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Adaptive Fault-tolerant Control of a
Probe-and-drogue Refueling Hose Under Varying

Length and Constrained Output
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Member, IEEE, and Keum-Shik Hong, Fellow, IEEE

Abstract—This paper deals with an adaptive barrier-based
fault-tolerant control of a probe-and-drogue refueling hose (P-
DRH) under varying length, actuator fault, and constrained
output. First, we consider the actuator working normally and
a model-based control law with barrier function is developed to
stabilize the elastic vibration and ensure the end-point vibration
without violating the restriction of the flexible hose. Second, an
adaptive fault-tolerant control scheme is proposed to cope with
partial effectiveness loss of the actuator. Subsequently, the direct
Lyapunov method is adopted to derive the uniformly bounded
stability in the closed-loop system. Finally, simulation results
demonstrate the validity of the obtained schemes.

Index Terms—Adaptive control; Vibration control; Fault-
tolerant control; Probe-and-drogue Refueling Hose; Output con-
straint.

NOMENCLATURE

ρ Linear density of the refueling hose
C Specified boundary constraint of the refueling hose
d(t) Boundary disturbance at the end-point position of the

refueling hose
dd(z, t) Distributed disturbance along the refueling hose,

where 0 < z < E(t)
E(t) Length of the refueling hose varied along time t
fh(z, t) Surface friction of the refueling hose in the tangential

direction, where 0 < z < E(t)
fdrog(t) Resistance of the drogue
fn(z, t) Pressure exerted on the refueling hose along the

normal direction, where 0 < z < E(t)
g Gravitational acceleration
L Maximum length of the refueling hose
m Weight of the drogue
T (E(t), t) End-point position tension of the refueling hose

with respect to time t, where 0 < E(t)≤ L
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T (z, t) Tension of the refueling hose at position z for time t,
where 0 < z < E(t)

v(t) Advancing velocity of the tanker
w(E(t), t) End-point position displacement of the refueling

hose with respect to time t, where 0 < E(t)≤ L
w(z, t) Displacement of the refueling hose at position z for

time t, where 0 < z < E(t)

I. INTRODUCTION

W ITH the increasing popularity of unmanned aerial ve-
hicles in the military field, autonomous aerial refueling

as an important means of endurance has come into being
and aroused wide interests of many researchers over the
last few years. Among them, the probe and drogue system
with its unique advantages such as light weight and simple
operation occupies the mainstream position. Vibration and
deformation may arise in the hose due to the complicated
air environment and its structural characteristics. However,
the excessive irregular vibration of the hose would make
docking difficult. Moreover, excessive vibration may lead to
disastrous consequences of premature of the hose and even
the destruction of whole system. Therefore, great attention
should be paid to vibration control of the refueling hose
system. Recently, many scholars have extensively studied the
control design for flexible hose systems. However, the existing
studies only focused on PDRH modelled as lumped parameter
systems and these control schemes cannot be directly used
for a flexible hose system modelled as distributed parameter
systems (DPS) in which partial differential equations (PDEs)
need to be adopted.

In recent decades, much attention has been paid to infinite
dimensional DPS [1]–[3], and several control schemes have
been proposed, such as reduced order model-based control
[4], distributed control [5], and boundary control [6], [7].
Compared to other methods mentioned above, the boundary
control is nonintrusive in the process of sensing and actuation,
thus, it is extensively adopted in the vibration suppression of
DPS [8]–[10]. The input nonlinearities problem of a flexible
riser systems was handled through adaptive robust vibration
control established in [11]. Iterative learning control schemes
were introduced for coping with spatiotemporally varying dis-
turbances for a flexible micro aerial vehicle in [12]. Especially
for flexible refueling hose systems, many boundary control
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schemes have been exploited to control the vibration based
on PDEs recently. A novel dead-zone compensation method
was developed for unknown dead-zone nonlinearity in [13].
In order to further research, the variable length of the flexible
refueling hose was considered in our previous result [14].
And a new boundary control law based on back-stepping
method was developed to regulate hoses vibration, where
a Nussbaum function was adopted to solve the problem of
input saturation. However, the above-mentioned research about
boundary control of refueling hose systems was restricted
to suppressing vibrations or handling nonlinear constraints,
the approaches of which were invalid when taking actuator
failures [15] and output constraints [16] into account. The
occurrence of actuator failure may bring additional uncer-
tainty and destroy the stability of the system [17]. Moreover,
performance degradation, even system corruption, may break
out once the specified constraints are violated [18], [19].
Therefore, it is necessary to incorporate actuator failures and
output constraints into flexible hose systems when designing
the boundary controller.

