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Vibration Control of a Timoshenko Cantilever Beam with Varying Length
Phuong-Tung Pham, Gyoung-Hahn Kim, and Keum-Shik Hong*

Abstract: This paper addresses the vibration control of a Cartesian palletizer consisting of a trolley and a robotic
arm, wherein the robotic arm is modeled as a thick cantilever beam of varying length. The Timoshenko beam
theory, which describes the behavior of thick beams, is used to model the robotic arm’s dynamics. A mathematical
model describing the trolley’s motion and the robotic arm’s vibration is established based on the extended Hamilton
principle. According to this dynamic model, a boundary control law is proposed to suppress the undesired transverse
vibration of the robotic arm. The uniform stability of the closed-loop system is proven via the Lyapunov method.
The simulation results show that the proposed control law can simultaneously control the trolley’s position and the
robotic arm’s vibration.
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1. INTRODUCTION

A pick-and-place robot is an automated material han-
dling robot used to pick up objects from one location and
place them in another. A Cartesian palletizer is a typi-
cal example of a pick-and-place robot (i.e., Fig. 1). The
scheme of the placing process of a Cartesian palletizer is
demonstrated in Fig. 2. As shown in this figure, the Carte-
sian palletizer consists of a trolley and a robotic arm. Due
to the trolley’s motion, undesired transverse vibration oc-
curs along the robotic arm during the placing process. This
vibration is one of the negative factors that limit the sys-
tem’s performance. This study, therefore, sets out to ad-
dress the vibration control of a Cartesian palletizer con-
sisting of a trolley and a flexible robotic arm. It is noted
that the robotic arm of a Cartesian palletizer can be treated
as a thick and short cantilever beam with varying length.
Therefore, the Timoshenko beam theory, which can ac-
curately predict the dynamical behaviors of thick beams,
should be used to consider the dynamics of the robotic
arm.

From an engineering perspective, the robotic arm of
a Cartesian palletizer can be modeled by a flexible can-
tilever beam with a translating base. Various beam the-
ories, including Euler-Bernoulli, Rayleigh, and Timo-
shenko, have been used to model flexible beams [1–11].
The Euler-Bernoulli theory is the fundamental beam the-
ory that considers the bending effect of a beam, whereas
the Rayleigh theory further includes the influence of rota-

Fig. 1. Cartesian palletizer (www.yushinamerica.com/
product-release-pa-compact-palletizing-robot).

tional inertia of the beam’s cross-section on the dynamic
model of the beam [3–5]. Based on the Rayleigh theory,
Timoshenko proposed an improved theory by considering
the beam’s shear effect, known as the Timoshenko theory
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Fig. 2. Scheme of the process of placing objects onto the
pallet by using a Cartesian palletizer.

[6,7]. Among these theories, the Euler-Bernoulli theory
is the most common theory for modeling flexible beams.
A key advantage of using this theory is that it leads to
a mathematically simple dynamic model. Therefore, the
Euler-Bernoulli theory is very convenient for the dynamic
analysis and control design of flexible beams. Based on
this beam theory, dynamic models of beams with translat-
ing bases were analyzed in [8–10]. Shah et al. [11] de-
signed a control law for a refueling machine transport-
ing fuel rods operating in the water, wherein the fuel rod
was modeled by an Euler-Bernoulli beam. Contrary to the
Euler-Bernoulli theory, beam models based on the Timo-
shenko beam are mathematically complicated. However, a
study of beam theories has revealed that the Timoshenko
theory predicts the beam’s dynamics more accurately than
the other two theories [5]. Additionally, the Timoshenko
theory is more appropriate for modeling thick and short
beams, wherein the shear deflection becomes more criti-
cal.

