, γ1T}]/�R) − γ2 > 0, (17),
and (19), we obtain �2(t) + �3(t) ≥ (1 −
[γ2�R]/[min{γ1�, γ1T}])�1(t) > 0. Thus, �(t) is a
positive-definite function that can be chosen as a Lyapunov
function. In the sequel, the stability of the closed-loop system
is analyzed.
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By invoking (11), Assumption 4, and Lemma 1, we have

γ1mlη(t)η̇(t) = −l1γ1η
2(t) + γ1η(t)�u(t)

+ γ1Tη(t)[φa(R, t) + φt(R, t)]

≤ −(l1 − �4)γ1η
2(t) + γ1

�4
μ2

+ γ1Tη(t)[φa(R, t) + φt(R, t)] (20)

where �4 is a positive constant.
By considering (7), (8), (11), (13), and Lemma 1, we obtain

γ1ml[η(t) + φt(R, t) + φa(R, t)]

× [η̇(t) + φtt(R, t) + φat(R, t)]

= γ1[η(t) + φt(R, t) + φa(R, t)]

×
{
−l1η(t) + �u(t)

+ T[φa(R, t) + φt(R, t)] − Tφa(R, t) + u(t)

− �u(t) − τf (Z) + ω(t) + mlφat(R, t)
}

≤ −γ1(l2 − �5)[η(t) + φt(R, t) + φa(R, t)]2

− γ1

λ
[η(t) + φt(R, t) + φa(R, t)]�̃T(t)ϒ(Z)

+ γ1

�5
Q̃T(t)Q̃(t) (21)

where �5 is a positive constant.
From (10) and (12), we obtain
γ1

g1
�̃T(t) ˙̃

�(t) + γ1Q̃T(t) ˙̃Q(t)

≤ γ1�̃
T(t)

{
g2�̂(t) + [η(t) + φt(R, t) + φa(R, t)]

ϒ(Z)

λ

}

+ γ1Q̃T(t)
{

K1 +
(
(
ς1�1 + ς2�2

)

λ2
ϑ2 + �3

)
I2

}
Q̃(t)

+
(

ς1

�1
+ ς2

�2

)

�̃T(t)�̃(t) + 1

�3
δ2

≤ −γ1

{
g2

(
1 − 1

�6

)
− ς1

�1
− ς2

�2

}
�̃T(t)�̃(t)

+ γ1Q̃T(t)
{

K1 +
( (ς1�1 + ς2�2)

λ2
ϑ2 + �3

)
I2

}
Q̃(t)

+ γ1

λ
[η(t) + φt(R, t) + φa(R, t)]�̃T(t)ϒ(Z)

+ γ1g2�6�
∗T�∗ + γ1

�3
δ2 (22)

where �6 is a positive constant.
By considering (16) and (20)–(22), the derivative of �1(t)

is given by

�̇1(t) ≤ −(l1 − �4)γ1η
2(t) − γ1(l2 − �5)

× [η(t) + φt(R, t) + φa(R, t)]2

− γ1

{
g2

(

1 − 1

�6

)

− ς1

�1
− ς2

�2

}
�̃T(t)�̃(t)

+ γ1Q̃T(t)
{

K1 +
( (ς1�1 + ς2�2)

λ2
ϑ2 + �3

+ 1

�5

)
I2

}
Q̃(t)

+ γ1

�4
μ2 + γ1g2�6�

∗T�∗ + γ1

�3
δ2

+γ1Tη(t)[φa(R, t) + φt(R, t)]. (23)

Considering (1), (2), (17), Assumption 2, and Lemma 1, we
obtain

�̇2(t) = γ1

∫ R

0
φt(a, t)

{
Tφaa(a, t) + d(a, t)

}
da

+ γ1T
∫ R

0
φa(a, t)φat(a, t)da

= γ1Tφt(R, t)φa(R, t) + γ1

∫ R

0
φt(a, t)d(a, t)da

≤ γ1Tφt(R, t)φa(R, t) + γ1

�7

∫ R

0
φ2

t (a, t)da

+ γ1�7RF̄2 (24)

with �7 > 0 being a constant.
By using φt(R, t)φa(R, t) =

[([η(t) + φt(R, t) + φa(R, t)]2)/2] − ([η2(t)]/2) −
([φ2

t (R, t)]/2) − ([φ2
a(R, t)]/2) − η(t)φt(R, t) − η(t)φa(R, t),

we obtain

�̇2(t) ≤ γ1T

2
[η(t) + φt(R, t) + φa(R, t)]2 − γ1T

2
η2(t)