In this paper, we investigate a PDRH system subjected to
variable length, actuator fault, and output constraints. The
major contributions of this paper compared to existing research
are summarized below: (1) An adaptive fault-tolerant control
scheme is developed to tackle partial effectiveness loss of
the actuator; (2) The barrier Lyapunov function is applied
to guarantee no violation of output constraints in the PDRH
system; (3) With presented control schemes, closed-loop sys-
tem stability is demonstrated via the Lyapunov theory and the
system state can be guaranteed to converge to an arbitrarily
small neighborhood of the origin.

II. PROBLEM FORMULATION

Fig.1 depicts the diagram of the PDRH system, three
coordinate systems are established to describe the location
of physical variables in the system. The inertial reference
coordinate system is expressed by Zg −Wg. As the tanker
advances at speed v(t), a coordinate system Z−W is estab-
lished to describe the relative position of the variables with the
tanker as the origin. Also, a coordinate system z−w based on
the displacement of the hose w(z, t) is established, the angle
between it and the Z −W coordinate system is ϕ , and the
actuator u(t) is installed on the drogue at location of (E(t), t)
on z−axis.

A. Equations of motion for the system

Remark 1: For partial differential operations, notations
(∗)z =

∂ (∗)
∂ z , (∗)zz =

∂ 2(∗)
∂ z2 , (∗)t =

∂ (∗)
∂ t , (∗)tt =

∂ 2(∗)
∂ t2 are used

throughout this paper.
Considering the following flexible hose system in [14] with

boundary and distributed disturbances, the equations of motion
are described as

ρ
[
wtt(z, t)+2Ė(t)wzt(z, t)+ Ë(t)wz(z, t)+ Ė2(t)wzz(z, t)

]
= Tz(z, t)wz(z, t)+T (z, t)wzz(z, t)+Q(z, t) (1)
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Fig. 1. Drawing of the PDRH system

where

T (z, t) =[m+ρ (E(t)− z)]
(
gsinϕ− Ë(t)− v̇(t)cosϕ

)
+ fdrog(t)cosϕ + fh(z, t) (2)

and the auxiliary term Q(z, t) is defined as

Q(z, t) = dd(z, t)− fn(z, t)+ρ (gcosϕ− v̇(t)sinϕ) (3)

with boundary conditions

m
[
2Ė(t)wzt(E(t), t)+ Ë(t)wz(E(t), t)+ Ė2(t)wzz(E(t), t)

]
+mwtt(E(t), t)+mv̇(t)sinϕ +T (E(t), t)wz(E(t), t)

−mgcosϕ =− fdrog(t)sinϕ +u(t)+d(t) (4)
w(0, t) = 0 (5)

Remark 2: It is noted that for the differential operation
of moving material, the concept of material derivative was
introduced in [20], which is described as D(·)/Dt = ∂ (·)/∂ t+
Ė(t)∂ (·)/∂ z.

Remark 3: In the following derivation, we assume that the
travel speed v(t) of tanker is constant so that v̇(t) = 0 and
v̈(t) = 0.

An ideal actuator should be able to output the same amount
of control as the input. However, in practice, loss of effective-
ness may occur on actuator, which will lead to system cannot
obtain ideal control input and even reduce stability. In this
paper, we focus on one of the actuator failures, that is partial
loss of effectiveness, which can be modeled as:

u(t) = ηui(t) (6)

where u(t) represents the actual output of actuator, 0 < η ≤ 1,
which represents the uncertain gains of actuator during work-
ing, ui(t) is the input value of actuator to be designed. The
following two cases are discussed in this paper:

Case 1: η = 1, i.e., u(t) = ui(t), which is regarded as a
failure-free actuator.

Case 2: 0 < η0 ≤ η < 1, which denotes that the actuator
is suffering partial effectiveness loss, where η0 is a certain
constant, which implies the maximum degree of effectiveness
loss. Specifically, η = 80% indicates a 20% loss of efficiency
on the actuator.

Remark 4: The degree of effectiveness loss of actuator can
theoretically be any constant between 0 and 1. However, when
the degree of effectiveness loss is very large, i.e., when η is

User
강조

User
스티커 노트
No indentation before with



3

very small, the system will become uncontrollable. At that
point, the adaptive fault-tolerant control law designed in this
paper can no longer meets the need to make the system stable.
One of the solutions is to introduce redundant actuators into
control design [21].

B. Preliminaries

In this part, we put forward some reasonable assumptions
and necessary lemmas which are very helpful in carrying on
the following study.

Assumption 1: [14] In practical system, since the energy of
the disturbance is finite, therefore, we assume that d(t) and
dd(z, t) are bounded which can be described as |d(t)| ≤ d and
|dd(z, t)| ≤ dd .