Since the robotic arm’s length varies during the picking
and placing process, it can be considered an axially mov-
ing beam with a time-varying length. Various dynamic
models of axially moving systems, characterized by par-
tial differential equations (PDEs), have been established
using the extended Hamilton principle [12–18]. A sum-
mary of the dynamics of axially moving systems has been
provided in the work of Pham and Hong [16]. A consid-
erable amount of literature has been published on axially
moving systems with time-varying length. In [17,18], a
dynamic model was derived for a crane system consist-
ing of a trolley and a hosting cable, wherein the cable was
modeled as translating strings with time-varying length. In

[19,20], Xing et al. established mathematical models for
variable-length strings moving in the three-dimensional
space. Few investigations have been conducted on axially
moving beams with time-varying lengths [21,22].

In terms of the control of flexible systems, one of the
most well-known techniques for addressing this problem
is boundary control [23–38]. Numerous studies regarding
the boundary control of Euler-Bernoulli beams have been
published [1,2,35–38]. These studies are very diverse. In
[36,37], sliding mode boundary controllers were designed
for flexible Euler-Bernoulli beams in the presence of dis-
turbances. Shah and Hong [1] proposed a control law for
suppressing the vibration of a beam with a translating base
operating in water. Several works on the boundary control
of Timoshenko beams have been carried out [39–44]. One
study by He et al. [41] modeled a flexible robotic manipu-
lator based on the Timoshenko beam theory and addressed
the boundary control of this system. Wu et al. [43] de-
signed a control law for a manipulating system consisting
of two flexible Timoshenko beams. Most of the studies
presented thus far concentrate on the control of flexible
beams with constant length. Works on the control of axi-
ally moving beams with time-varying length are very lim-
ited. Zhu et al. [21] published a study on this subject. Their
work developed the dynamic model of a beam with time-
varying length based on the Euler-Bernoulli beam theory.
A pointwise controller was proposed to suppress the trans-
verse vibration of the beam.

This paper addresses the control problem of a Cartesian
palletizer, wherein the robotic arm is treated as a Tim-
oshenko cantilever beam with time-varying length. The
dynamic model describing the trolley’s motion and the
beam’s transverse vibration and rotational angular dis-
placement of the cross section is established by using
the extended Hamilton principle. Based on this model,
a boundary control law is proposed to move the trolley
to the desired position and suppress the beam’s vibration.
The uniform stability of the closed-loop control is verified
via the Lyapunov method. Finally, simulation results are
provided to demonstrate the effectiveness of the designed
control law.

The main contributions of this paper are the follow-
ing: i) A novel dynamic model of a variable-length Tim-
oshenko beam attached to a translating base is developed
for the first time. ii) The developed control input simul-
taneously can position the base at a desired location and
suppress the beam’s vibration. iii) The uniform stability of
the closed-loop system is proved, and simulation results
are provided.

The remainder of this paper is organized as follows: The
dynamic model of the system is derived in Section 2. In
Section 3, the stability of the closed-loop system under
the proposed boundary control law is analyzed. The simu-
lation results are shown in Section 4, and the conclusions
are drawn in Section 5.
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2. DYNAMIC MODEL

Fig. 2 depicts the placing process of a Cartesian pal-
letizer consisting of a trolley and a robotic arm. The trolley
carrying the robotic arm moves along the j-axis, whereas
the robotic arm is extended in the i-axis direction. The
length of the robotic arm l(t) is a prespecified time func-
tion. In this study, the robotic arm is treated as a cantilever
beam with varying length. This paper assumes that i) the
robotic arm is a clamp-free Timoshenko beam and ii) the
end effector with the object is modeled as an end mass m
with rotary inertia J. The Timoshenko beam theory con-
siders the effects of both shear deformation and rotational
inertia. Therefore, the deflection of the beam is charac-
terized by the transverse vibration w(x, t) and the rota-
tional angular displacement of the cross section θ(x, t)
(see Fig. 3). Let ŵ(x, t) = y(t)+w(x, t), where y(t) is the
trolley position. It is noted that ŵx(x, t) = wx(x, t) and
ŵ(0, t) = y(t). In this paper, the extension/shortening of
the robotic arm and the end-effector is considered as an
axially moving beam, see [45]. A beam of variable length
shows the gyroscopic property, wherein all the beam’s el-
ements are subjected to an axial velocity field (i.e., l̇).
Therefore, the material derivative, D(·)/Dt = (·)t + l̇(·)x,
is used to describe the time rate of change of the beam ele-
ment’s displacement. According to the Timoshenko beam
theory, the kinetic and potential energies of the system are
given as follows:

K =
1
2

ρA
∫ l

0
(ŵt + l̇ŵx)

2dx+
1
2

ρI
∫ l

0
(θt + l̇θx)

2dx

+
1
2

Mŵt(0, t)2+
1
2

m
[

Dŵ
Dt

∣∣∣∣
x=l

]2

+
1
2

J
[

Dθ

Dt

∣∣∣∣
x=l

]2

,

(1)

U =
1
2

∫ l

0
ŵ2

xP(x, t)dx+
1
2

EI
∫ l

0
θx

2dx

+
1
2

κGA
∫ l(t)

0
(θ − ŵx)

2dx, (2)

Fig. 3. Definition of the transverse vibration w(x, t) and
the rotational angular displacement of the cross
section θ(x, t) of a Timoshenko beam.

where M and ρ denote the trolley mass and the mass den-
sity of the beam, respectively; A and I indicate the cross-
sectional area and the area moment of initial of the beam,
respectively; and E, G, and κ are the Young modulus, the
shear modulus, and the shear coefficient, respectively. It is
noted that the axial force of the beam is a spatiotemporal
function defined as follows [22]:

P(x, t) = (m+ρA(l− x))(g− l̈), (3)

where g is the gravitational acceleration. In the Cartesian
palletizer, the motion of the trolley is generated by the
control force f (t). Therefore, the work done is given by

δW = f δ ŵ(0, t). (4)

In this paper, (·)x and (·)t are used to describe the partial
derivatives of spatiotemporal functions (i.e., w(x, t) and
θ(x, t)) with respect to x and t, respectively, whereas ẏ
and l̇ are the time derivatives of temporal functions y(t)
and l(t).

Remark 1: It is assumed that the beam’s length l(t) is
a prespecified time function. Therefore, it is unnecessary
to consider its variation when deriving the dynamic model
using the Hamilton principle.

Using (1), (2), and (4) for the extended Hamilton prin-
ciple yields

0 =
∫ t2

t1
(δK−δU +δW )dt

=
∫ t2

t1
δ

∫ l

0
L(x, t)dxdt

+
∫ t2

t1
(Mŵt(0, t)δ ŵt(0, t)+ f δ ŵ(0, t))dt

+
1
2

∫ t2

t1
δ

(
m
[

Dŵ
Dt

∣∣∣∣
x=l

]2

+ J
[

Dθ

Dt

∣∣∣∣
x=l

]2
)

dt,

(5)

where

L(x, t) =
1
2

ρA(ŵt + l̇ŵx)
2 +

1
2

ρI(θt + l̇θx)
2

− 1
2

ŵ2
xP(x, t)− 1

2
EIθx

2− 1
2

κGA(θ − ŵx)
2.

(6)

Since the domain of integration for the spatial variable x
in the first term of (5) changes with time, the Leibnitz in-
tegration rule must be used to express this term. Accord-
ingly, (5) is expressed as follows:

0 =
∫ t2

t1

∫ l

0
[−ρA(ŵtt + l̈ŵx +2l̇ŵxt + l̇2ŵxx)+(ŵxP)x

−κGA(θx−wxx)]δwdxdt

+
∫ t2

t1

∫ l

0
[−κGA(θ −wx)
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−ρI(θtt + l̈θx +2l̇θxt + l̇2
θxx)+EIθxx]δθdxdt

+
∫ t2

t1
[ f −Mŵtt −ρAl̇(ŵt + l̇ŵx)−κGA(θ − ŵx)