− γ1T

2
φ2

t (R, t) − γ1T

2
φ2

a(R, t) − γ1Tη(t)φt(R, t)

− γ1Tη(t)φa(R, t) + γ1

�7

∫ R

0
φ2

t (a, t)da

+ γ1�7RF̄2. (25)

According to (1), (18), Assumption 2, and Lemma 1, we
obtain

�̇3(t) = γ2

∫ R

0
aφa(a, t)

{
Tφaa(a, t) + d(a, t)

}
da

+ γ2�

∫ R

0
aφt(a, t)φat(a, t)da

≤ −γ2�

2

∫ R

0
φ2

t (a, t)da + γ2�R

2
φ2

t (R, t)

−
(

γ2T

2
− γ2R

�8

)∫ R

0
φ2

a(a, t)da

+ γ2TR

2
φ2

a(R, t) + γ2R2�8F̄2 (26)

with �8 > 0 being a constant.
By combining (15), (23), (25), and (26), we obtain

�̇(t) ≤ −(l1 − �4)γ1η
2(t) − γ1

(

l2 − �5 − T

2

)

× [φt(R, t) + η(t) + φa(R, t)]2

− γ1

{
g2

(

1 − 1

�6

)

− ς1

�1
− ς2

�2

}
�̃T(t)�̃(t)

+ γ1Q̃T(t)
{

K1 +
(
�3 + 1

�5
+ (ς1�1 + ς2�2)

λ2
ϑ2

)
I2

}

× Q̃(t) −
{γ2�

2
− γ1

�7

}

×
∫ R

0
φ2

t (a, t)da −
(γ2T

2
− γ2R

�8

) ∫ R

0
φ2

a(a, t)da

+ γ1

�4
μ2 + γ1g2�6�

∗T�∗ + (γ1�7R + γ2R2�8)F̄
2
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+ γ1

�3
δ2 −

{γ1T

2
− γ2�R

2

}
φ2

t (R, t)

−
{γ1T

2
− γ2TR

2

}
φ2

a(R, t). (27)

When (γ1T/2) − (γ2�R/2) ≥ 0, (γ1T/2) − (γ2TR/2) ≥ 0,
l1 − �4 > 0, l2 − �5 − (T/2) > 0, g2(1 − [1/�6]) − (ς1/�1) −
(ς2/�2) > 0, ς1 −�3 − (1/�5)− ([(ς1�1 + ς2�2)]/λ2)ϑ2 > 0,
−{ς1 −�3 − (1/�5)− ([(ς1�1 + ς2�2)]/λ2)ϑ2}{�3 + (1/�5)+
([(ς1�1 + ς2�2)]/λ2)ϑ2} + ς2 > 0, (γ2�/2) − (γ1/�7) > 0,
and (γ2T/2) − (γ2R/�8) > 0, we obtain

�̇(t) ≤ −(l1 − �4)γ1η
2(t) − γ1

(

l2 − �5 − T

2

)

× [φt(R, t) + η(t) + φa(R, t)]2

− γ1

{
g2

(

1 − 1

�6

)

− ς1

�1
− ς2

�2

}
�̃T(t)�̃(t)

+ γ1Q̃T(t)
{

K1 +
(
�3 + 1

�5
+ (ς1�1 + ς2�2)

λ2
ϑ2

)
I2

}

× Q̃(t) −
{γ2�

2
− γ1

�7

}

×
∫ R

0
φ2

t (a, t)da −
(γ2T

2
− γ2R

�8

) ∫ R

0
φ2

a(a, t)da

+ γ1

�4
μ2 + γ1g2�6�

∗T�∗ + (γ1�7R + γ2R2�8)F̄
2

+ γ1

�3
δ2

≤ − χ1

1 + γ2�R
min{γ1�,γ1T}

�(t) + χ2 (28)

with

χ1 = min
{2(l1 − �4)

ml
,

2l2 − 2�5 − T

ml

× 2g1

{
g2

(

1 − 1

�6

)

− ς1

�1
− ς2

�2

}

× 2λmin

{
−K1 −

( (ς1�1 + ς2�2)

λ2
ϑ2

+ �3 + 1

�5

)
I2

}

× γ2

γ1
− 2

��7
,

γ2

γ1
− 2γ2R

γ1�8T

}

χ2 = γ1

�4
μ2 + γ1g2�6�

∗T�∗ +
(
γ1�7R + γ2R2�8

)
F̄2

+ γ1

�3
δ2.

