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Control of a Non-uniform Flexible Beam: Identification of First Two
Modes
Phuong-Tung Pham, Gyoung-Hahn Kim, Quoc Chi Nguyen* � , and Keum-Shik Hong

Abstract: This paper presents an experimental study implementing the input shaping control of the first two modes
of the vibration of a non-uniform flexible cantilever beam having a translating base. Examples of a moving can-
tilever beam appear in many industrial systems. Vibration suppression of the beam has important implications for
improving the effectiveness of such systems. The equations of motion of the cantilever beam, including the moving
base, are developed using the extended Hamilton principle. The partial differential equation representing the beam’s
dynamics is then transformed into a finite-dimensional model using the Galerkin method. Accordingly, the modal
parameter identification procedure is established based on experimental modal analysis. Under the estimated modal
parameters, including the natural frequency and damping ratio, single- and two-mode input shaping controllers of
three different types (zero vibration, zero vibration derivative, and zero vibration derivative-derivative) are designed
for vibration suppression of the beam. Experimental results are discussed, reporting that the two-mode shaper’s
vibration suppression was superior to the single-mode shaper. In contrast, the two-mode shaper’s settling time has
slightly increased compared to that of the single-mode shaper.

Keywords: Experimental modal analysis, flexible beam, input shaping control, modal parameter identification,
non-uniform beam, vibration suppression.

1. INTRODUCTION

The cantilever is a ubiquitous structure applied in vari-
ous fields, including civil engineering, aerospace, and me-
chanical engineering. Typical cantilever applications in-
clude a cantilever bridge, aircraft wings, master fuel as-
sembly in nuclear refueling machines, electromechanical
monolithic resonator in micro-electromechanical systems,
drills, and microinjection robots; see Fig. 1. A cantilever
can be modeled rigid or flexible depending on its flexibil-
ity. In heavy-weight systems with slow dynamics, the can-
tilever is a rigid structure, and its vibration can be ignored
due to the high material stiffness. In contrast, a flexible
cantilever’s vibration in light-weight systems can signifi-
cantly affect the system’s performance and safety. Such vi-
bration problem is aggravated when the flexible cantilever
moves at high speed. Therefore, analysis and suppression
of the vibration of flexible cantilevers are desired.

From an engineering perspective, beam models can be
used to describe cantilevers. The beam model considers
the bending stiffness of the material (i.e., Euler–Bernoulli

beam [2–4]) and further examines the shear deforma-
tion and cross-sectional rotation (i.e., Timoshenko beam
[5–7]). A flexible cantilever beam is a distributed parame-
ter system with an infinite number of vibration modes [8].
Partial differential equations (PDEs) governing the flex-
ible beams’ dynamics have been developed based on the
extended Hamilton principle [9–11]. Early studies on flex-
ible cantilever beams focused on stationary beams’ dy-
namics, where one end of the beam is clamped into a
fixed base, and the other end is free [12,13]. Besides sta-
tionary beams, moving beams with a translating or ro-
tating base (referred to as translating [2,14] and rotat-
ing [9,15,16] beams, respectively) have also been inves-
tigated. In this case, the vibration of the beam is a direct
result of the base’s motion. Therefore, the dynamics of a
moving base and its connected beam have been investi-
gated [15,17,18]. A flexible system’s dynamic behaviors
are characterized by the modal parameters, including the
natural frequency, damping ratio, and mode shape. Anal-
ysis of these parameters is often performed based on a
finite-dimensional model [19,20]. The finite-dimensional
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Fig. 1. Drill and microinjection robot [1].

model of a beam is a set of ordinary differential equations
(ODEs) that are transformed from the PDE model via ap-
proximation methods, such as the Galerkin decomposition
method [19,20] and finite element method [11].

In many practical systems, the measurement of system
parameters, such as Young’s modulus and damping coef-
ficient, are often accompanied by challenges from both
technical and economic perspectives. Such challenges
lead to difficulty in determining the exact values of the
modal parameters. In this situation, experimental identifi-
cation is regarded as a practical solution for estimating the
modal parameters of the vibratory system. Wei et al. [21]
presented an experimental identification of the natural fre-
quency and damping ratio of a stationary beam, while Liu
and Sun [22] and Xie et al. [18] published studies on the
modal parameter identification of rotating beams. Con-
cerning translating beams, Yang et al. [23] investigated
the vibrations of a machine tool modeled as a translating
beam, wherein the particle swarm optimization algorithm
was employed to obtain the beam’s modal parameters.

Oscillation suppression of vibratory systems can be
performed through either closed-loop or open-loop con-
trol [24–35,38]. Closed-loop control approaches generate
the control forces/torques based on the feedback signal
measured by sensors [32–34], whereas open-loop control

laws are designed based on modal parameters. When sup-
pressing a beam’s vibration (Fig. 2), input shaping con-
trol is known as the most feasible and practical open-loop
control technique [35,36]. This technique designs an ap-
propriate command signal that can guarantee the beam’s
movement to the desired position resulting in minimum
residual vibration. Input shaping control has various types,
including the zero-vibration (ZV) shaper, zero-vibration
derivative (ZVD) shaper, and zero-vibration derivative-
derivative (ZVDD) shaper [37], and each of these has its
advantages and disadvantages. Input shaping control has
been implemented in many vibration problems, includ-
ing spacecraft, micro-electrical structures, robotics, and
cranes [14,38].