Assumption 2: [14] It is assumed that the auxiliary term
Q(z, t) is bounded by a positive constant Qmax which can be
expressed as |Q(z, t)| ≤ Qmax,∀(z, t) ∈ [0,E(t)]× [0,∞).

Assumption 3: We assume that T (z, t), Tz(z, t) and Tt(z, t)
are bounded by known constants, which satisfy the following
inequalities:

0 < Tmin ≤ T (z, t)≤ Tmax (7)
−Tzmax ≤ Tz(z, t)≤−Tzmin < 0 (8)
0≤ Ttmin ≤ Tt(z, t)≤ Ttmax (9)

∀(z, t) ∈ [0,E(t)]× [0,∞).
Lemma 1: [22] For a real function h(t), t ∈ [t0,∞), the

following inequality can be satisfied

0≤ |h(t)|−h(t) tanh
(

h(t)
ς

)
≤ ως (10)

where ς > 0 is a constant, and ω = 0.2785.
Lemma 2: [23] Let V(t) : [t0, t)→ R with t0 ∈ (0,∞), if

V̇(t)≤−λV(t)+g(t) , then

V(t)≤ e−λ (t−t0)V(t0)+
∫ t

t0
e−λ (t−ν)g(ν)dν (11)

where λ is a positive constant.

III. MODEL-BASED CONTROL DESIGN WITHOUT
ACTUATOR FAILURE

In this section, we consider the actuator operates in failure-
free state, i.e., u(t) = ui(t). The control objectives are: 1) to
abatement the PDRH vibration w(z, t), 2) to keep the boundary
displacement w(E(t), t) remaining in a given space in the
situation where the length and speed of the flexible hose are
time-varying.

The model-based control law u(t) is proposed as follows:

u(t) =−ψ(t)
{

c1 +
mw(E(t), t)(Dw(E(t), t)/Dt)

C2−w2(E(t), t)

}
/S(t)

−c2ψ(t)−mgcosϕ +T (E(t), t)wz(E(t), t)− tanh
(

ψ(t)
ς

)
d

+ fdrog(t)sinϕ− kmwzt(E(t), t)− kmĖ(t)wzz(E(t), t) (12)

where c1, c2, and ς are positive control gains, C is the given
boundary of w(E(t), t), ψ(t) and S(t) are designed as:

ψ(t) = wt(E(t), t)+ Ė(t)wz(E(t), t)+ kwz(E(t), t) (13)

S(t) = ln
2C2

C2−w2(E(t), t)
(14)

where k is a designed positive parameter.
Remark 5: From the definition of S(t), we note that the

boundary constraint C should satisfy C > 0 because the term
2C2/(C2−w2(E(t), t)) must be positive. In addition, we know
that the domain of definition of S(t) is |w(E(t), t)|<C.

Remark 6: The term − tanh
(

ψ(t)
ς

)
d in designed control

input is continuous in its domain, such that the control input is
also continuous. Symbolic function −sign[ψ(t)]d can also be
employed to design the control law by replacing the hyperbolic
tangent function mentioned above. In that condition, because
of discontinuity of symbolic function, sliding motion may
happen in control process [24], [25].

We choose the following Lyapunov candidate function for
the PDRH system:

V(t) = V1(t)+V2(t)+V3(t) (15)

where V1(t), V2(t) and V3(t) are the energy term, barrier term
and crossing term defined as follows:

V1(t) =
ζ

2

[∫ E(t)

0
ρ

(Dw(z, t)
Dt

)2

+T (z, t)w2
z (z, t)dz

]
(16)

V2(t) =
ζ

2
mψ

2(t)S(t) (17)

V3(t) = ϖ

∫ E(t)

0
ρz
(

Dw(z, t)
Dt

)
wz(z, t)dz (18)

where ζ and ϖ are designed positive parameters.
Remark 7: In real system, actuator is installed at the end

of the refueling hose, and the input of control value is mainly
realized by active controllable drogue containing aerodynamic
control surface [26]. The signals in designed control law can
be measured by sensors or can be calculated by difference
method. w(E(t), t) and wz(E(t), t) can be obtained by a laser
displacement and an inclinometer mounted on the tanker,
respectively. wt(E(t), t), wzz(E(t), t), and wzt(E(t), t) can be
obtained by the backward difference method. Due to the
measurement noise of sensors, the actual acquired signals will
have ineluctable errors, which will affect the control accuracy.
Therefore, the allowable error range should be taken into
account when selecting sensors.