Theorem 1: Let the FS given by (1), (2), and (7) sat-
isfy Assumptions 2–4. In addition, the NNCDO and auxiliary
system are designed as described in (9) and (11), respectively.
Based on the developed NNCDO and auxiliary system, we
derived the ANNBFTC scheme described in (12) and (13).
Let χ3 = (χ1/[1 + (γ2�R/[min{γ1�, γ1T}])]) and χ4 = 1 −
(γ2�R/[min{γ1�, γ1T}]). Under the introduced ANNBFTC
scheme, if the initial conditions of the FS are bounded,
vibration amplitude φ(a, t) satisfies the following conditions.

1) φ(a, t) uniformly converges to a com-
pact set �1 = {φ(a, t)||φ(a, t)| ≤√

[2R�(0)/γ1Tχ4]e−χ3t + (2Rχ2/[γ1Tχ3χ4])}.

2) φ(a, t) ultimately remains in the compact set �2 =
{φ(a, t)||φ(a, t)| ≤ √

(2Rχ2/[γ1Tχ3χ4])}.
Proof: By using χ3 = (χ1/[1 + (γ2�R/

[ min{γ1�, γ1T}])]), (28) can be rewritten as

�̇(t) ≤ −χ3�(t) + χ2. (29)

Considering (29), we obtain

�̇(t)eχ3t + χ3�(t)eχ3t ≤ χ2eχ3t. (30)

Then, (30) can be represented as

d
(
�(t)eχ3t

)

dt
≤ χ2eχ3t. (31)

From (31), we obtain

�(t) ≤
(

�(0) − χ2

χ3

)

e−χ3t + χ2

χ3
. (32)

As χ2 > 0, χ3 > 0, and �(0) ∈ L∞

�(t) ≤ �(0)e−χ3t + χ2

χ3
∈ L∞. (33)

From (17) and Lemma 1, we obtain

γ1T

2R
φ2(a, t) ≤ γ1T

2

∫ R

0
φ2

a(a, t)da

≤ �(t)

χ4
. (34)

By substituting (33) into (34), we obtain

|φ(a, t)| ≤
√

2R�(0)

γ1Tχ4
e−χ3t + 2Rχ2

γ1Tχ3χ4
(35)

that is, φ(a, t) uniformly converges to a
compact set �1 = {φ(a, t)||φ(a, t)| ≤√

(2R�(0)/γ1Tχ4)e−χ3t + (2Rχ2/γ1Tχ3χ4)}.
When t → ∞, φ(a, t) ultimately remains in the compact

set �2 = {φ(a, t)||φ(a, t)| ≤ √
(2Rχ2/[γ1Tχ3χ4])}.

Remark 6: The auxiliary system described in (11) aims to
provide a feedforward approach to compensate for input sat-
uration error �u(t). Although the dynamics of η(t) include
�u(t), we only use auxiliary variable η(t) in controller u(t)
instead of η̇(t). Thus, the forms of the auxiliary system and
controller u(t) do not result in an algebraic loop problem.

Remark 7: In the ANNBFTC scheme, φ(R, t) and φt(R, t)
can be obtained using a laser displacement sensor and veloc-
ity sensor, respectively, while φa(R, t) is obtained using an
inclinometer. Variable φat(R, t) is generally derived using a
backward difference with the information of φa(R, t) [17].

Remark 8: The design parameters of the control law and
disturbance observer in Section III can be chosen according to
the following regulation: ς1, ς2, l1, l2, λ, and g2 are related to
the system model parameters and the inequalities l1 −�4 > 0,
l2 −�5 − (T/2) > 0, g2(1 − [1/�6]) − [ς1/�1] − [ς2/�2] > 0,
ς1 − �3 − (1/�5) − ([(ς1�1 + ς2�2)]/λ2)ϑ2 > 0, and
−{ς1 −�3 − (1/�5)− ([(ς1�1 + ς2�2)]/λ2)ϑ2}{�3 + (1/�5)+
[(ς1�1 + ς2�2)/λ

2]ϑ2} + ς2 > 0, that is, the designs for ς1,
ς2, l1, l2, λ, and g2 are based on the completeness of the sta-
bility conditions. Moreover, design parameter g1 is selected
based on experience.
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Remark 9: �1(t) contains the total kinetic energy of load
and auxiliary variables. The objective of selecting this for-
mat is to ensure that system variables φt(R, t) and φa(R, t),
and auxiliary variables η(t), �̃(t), and Q̃(t) can converge to
a small compact set. �2(t) contains the total kinetic energy
and total potential energy of the string, which also constrain
system variables φt(a, t) and φa(a, t) from converging to a
small compact set. �3(t) is an auxiliary function, which guar-
antees that the closed-loop system of the FS is uniformly
ultimately bounded.