+ ŵxP(x, t)]|x=0δ ŵ(0, t)dt

−
∫ t2

t1

(
∂L
∂θx
− l̇∂L

∂θt

)
δθ

∣∣∣∣
x=0

dt

+
∫ t2

t1

(
m

D2ŵ
Dt2 −

∂L
∂ ŵx
− l̇∂L

∂ ŵt

)
δ ŵ
∣∣∣∣
x=l

dt

+
∫ t2

t1

(
J

D2θ

Dt2 −
∂L
∂θx

+ l̇
∂L
∂θt

)
δθ

∣∣∣∣
x=l

dt. (7)

The PDEs governing the transverse vibration w(x, t)
and the rotational angular displacement of the cross sec-
tion θ(x, t) are derived based on the first two terms in (7).
That is,

ρA(ŵtt + l̈ŵx +2l̇ŵxt + l̇2ŵxx)− (ŵxP)x

+κGA(θx− ŵxx) = 0, (8)

ρI(θtt + l̈θx +2l̇θxt + l̇2
θxx)−EIθxx

+κGA(θ − ŵx) = 0. (9)

The boundary conditions can be obtained by considering
the rest of (7), namely,

Mŵtt(0, t)+ρAl̇(ŵt(0, t)+l̇ŵx(0, t))−ŵx(0, t)P(0, t)

+κGA(θ(0, t)− ŵx(0, t)) = f (t), (10)

θ(0, t) = w(0, t) = 0, (11)[
m

D2ŵ
Dt2 + ŵxP+κGA(ŵx−θ)

]∣∣∣∣
x=l

= 0,[
J

D2θ

Dt2 +EIθx

]∣∣∣∣
x=l

= 0. (12)

It is noted that (10) is the ordinary differential equa-
tion (ODE) describing the dynamics of the trolley. Substi-
tuting ŵ(x, t) = y(t)+w(x, t) into (8)-(12), the dynamic
model and boundary conditions of the considered system
are rewritten as follows:

ρA(ÿ+wtt + l̈wx +2l̇wxt + l̇2wxx)−wxxP

−wxPx +κGA(θx−wxx) = 0, (13)

w(0, t) = 0,[
m
(

ÿ+
D2w
Dt2

)
+wxP+κGA(ŵx−θ)

]∣∣∣∣
x=l

= 0,

(14)

ρI(θtt + l̈θx +2l̇θxt + l̇2
θxx)−EIθxx

+κGA(θ −wx) = 0, (15)

θ(0, t) = 0,[
J

D2θ

Dt2 +EIθx

]∣∣∣∣
x=l

= 0, (16)

Mÿ+ρAl̇
(
ẏ+ l̇wx(0, t)

)
−P(0, t)wx(0, t)

−κGAwx(0, t) = f (t). (17)

3. BOUNDARY CONTROL

It is noted that the deflection of the considered Timo-
shenko beam is characterized by the transverse vibration
w(x, t) and the rotational angular displacement of the cross
section θ(x, t). In practice, the measurement of θ(x, t) is a
significant challenge. Therefore, this paper aims to design
a control scheme that can guarantee a stable system with-
out the feedback signal of θ(x, t). The control design aims
to achieve the following control objectives: i) Moving the
trolley and the robotic arm to the desired position yd and ii)
suppressing the transverse vibration of the robotic arm’s
tip. To achieve these objectives, we propose the following
boundary control law.

f = l̇ρA(ẏ+ l̇wx(0, t))+(k1−1)P(0, t)wx(0, t)

+(k1−1)κGAwx(0, t)− k2(y− yd)− k3ẏ, (18)

where k1, k2, and k3 are positive control gains. The stabil-
ity of the system under control law (18) is verified based
on the Lyapunov method. The design procedure of the
control law is depicted in Fig. 4.

The following lemma and remarks are utilized for sta-
bility analysis.