Lemma 3: For the PDRH system described by (1)-(5), the
Lyapunov function (15) is positive definite and bounded

0≤ ϕ1 [V1(t)+V2(t)]≤ V(t)≤ ϕ2 [V1(t)+V2(t)] (19)

where ϕ1 and ϕ2 are positive constants.
Proof 1: Please see Appendix A.
Lemma 4: Consider the PDRH system described by (1)-(5)

with the proposed control scheme (12). The time derivative of
(15) is upper bounded as

V̇(t)≤−λV(t)+δ (20)

where λ and δ are positive constants.
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Proof 2: Please see Appendix B.
Remark 8: The selection of parameter has a great in-

fluence on the system stability. On the basis of ensuring
the inequalities (40)-(45) hold true, the parameters are cho-
sen for better control performance. The parameters con-
tained in (40)-(45) should be designed in following steps.
ρ,L,Tmax,Tmin,Ttmax,Tzmax are given or can be calculated in
certain systems in practice. (45) always holds true. Then, we
design k, θ1, θ2, ϖ , and ζ such that (40), (41), (43), and
(44) hold true, ϖ and ζ should satisfy 0 < 2ϖρL

ζ min(ρ,Tmin)
< 1 in

order to make sure that the vibrations of the hose w(z, t) is
sufficiently small. Finally, c1 is selected to guarantee (42) hold
true. It is noted that the arbitrarily small vibration is guaranteed
by the increase of control gains ci(i = 1,2). However, very
large control gains ci(i= 1,2) would result in instability of the
system. Hence, the control gains should be chosen prudently
for satisfying the certain performance indicators in a real world
application.

Then we can give the following Theorem.
Theorem 1: For the PDRH system described by (1)-(5),

under the action of the control scheme (12), provided that the
intermediate parameters are appropriately selected to satisfy
the inequalities (40)-(45). The following properties of the
closed-loop system on the premise of the bounded initial
conditions hold:

1) uniform ultimate boundedness (UUB) [27]: system states
will be guaranteed to converge to Ω1 which is:

Ω1 :=
{

w(z, t) ∈ R| lim
t→∞
|w(z, t)| ≤ D1,∀(z, t) ∈ [0,E(t)]× [0,∞)

}
,

where D1 =
√

2Lδ

ζ Tminϕ1λ
will be defined in Appendix C.

2) the boundary output of the PDRH is always within a
certain space, i.e., the variable w(E(t), t) of the system meets
|w(E(t), t)|<C,∀t ∈ [0,∞), where C is the boundary constraint
predefined in above process.

Proof 3: Please see Appendix C.
The proposed model-based control can stabilize the PDRH

system and keep the boundary displacement remaining in a
given restricted boundary. However, due to the influence of the
complex air environment, the actuator of the refueling hose
system is prone to failure in operation. In order to ensure
the control effect in such situation, the adaptive fault-tolerant
controller is designed subsequently.

IV. ADAPTIVE ACTUATOR FAULT-TOLERANT CONTROL
DESIGN

In this part, we consider the case that actuator suffers
partial effectiveness loss, i.e., u(t) = ηui(t),0 < η0 ≤ η < 1.
The control objective is to keep the boundary displacement
w(E(t), t) remaining in a given space even if the actuator in
the operation of a sudden partial effectiveness loss.

To motivate the followings, we define

p =
1
η

(21)

The estimation error between estimated value and true value
of p is p̃ = p̂− p.

Then we design the fault-tolerant control law as

ui(t) =−p̂τ (22)

where
τ =−u(t) (23)

and the adaptive control law

˙̂p = τγζ ψ(t)S(t)−κ p̂ (24)

where γ , and κ are positive constants.
Considering the following Lyapunov candidate function as:

Va(t) = V(t)+
η

2γ
p̃2 (25)

Lemma 5: For the PDRH system described by (1)-(5), the
Lyapunov function (25) is positive definite and bounded

0≤ϕ1
[
V1(t)+V2(t)+

η

2γ
p̃2]≤Va(t)≤ϕ2

[
V1(t)+V2(t)+

η

2γ
p̃2]

(26)
where ϕ1 and ϕ2 are positive constants.