IV. SIMULATION RESULTS

In this section, we consider the FS system described
by (1), (2), and (7). By using the proposed NNCDO described
in (9) and the auxiliary system (11), we verify the control
performance of the proposed ANNBFTC scheme described
in (12) and (13) through a numerical simulation of the FS.
We set the initial conditions of the FS to φ(a, 0) = (a/25R)

and φ̇(a, 0) = 0, and its parameters to R = 1.0 m,
� = 0.15 kg/m, T = 12 N, and ml = 1.0 kg. In addi-
tion, disturbance terms were given by d(a, t) = (1.0 +
0.4 sin(0.1π t) + 0.2 sin(0.2π t) + 0.1 sin(0.4π t))a/100 and
ω(t) = 1.0 + 0.1 sin(0.1t) + 0.3 sin(0.3t) + 0.5 sin(0.5t), and
the upper and lower control constraint levels were defined as
τu = 1.0 and τl = −1.8, respectively. Moreover, a nonlinear
actuator gain fault was applied at Tf = 4s, with the following
nonlinear fault control rate coefficient [19]:

ø(	) = 1 − 1/

(

1 + e
−

(
2+1.4

√
| cos(φ(R,t)φ̇(R,t))

)
|
)

(36)

where

	 = [
φ(R, t), φ̇(R, t) )

]T
. (37)

To compensate for composite disturbance D(t), we set the
NNCDO parameters to ς1 = 10, ς2 = 10, and λ = 50. The
input constraint was handled by setting l1 = 10 in the auxiliary
system. To mitigate the FS vibration, we set the ANNBFTC
parameters to g1 = 10, g2 = 10, and l2 = 20.

The simulated vibration amplitude φ(a, t) of the FS without
control is shown in Fig. 3. Considering the ANNBFTC scheme
given by (12) and (13), φ(a, t) is obtained as shown in Fig. 4.
The comparison of Figs. 3 and 4 shows that the proposed
ANNBFTC scheme enhances the robustness against vibration
of the closed-loop FS system. Amplitudes φ(a, t) at a = R
and a = R/2 with ANNBFTC are shown in Fig. 5. A small
overshoot observed after t = 4 s was caused by the nonlinear
actuator gain fault. Nevertheless, the FS vibration returns close
to 0 within a short period. Thus, the proposed control method
effectively handles actuator gain faults. Moreover, the residual
vibration is very small, as shown by the smooth curves in
Fig. 5. Fig. 6 shows disturbance ω(t) and estimated composite
disturbance D̂(t) obtained from the proposed NNCDO. The
NNCDO quickly estimates the unknown external disturbance
before the fault at Tf = 4 s. The effect of the unknown actuator
gain fault is then compensated using the NNCDO. In addition,
as the composite disturbance is described as D(t) = (ι/λ) +
ω(t), the value of the neural-network approximation error ι is

Fig. 3. Vibration response φ(a, t) of FS without control.

Fig. 4. Vibration response φ(a, t) of FS with the NNCDO-based ANNBFTC.

Fig. 5. Vibration response φ(a, t) at a = R and a = R/2 with the NNCDO-
based ANNBFTC.

sufficiently small, as shown in ω(t) and D̂(t) of Fig. 6. Thus,
a proper response against the unknown actuator gain fault is
achieved by using the proposed control scheme. Fig. 7 shows
the simulated boundary control τ(t), considering the actuator
gain fault and input constraint, which are clearly visualized in
the graph.

To illustrate the superior performance of the proposed
control scheme, we evaluated the following proportional–
derivative (PD) controller:

u(t) = −l3φ(R, t) − l4φ̇(R, t) (38)

for constants l3 > 0 and l4 > 0.
The PD control parameters were set to l3 = 150 and

l4 = 200, resulting in the responses for the closed-loop system
shown in Figs. 8 and 9, respectively.