Lemma 1 [46]: Let ϕ(x, t)∈R be a function defined on
x∈ [0, l] and t ∈ [0, ∞) that satisfies the condition ϕ(0, t) =
0, ∀t ∈ [0, ∞), the following inequalities hold.

ϕ
2(x, t)≤ l

∫ l

0
ϕ

2
x (x, t)dx, ∀x ∈ [0, l]. (19)

Remark 2: For an axially moving beam with varying
length, the mechanical energy of the beam consists of the
energy in the longitudinal motion. However, since the pro-
posed control law aims to eliminate the transverse vibra-
tion, the longitudinal motion can be omitted from the sta-
bility analysis of the closed-loop system.

Fig. 4. Design procedure of the boundary control.
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Remark 3: In the process of extending the length of the
beam, the beam’s axial velocity l̇ is a non-negative func-
tion (i.e., l̇ ≥ 0). Furthermore, the control strategy pro-
posed in this paper treats the beam’s length as a second-
order polynomial in time (i.e., l(t) = at2 + bt + c, where
the jerk is zero). For instance, for given l(0) = l0, ta, l(ta),
and l̇(ta) = 0, we can solve the unknown two parameters
from the following two equations: l(ta) = ata2 + bta + l0,
l̇(ta) = 2ata + b = 0. It follows that the axial jerk of the
beam is ignored (i.e.,

...

l= 0). Any remaining destabilizing
effect (due to the jerk) can then be suppressed by choosing
the control gain large enough, see [17,18,21].

Theorem 1: Consider the system given by (13)-(17).
Under the boundary control law in (18), the closed-loop
system is uniformly stable in the sense of Lyapunov, and
(y− yd) and ẏ go to zero.

Proof: Let us consider the following Lyapunov function
candidate.

V (t) =V1(t)+V2(t)+V3(t), (20)

where

V1(t) =
1
2

ρAk1

∫ l

0
(ẏ+wt+l̇wx)

2dx+
1
2

k1

∫ l

0
wx

2Pdx,

(21)

V2(t) =
1
2

k1ρI
∫ l

0
(θt + l̇θx)

2
dx+

1
2

k1EI
∫ l

0
θx

2dx

+
1
2

k1κGA
∫ l

0
(θ −wx)

2dx, (22)

V3(t) =
1
2

Mẏ2 +
1
2

k1m(ẏ+ [Dw/Dt]|x=l)
2

+
1
2

k1J( [Dθ/Dt]|x=l)
2 + k2(y− yd)

2. (23)

Note that V1 represents the mechanical energy about the
transverse vibration of the axially moving beam, V2 is the
mechanical energy concerning the rotational angular dis-
placement of the cross section of the beam, and V3 is the
mechanical energy of the trolley and payload.

The time rates of V1 and V2 can be determined based on
the Reynolds transport theorem for a translating medium
with variable length [17]. Using the equations of motion
in (13) and (15) yields

V̇1 =− k1
...

l
1
2

∫ l

0
wx

2(l− x)dx

+ k1

∫ l

0

{[
(ẏ+wt + l̇wx)wxP

]
x

−(ẏ+wt + l̇wx)κGA(θ −wx)x

}
dx

=k1
[
(ẏ+wt + l̇wx)wxP

]∣∣x=l
x=0

− k1

∫ l

0
(ẏ+wt + l̇wx)κGA(θ −wx)xdx, (24)

V̇2 =k1

∫ l

0

{
EI
[
θx(θt + l̇θx)

]
x

−κGA(θ −wx)(wxt + l̇wxx)
}

dx

=k1 EI
[
θx(θt + l̇θx)

]∣∣x=l
x=0

− k1

∫ l

0
κGA(θ −wx)(wxt + l̇wxx)dx. (25)

The time derivative of V3 using the equation of motion of
the trolley in (17) is given by