Proof 4: Please see Appendix D.
Lemma 6: Consider the PDRH system described by (1)-(5)

with the proposed control scheme (22) and the adaptive law
(24). The time derivative of (25) is upper bounded as

V̇a(t)≤−λ0Va(t)+δ0 (27)

where λ0 and δ0 are positive constants.
Proof 5: Please see Appendix E.
Then we can give the following Theorem.
Theorem 2: For the PDRH system described by (1)-(5),

under the action of the control scheme (22)-(24), provided
that the intermediate parameters are appropriately selected to
satisfy the inequalities (40)-(45). The following properties of
the closed-loop system on the premise of the bounded initial
conditions hold:

1) uniform ultimate boundedness (UUB) [27]: system states
will be guaranteed to converge to Ω2 which is:

Ω2 :=
{

w(z, t) ∈ R| lim
t→∞
|w(z, t)| ≤ D2,∀(z, t) ∈ [0,E(t)]× [0,∞)

}
,

where D2 =
√

2Lδ0
ζ Tminϕ1λ0

will be defined in Appendix F.
2) the boundary output of the flexible hose is always within

a certain space, i.e., the variable w(E(t), t) of the system meets
|w(E(t), t)| < C,∀t ∈ [0,∞), where C is the output constraint
given in the above process.

Proof 6: Please see Appendix F.
Remark 9: The control design procedure in this paper

derives from Lyapunov’s direct method. Therefore, compared
with the controller in [14], which is based on back-stepping
method, the control strategies (12) and (22)-(24) and the design
approach are more intuitive and easier to comprehend for
engineers.

Remark 10: In the proof process of Theorems 1 and
2, the auxiliary term ψ(t) = wt(E(t), t) + Ė(t)wz(E(t), t) +
kwz(E(t), t) plays an important role in associating the Lya-
punov function with the system boundary conditions. By
taking derivative of Lyapunov function and substituting the de-
signed control law and the auxiliary term ψ(t) = wt(E(t), t)+
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Ė(t)wz(E(t), t) + kwz(E(t), t) into it, we can obtain the
following negative definite terms −(ζ/2)ρ(Dw(z, t)/Dt)2,
−(ζ/2)T (z, t)w2

z (z, t), −(ζ/2)mψ2(t)S(t), and −(η/2γ)p̃2

(the last term is only used in Appendix B). Then, we can
derive (31) and (52), which implies the boundedness of the
Lyapunov function V (t) and Va(t), respectively. Further, the
conclusion stated in Theorems 1 and 2 can be obtained.

V. SIMULATIONS RESULTS

In this section, the availability of the control laws designed
in Section III and Section IV are verified by simulation results.
Several approaches have been applied to discretization and
numerical simulation of systems, such as finite difference,
assumed mode method, finite element method, and Galerkin
method, and good results can be obtained. In this paper,
the PDRH considered in (1)-(5) are solved numerically by
implementing a finite difference algorithm, and PD control
(28) is also put forward for comparison. Simulations are made
using MATLAB and the system parameters are given in Table
I. The time step size is given as 10−4s, space step size is given
as ∆z = 0.02m, and total simulation time is 50s.

TABLE I
ARGUMENTS OF THE PDRH SYSTEM

Arguments Definitions Values
L Maximum length of PDRH 29m
Ds The diameter of PDRH 0.067m
ρ The linear density of PDRH 5.2kg/m
ρair The volume density of air 1.29kg/m3

m The weight of drogue 39.5kg
C f The coefficient of surface friction 0.005
Cd The coefficient of pressure drag 0.45
Cdrog The coefficient of drag 0.43
Ddrog The diameter of drague 0.61m
v(t) Flight speed of the tanker 100km/h
ϕ Initial angle between W -axis and w-axis 0.785rad

The boundary and distributed disturbances are set as d(t) =
1.5sin(0.5t) + 1.5cos(0.5t), dd(z, t) = 0.2 + 0.2sin(0.5zt) +
0.2sin(zt) + 0.2sin(1.5zt). The resistance terms in system
model can be expressed as

fdrog =
1
2

ρairv2(t)Cdrog
πD2

drog

4
, fn(z, t) =Cd

1
2

ρairv2(t)sin2
ϕDs,

fh(z, t) =C f
1
2

ρairv2(t)cos2
ϕπDs

The of length the PDRH varies as E(t) = 6+ 0.5t + 0.01t2

with initial conditions that w(z,0) = 0.06z2 and ẇ(z,0) = 0.
The initial condition of p̂ is p̂(0) = 0. The output constraint
is set as C = 0.6m, which can be seen in Figs.2b and
Figs.4b represented by blue dotted line. In order to study the
algorithm designed in this paper, the verification is performed
in following four cases.

Case 1: Without control.
Case 2: PD control is applied for the situation where the

actuator works normally, which is proposed as follows:

u(t) =−kpw(E(t), t)− kdwt(E(t), t) (28)

where the control gains kp = 200, kd = 50 are designed.

Case 3: In this case, proposed control law (12) is utilized
with control parameters c1 = 10,c2 = 30,k = 30.