Figs. 4, 5, 8, and 9 show that the stability domain and chat-
tering of vibration amplitude φ(a, t) are smaller by employing
the proposed NNCDO-based ANNBFTC scheme. Thus, the
proposed scheme effectively mitigates the FS vibration. Unlike
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Fig. 6. Disturbance ω(t) and estimated composite disturbance D̂(t) under
NNCDO (9).

Fig. 7. Boundary control response τ(t).

Fig. 8. Vibration response φ(a, t) of FS with PD control.

Fig. 9. Vibration response φ(a, t) at a = R and a = R/2 with PD control.

the PD controller, higher control performance is achieved
using the proposed NNCDO-based ANNBFTC.

Moreover, the conventional NNCDO-based control scheme
was constructed to confirm the advantages of the proposed
ANNBFTC through simulations. According to [28] and [29],

Fig. 10. Vibration response φ(a, t) of FS with the conventional NNCDO-
based control scheme.

the conventional NNCDO can be described as

D̂(t) = ζ3(t) + ς3mlφt(R, t)

ζ̇3(t) = −ς3

{
−Tφa(R, t) + τ(t) − �̂T(t)ϒ(Z)

λ
+ D̂(t)

}

(39)

for constant ς3 > 0.
Based on the designed conventional NNCDO (39) and aux-

iliary system (11), the conventional NNCDO-based control
scheme can also be described by (12) and (13).

We set the design parameters in (39) to ς3 = 10 and λ = 50.
The input constraint was handled using the auxiliary system
with l1 = 10. The design parameters of the conventional
NNCDO-based control scheme were set to g1 = 10, g2 = 10,
and l2 = 20. Based on the derived NNCDO (39) and auxiliary
system (11), the simulated dynamic responses of the FS are
shown in Figs. 10−12 under the conventional NNCDO-based
control scheme. Fig. 10 shows vibration φ(a, t) of the FS.
Dynamic responses φ(R/2, t) and φ(R, t) are shown in Fig. 11.
Fig. 12 shows the dynamic responses of disturbance ω(t) and
estimated composite disturbance D̂(t) under the conventional
NNCDO (39).

According to Figs. 4, 5, 10, and 11, nice control
performance can be obtained using either the proposed
NNCDO-based ANNBFTC or the conventional NNCDO-
based control scheme before 4 s. However, the actuator gain
fault occurs at 4 s, and the control performance using the
proposed NNCDO-based ANNBFTC outperforms that using
the conventional NNCDO scheme. Moreover, Figs. 6 and 12
show a suitable estimation using either of the observers before
4 s. However, after 4 s, when the actuator gain fault occurs,
the estimation using the proposed NNCDO also outperforms
that using the conventional NNCDO. Two aspects are noted
regarding this estimation.

1) The estimation of the proposed NNCDO is faster.
2) The estimation accuracy of the proposed NNCDO is

higher.
These results confirm that the poor disturbance rejection
undermines the control performance when employing the
conventional NNCDO.

Overall, the simulation results show that the proposed
NNCDO-based control scheme effectively mitigates the vibra-
tion in the closed-loop FS system. In addition, it can enhance
the robustness against input constraint, actuator gain fault, and
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Fig. 11. Vibration response φ(a, t) at a = R and a = R/2 with the
conventional NNCDO-based control scheme.

Fig. 12. Disturbance ω(t) and estimated composite disturbance D̂(t) under
conventional NNCDO (39).

unknown external disturbances affecting the FS. Moreover, the
proposed NNCDO outperforms the conventional NNCDO in
terms of disturbance rejection.

V. CONCLUSION

We proposed a scheme to mitigate the vibration in FS
systems, subject to actuator gain fault, input saturation, and
external disturbances. To this end, we adopted an RBFNN and
an auxiliary system to handle unknown actuator gain faults
and input saturation, respectively. In addition, the proposed
NNCDO estimated an unknown composite disturbance. Then,
we derived an ANNBFTC scheme to determine the FS stability
through the Lyapunov direct method. By using the proposed
control scheme, we proved that the closed-loop system is
uniformly bounded. In addition, the vibration of the FS is
guaranteed to ultimately converge to a small compact set.
Numerical simulations were performed to validate the high
performance of the designed control scheme. Future studies
will focus on flexible manipulators considering fuzzy con-
trol [38]–[41], state constraints [42]–[45], and learning-based
approaches [46]–[51].
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