V̇3 =Mẏÿ+ k1 m
[(

ÿ+D2w/Dt2)(ẏ+wt + l̇wx
)]∣∣

x=l

+ k1 J
[(

D2
θ/Dt2)(

θt + l̇θx
)]∣∣

x=l + k2ẏ(y− yd)

= k1m
[(

ÿ+D2w/Dt2)(ẏ+wt + l̇wx
)]∣∣

x=l

+ k1J
[(

D2
θ/Dt2)(

θt + l̇θx
)]∣∣

x=l

+ ẏ
[

f −ρAl̇
(
ẏ+ l̇wx(0, t)

)
+(P(0, t)+κGA)wx(0, t)

+k2(y− yd)] . (26)

According to (24)-(26), the time rate of the Lyapunov
function candidate is expressed as follows:

V̇ =V̇1 +V̇2 +V̇3

=k1
[
(ẏ+wt + l̇wx)wxP

]∣∣x=l
x=0

− k1

∫ l

0
(ẏ+wt + l̇wx)κGA(θ −wx)x dx

+ k1 EI
[
θx(θt + l̇θx)

]∣∣x=l
x=0

− k1

∫ l

0
κGA(θ −wx)(wxt + l̇wxx)dx

+k1m
[(

ÿ+D2w/Dt2)(ẏ+wt + l̇wx
)]∣∣

x=l

+ k1 J
[(

D2
θ/Dt2)(

θt + l̇θx
)]∣∣

x=l

+ ẏ
[

f − l̇ρA
(
ẏ+ l̇wx(0, t)

)
+(P(0, t)+κGA)wx(0, t)+ k2(y− yd)]

=k1
[
(ẏ+wt + l̇wx)wxP

]∣∣x=l
x=0

+ k1 EI
[
θx(θt + l̇θx)

]∣∣x=l
x=0

− k1

∫ l

0

[
(ẏ+wt + l̇wx)κGA(θ −wx)

]
x dx

+k1m
[(

ÿ+D2w/Dt2)(ẏ+wt + l̇wx
)]∣∣

x=l

+ k1 J
[(

D2
θ/Dt2)(

θt + l̇θx
)]∣∣

x=l

× ẏ
[

f − l̇ρA
(
ẏ+ l̇wx(0, t)

)
+(P(0, t)+κGA)wx(0, t)+ k2(y− yd)]

= k1m
[(

ÿ+D2w/Dt2)(ẏ+wt + l̇wx
)]∣∣

x=l

+ k1(ẏ+wt + l̇wx)(Pwx−κGA(θ −wx))
∣∣x=l
x=0

+ k1 J
[(

D2
θ/Dt2)(

θt + l̇θx
)]∣∣

x=l

+ k1EIθx(θt + l̇θx)
∣∣x=l
x=0

+ ẏ
[

f − l̇ρA
(
ẏ+ l̇wx(0, t)

)
+(P(0, t)+κGA)wx(0, t)+ k2(y− yd)] . (27)

By using the boundary conditions in (14) and (16), (27)
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can be rewritten as follows:

V̇ =− k1 l̇ (P(0, t)+κGA)wx(0, t)2− k1EIl̇θx(0, t)2

− k1ẏ(P(0, t)+κGA)wx(0, t)+ ẏ
[

f − l̇ρA(ẏ

+ l̇wx(0, t)
)
+(P(0, t)+κGA)wx(0, t)

+k2(y− yd)] . (28)

Substituting the proposed control law in (18) into (28)
yields

V̇ =− k1 l̇ (P(0, t)+κGA)wx(0, t)2

− k1EIl̇θx(0, t)2− k3ẏ2. (29)