Case 4: In this case, we simulate the system performance by
control schemes (22)-(24). We consider the situation where the
actuator is subject to faults from 1s with the design parameters
η = 0.2,c1 = 100,c2 = 750,k = 28,γ = 1× 10−4,κ = 0.073,
ζ = 1×10−4 and ζ = 30. For purpose of showing the supe-
riority of fault-tolerant strategies (22)-(24), we also provide
the control results of other two controllers in the same faulty
situation of actuators.

Fig.2 shows the displacements of the flexible hose when
actuator works normally for Case 1-4, and the control inputs
are drawn in Fig.3. Fig.4 depicts the displacements of the
flexible hose at presence of a 80% effectiveness loss of the
actuator for Case 1-4, whose control inputs are displayed in
Fig.5.
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Fig. 2. Displacements of the PDRH when actuator works normally
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Fig. 3. Control inputs
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Fig. 4. Displacements of the PDRH when partial effectiveness loss occurs
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Fig. 5. Control inputs

Fig.2 compares the displacements at middle-point
w(E(t)/2, t) and end-point w(E(t), t) for Case 1-4. In
Fig.2b, it is shown that w(E(t), t) continuously increases and
eventually exceeds the blue dotted line without any control,
which implies poor system performance. When PD control
is adopted, vibration of the end-point of the flexible hose
is effectively suppressed, however, it causes oscillation at
middle-point of the hose. Better control effect appears when
we use proposed control schemes (12) and (22)-(24) instead.
It can be seen that the displacement at both middle-point and
end-point of the flexible hose continue to converge to a small
neighbourhood around zero from the moment the control
input is applied.

Fig.4 depicts the different control results of different control
strategies when the actuator suffers partial loss of effective-
ness. It can be informed that the control laws (12) and (28)
cannot be used for acquiring desired control objectives any
longer. Fortunately, the convergence of displacement of the
flexible hose at both middle-point and end-point can still be
guaranteed when the control schemes (22)-(24) are applied,
which implies a satisfying control performance.

VI. CONCLUSION

In this study, we deals with an adaptive fault-tolerant
control of the variable length PDRH system influenced by
external disturbances, actuator partial effectiveness loss and
output constraint. A model-based controller and an adaptive
fault-tolerant controller are proposed for vibration control of
the flexible hose during normal operation of the actuator
and partial effectiveness loss of the actuator, respectively.
In addition, the barrier Lyapunov function is employed to
achieve system output boundary satisfaction. The closed-loop
stability is demonstrated with the direct Lyapunov’s method
while ensuring the deflection eventually remaining in a small
neighborhood of origin. Numerical simulations are finally
performed to verify the availability and efficiency of the
presented schemes. In future work, we aim to study intelligent
methods to solve the vibration control of the PDRH system
[6], [28].
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APPENDIX A
PROOF OF LEMMA 3

We can obtain that V3(t) satisfies the following inequality
from its definition

|V3(t)| ≤ φ1V1(t) (29)

where φ1 =
2ϖρL

ζ min(ρ,Tmin)
. Therefore, we have

−φ1V1(t)≤ V3(t)≤ φ1V1(t) (30)

Since ϖ satisfies 0 < ϖ < ζ min(ρ,Tmin)
2ρL , we obtain that 0 <

φ1 < 1, and

φ2V1(t)≤ V1(t)+V3(t)≤ φ3V1(t) (31)

where φ2 = 1−φ1 > 0 and φ3 = 1+φ1 > 1. We further obtain

0≤ ϕ1 [V1(t)+V2(t)]≤ V(t)≤ ϕ2 [V1(t)+V2(t)] (32)

where ϕ1 = min(φ2,1) = φ2 and ϕ2 = max(φ3,1) = φ3.
Thus, (15) is positive definite and bounded.

APPENDIX B
PROOF OF LEMMA 4

We take the material derivative of each part of V(t). Using
(1) with boundary conditions (4)-(5), and (13), according to
Lemma 11 in [29], we have

V̇1(t)≤
ζ

2θ1

∫ E(t)

0

(
Dw(z, t)

Dt

)2

dz

+
ζ

2

∫ E(t)

0
Tz(z, t)Ė(t)w2

z (z, t)dz+
θ1ζ

2

∫ E(t)

0
Q2(z, t)dz

+
ζ

2

∫ E(t)

0
Tt(z, t)[wz(z, t)]

2dz+
1
2k

ζ T (E(t), t)ψ2(t)

+

(
1
2

ζ ρ− 1
2k

ζ T (E(t), t)
)(

Dw(E(t), t)
Dt

)2

+

(
1
2

ζ T (E(t), t)− k
2

ζ T (E(t), t)
)
[wz(E(t), t)]

2

− 1
2
[
2ζ T (0, t)Ė(t)+ζ ρĖ2(t)+ζ T (0, t)

]
·[wz(0, t)]

2

(33)

The material derivative with respect to V2(t) holds

V̇2(t) = ζ mψ(t)ψ̇(t)S(t)+
ζ

2
mψ

2(t)Ṡ(t) (34)

Substituting boundary conditions (4)-(5) and the proposed
control law (12), we arrive at

V̇2(t) =ζ ψ(t)S(t)(−ψ(t)c1/S(t)− c2ψ(t))

−ζ ψ(t)S(t) tanh
(

ψ(t)
ς

)
d +ζ ψ(t)S(t)d(t) (35)

According to Lemma 1, we have

ζ ψ(t)S(t)d(t)−ζ ψ(t)S(t) tanh
(

ψ(t)
ς

)
d ≤ ζ ωςdS(t) (36)

where ω is the solution of ω = e−(1+ω).
Therefore, we can obtain that (34) becomes

V̇2(t)≤−ζ c1ψ
2(t)−ζ c2ψ

2(t)S(t)+ι (37)

where ι = ζ ωςdS(t).
Applying the governing equation (1) and boundary condi-

tions (4)-(5), and using Lemma 11 in [29], we arrive at

V̇3(t)≤
ϖ

2

∫ E(t)

0

(
zTz(z, t)−T (z, t)−ρĖ2(t)+θ2E(t)

)
w2

z (z, t)dz

+
ϖE(t)

2
(T (E(t), t)+ρ)w2

z (E(t), t)+
ϖL
2θ2

∫ E(t)

0
Q2(z, t)dz

− ϖ

2
ρ

∫ E(t)

0

(Dw(z, t)
Dt

)2

dz+ϖρE(t)
(Dw(E(t), t)

Dt

)2

(38)

Combining and appropriately rearranging the above inequal-
ities, we obtain that V̇(t) satisfies:

V̇(t)≤− 1
2

∫ E(t)

0

(
ϖρĖ2(t)+ϖT (z, t)−ϖzTz(z, t)

−ϖθ2E(t)−ζ Tz(z, t)Ė(t)−ζ Tt(z, t)
)

w2
z (z, t)dz

− 1
2

(
ϖρ− ζ

θ1

)∫ E(t)

0

(
Dw(z, t)

Dt

)2

dz

−ζ c2ψ
2(t)S(t)− 1

2

(
2ζ c1−

1
k

ζ T (E(t), t)
)

ψ
2(t)

− 1
2

[
1
k

ζ T (E(t), t)−ζ ρ−2ϖρE(t)
](

Dw(E(t), t)
Dt

)2

− 1
2
[kζ T (E(t), t)−ζ T (E(t), t)−ϖT (E(t), t)E(t)

−ϖρE(t)]w2
z (E(t), t)−

1
2
[2ζ T (0, t)Ė(t)+ζ ρĖ2(t)

+ζ T (0, t)]w2
z (0, t)+ ι +

1
2

(
θ1ζ +

ϖL
θ2

)∫ E(t)

0
Q2(z, t)dz

(39)

where the parameters are designed to meet the following
conditions:

ϖρĖ(t)min +ϖTmin +ϖLTzmin +ζ Ė(t)minTzmin

−ϖθ2L−ζ Ttmax ≥ ε (40)

∀(z, t) ∈ [0,L]× [0,∞), for some constants ε > 0, and the
following inequalities hold true:

ϖρ− ζ

θ1
≥ 0 (41)

2ζ c1−
1
k

ζ Tmax ≥ 0 (42)

1
k

ζ Tmin−ζ ρ−2Lϖρ ≥ 0 (43)

kζ Tmin−ζ Tmax−ϖLTmax−Lϖρ ≥ 0 (44)

2ζ TminĖ(t)min +ζ ρĖ2(t)min +ζ Tmin ≥ 0 (45)
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Then (39) can be simplified as

V̇(t)≤−η1
ζ

2

∫ E(t)

0
ρ

(
Dw(z, t)

Dt

)2

dz−η3
ζ

2
mψ

2(t)S(t)

−η2
ζ

2

∫ E(t)

0
T (z, t)w2

z (z, t)dz+δ (46)

where η1 = ϖ

ζ
− 1

ρθ1
, η2 = ε

ζ Tmax
, η3 = 2c2

m , and δ =

L
2

(
θ1ζ + ϖL

θ2

)
Q2

max + ι .
We further have

V̇(t)≤−ϕ3 [V1(t)+V2(t)]+δ (47)

where ϕ3 = min(η1,η2,η3).
Combining (32) and (47), we obtain

V̇(t)≤−λV(t)+δ (48)

where λ = ϕ3/ϕ2 > 0.