If the prespecified time function l(t) is generated such that
the beam’s axial acceleration l̈ is smaller than the gravita-
tional acceleration (i.e., l̈ < g), it follows P(0, t)> 0 from
(3). Therefore, V̇ is negative semi-definite and the closed-
loop system is uniformly stable. Moreover, by integrating
both sides of (29) and using the Barbalat’s lemma, we can
see that wx(0, t), θx(0, t), and ẏ→ 0 as t→ ∞. Also, from
(21), (22), and Lemma 1, we have

k1

2l
w2 ≤ 1

2
k1

∫ l

0
wx

2Pdx≤V < ∞, (30)

k1EI
2l

θ
2 ≤ 1

2
k1EI

∫ l

0
θx

2dx≤V < ∞. (31)

Inequalities (30) and (31) imply the boundedness of the
transverse vibration and the rotational angular displace-
ment of the cross section. Specifically, w(x, t) and θ(x, t)
are bounded by 2lV (0)/k1 and 2lV (0)/k1EI, where V (0)
depends on initial conditions.

Remark 4: The significant control gains can lead to a
rapid reduction of V (t), see (29). It follows that the vibra-
tion energy decreases quickly. Additionally, the large con-
trol gains can suppress the destabilizing effect due to the
jerk. Nevertheless, choosing large control gains makes the
initial value of V (t), see (20), large and, therefore, the con-
trol input becomes large too. Subsequently, a large con-
trol input requires an expansive actuator. The control gains
need to be tuned so that the value of V (t) is minimized in
a short time as possible.

4. SIMULATION RESULTS

In this section, a simulation is performed to verify the
effectiveness of the proposed control law. A Cartesian
palletizer with the following parameters is considered:
ρ = 2700 kg/m3, M = 100 kg, m = 20 kg, J = 0.05 kg·m2,
A = 1.9× 10−3 m2, I = 2.8× 10−6 m4, E = 69 GPa,
G = 24 GPa, and κ = 0.8. The trolley moves from the ini-
tial position to the desired position at yd = 5 m, whereas
the beam’s length is extended from 1 m to 3 m in 1 second.
The initial conditions are given as follows: w(x, 0) = 0 and

θ(x, 0) = 0. The simulation is performed by using MAT-
LAB. The equations of motion of the considered system
are solved based on the finite difference method.

Figs. 5-8 show the system’s performance in two cases:
i) Without vibration control and (ii) with vibration con-
trol. A PD control law is applied to guarantee that the
trolley moves to the desired position for the case without
vibration control. The proposed control law (18) is im-
plemented in the system in the case of vibration control.
Fig. 5 reveals that the trolley can reach the desired posi-
tion by the PD controller and the proposed controller. Fig.
6 shows the responses of the transverse vibration at the
beam’s tip w(l, t). As shown in this figure, the control law
in (18) can significantly suppress the transverse vibration
of the beam. It is observed that the transverse vibration at
the beam’s tip is eliminated almost completely when the
trolley reaches yd = 5 m (i.e., at t ≈ 2 seconds). Addi-
tionally, the rotational angular displacement of the cross
section at the beam’s tip θ(l, t) is substantially suppressed
(see Fig. 7). These results reveal that the control law in
(18) can guarantee the precise movement of an object (i.e.,
the beam’s tip) to the desired position (see Fig. 8).

Fig. 5. Trolley’s position y(t).

Fig. 6. Transverse vibration at the beam’s tip w(l, t).
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Fig. 7. Rotational angular displacement of the cross sec-
tion at the beam’s tip θ(l, t).

Fig. 8. Position of the beam’ tip ŵ(l, t) = y(t)+w(l, t).

5. CONCLUSION

This paper investigated the vibration control of a Carte-
sian palletizer consisting of a trolley and a robotic arm,
wherein the robotic arm is treated as a Timoshenko can-
tilever beam with time-varying length. The governing
equations describing the beam’s vibration and the trolley’s
motion were developed based on the extended Hamilton
principle. Subsequently, a boundary control law was pro-
posed to suppress the transverse vibration of the beam.
The stability of the closed-loop system was analyzed via
the Lyapunov method. The simulation results showed that
the proposed control law could simultaneously control the
trolley’s position and the beam’s vibration.
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