APPENDIX C
PROOF OF THEOREM 1

According to Lemma 3, we can obtain

V(t)≤ V(0)e−λ t + ε0 (49)

where ε0 =
δ

λ

(
1− e−λ t

)
.

According to Lemma 10 in [29], we have

ζ Tmin

2L
w2(z, t)≤ ζ

2

∫ E(t)

0
T (z, t)w2

z (z, t)dz≤ V1(t)≤
V(t)
ϕ1

(50)
Then we arrive at

|w(z, t)| ≤

√
2L

ζ Tminϕ1

(
V(0)e−λ t + ε0

)
(51)

From (32) and (49), we can inform that V(t) and V1(t)+
V2(t) are both positive and bounded, which indicates the
boundedness of V2(t). Therefore, we can infer that the bound-
ary output w(E(t), t) of the refueling hose is always in a certain
set through proof by contradiction, which can be expressed as
Θw := {w(E(t), t) ∈ R : |w(E(t), t)|<C}.

From (51), we know that w(z, t) is also bounded. We can
infer that limt→∞ |w(z, t)| =

√
2Lδ

ζ Tminϕ1λ
≤ D1 ∈ (0,∞), which

implies that the elastic vibration of the flexible refueling hose
can be suppressed with appropriately selected parameters.

This completes the proof.

APPENDIX D
PROOF OF LEMMA 5

Similar to Appendix A, we can obtain

0≤ϕ1
[
V1(t)+V2(t)+

η

2γ
p̃2]≤Va(t)≤ϕ2

[
V1(t)+V2(t)+

η

2γ
p̃2]

(52)
where ϕ1 = min(φ2,1) = φ2 and ϕ2 = max(φ3,1) = φ3.

Thus, (25) is positive definite and bounded.

APPENDIX E
PROOF OF LEMMA 6

Taking derivation of Va(t) leads to

V̇a(t) =V̇(t)+
η

γ
p̃ ˙̂p (53)

Compared to the material derivative of V(t) in previous
process, change occurs in V̇2(t) only. Substituting (21)-(23)
into (34), we can obtain

V̇2(t) =ζ ψ(t)S(t)(−ψ(t)c1/S(t)− c2ψ(t))− ηκ

2γ
p̃2 +

ηκ

2γ
p2

−ζ ψ(t)S(t) tanh
(

ψ(t)
ς

)
d +ζ ψ(t)S(t)d(t) (54)

According to Lemma 1, we have

ζ ψ(t)S(t)d(t)−ζ ψ(t)S(t) tanh
(

ψ(t)
ς

)
d ≤ ζ ωςdS(t) (55)

Therefore, V̇2(t) leads to

V̇2(t)≤−ζ c1ψ
2(t)−ζ c2ψ

2(t)S(t)− ηκ

2γ
p̃2+ι+

ηκ

2γ
p2 (56)

Similar to (39), substituting (33), (38), and (56) into (53),
we arrive at

V̇a(t)≤−λV (t)− ηκ

2γ
p̃2 +δ +

ηκ

2γ
p2 (57)

We further obtain

V̇a(t)≤−λ0Va(t)+δ0 (58)

where λ0 = min(λ ,κ), δ0 = δ + ηκ

2γ
p2.

APPENDIX F
PROOF OF THEOREM 2

According to Lemma 3, we can obtain

Va(t)≤ Va(0)e−λ0t + ε1 (59)

where ε1 =
δ0
λ0

(
1− e−λ0t

)
.

According to Lemma 10 in [29], we have

ζ Tmin

2L
w2(z, t)≤ ζ

2

∫ E(t)

0
T (z, t)[wz(z, t)]

2dz≤ V1(t)≤
V(t)
ϕ1
(60)

Then we arrive at

|w(z, t)| ≤

√
2L

ζ Tminϕ1

(
V(0)e−λ0t + ε1

)
(61)

Therefore, we can make a conclusion that the boundary
output w(E(t), t) of the refueling hose always remains in a
certain set under the situation of actuator partial effectiveness
loss through proof by contradiction, which can be expressed
as Θw := {w(E(t), t) ∈ R : |w(E(t), t)|<C}. Furthermore, we
can obtain that limt→∞ |w(z, t)| =

√
2Lδ0

ζ Tminϕ1λ0
≤ D2 ∈ (0,∞),

which indicates that the elastic vibration of the refueling hose
can be suppressed if the control parameters are appropriately
chosen.

This completes the proof.
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