To date, experimental studies on input shaping control
of a non-uniform beam system based on model parame-
ters have been limited. In this paper, the types of input
shaping control for a non-uniform flexible cantilever beam
with a translating base (Fig. 2) are investigated. A math-
ematical model consisting of both beam and base dynam-
ics is first established using the extended Hamilton prin-
ciple. For convenience in analyzing the modal parameter,
an approximate model is developed based on the Galerkin
decomposition method. Subsequently, the modal parame-
ters are identified based on the experimental modal analy-
sis (EMA) method. According to these modal parameters,
various input shaping controls are designed for two con-
trol objectives: i) Moving the beam and base to a desired
position and ii) minimizing the beam’s residual vibration.
The experimental control performances of each type are
verified and compared. Accordingly, the advantages and
disadvantages of each type are presented and discussed.

The remainder of this paper is organized as follows:
Section 2 presents the dynamic model of the non-uniform
beam attached to a moving base, including the PDE and
ODE models. The procedure for modal parameter iden-
tification is introduced in Section 3. The input shaping
control design is described in Section 4. In Section 5, the
experimental results are presented. Finally, Section 6 con-
cludes the paper.

Fig. 2. Example of a non-uniform flexible link clamped
into a translating base.
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2. DYNAMIC MODEL

Fig. 2 shows a schematic diagram of a beam-base sys-
tem, where a non-uniform beam of length l is clamped to
a base moving along the j-axis. A control force u(t) is ap-
plied to the base, and the position of the base is denoted by
y(t). The deflection of the beam w(x, t), a spatiotemporal
function of x and t, results from the base’s motion. Based
on the Euler–Bernoulli beam theory, the kinetic energy K,
the potential energy P, and the work done W of the system
are respectively given as follows:

K =
1
2

mẏ2(t)+
1
2

ρ

∫ l

0
A(x)(ẏ(t)+wt(x, t))

2 dx, (1)

P =
1
2

E
∫ l

0
I(x)w2

xx(x, t)dx, (2)

δW = u(t)δy, (3)

where m is the base’s mass, ρ denotes the mass density, E
indicates Young’s modulus, and A(x) and I(x) are spatial
functions corresponding to the cross-sectional area and in-
ertial moment of the beam, respectively. In this study, the
subscripts in wx and wt are the partial derivatives of the
spatiotemporal function w(x, t) with respect to x and t, re-
spectively, whereas ẏ (i.e., dy/dt) denotes the total deriva-
tive with respect to t. The equations of motion of the sys-
tem are obtained using Hamilton’s principle, i.e.,

ρA(x) [ÿ(t)+wtt(x, t)]+E [I(x)wxx(x, t)]xx = 0, (4)

mÿ(t)+ρ

l∫
0

A(x) [ÿ(t)+wtt(x, t)]dx = u(t), (5)

with the initial and boundary conditions

y(0) = ẏ(0) = 0, w(x,0) = wt(x,0) = 0, (6)

w(0, t) = wx(0, t) = 0, (7)

wxx(l, t) = wxxx(l, t) = 0. (8)

Equations (4)-(8) represent the PDE model describing the
system’s dynamics, where (4) and (5) are the equations of
motion of the beam and the base, respectively. Note that
the beam dynamics (i.e., (4)) are affected by the base’s
acceleration, whereas the vibrations of the beam also in-
fluence the base’s dynamic behaviors (i.e., (5)).

For convenience, using the conventional approach to
identify the modal parameters, the PDE model represented
by (4)-(8) are approximated as a set of ODEs using the
Galerkin method. Accordingly, the transverse displace-
ment of the beam can be represented by

w(x, t) =
n

∑
i=1

qi(t)ϕi(x), (9)

where qi(t) is the time-varying variable, and ϕ i(x) is the
basis function expressed as follows [39]:

ϕi(x) =
1+ cosλil coshλil

sinλil sinhλil
(2− cosλix− coshλix)

− cosλil sinhλil + sinλil coshλil
sinλil sinhλil

× (sinλix− sinhλ ix)

+(cosλix− coshλix), (10)

where λ i is the i-th solution obtained from the frequency
equation [40]:

1+ cosh(λil)cos(λil)

+
mb

mλi
(sin(λil)cosh(λil)+ cos(λil)sin(λil))

= 0, (11)

where mb is the mass of the beam. The equation of motion
of the beam (4) can be transformed into a set of ODEs by
i) substituting (9) into (4), ii) multiplying this equation by
the weighting function ϕ j(x), which has the same form as
the basis function, and then iii) integrating the resulting
equation over the interval x ∈ [0, l]. Consequently, a set
of n ODEs is obtained. By combining this set of ODEs
with the equation of motion of the base (i.e., considering
(5) as an ODE), we derive the following (n+1)-degree-of-
freedom model:

Mq̈+Kq = u, (12)

where

M =


J h1 h2 · · · hn

h1 m11 m21 · · · mn1

h2 m12 m22 · · · mn2
...

...
...

. . .
...

hn m1n m2n · · · mnn

 , (13)

K =


0 0 0 · · · 0
0 k11 k21 · · · kn1

0 k12 k22 · · · knn
...

...
...

. . .
...

0 k1n k2n · · · knn

 , (14)

q =
[
y q1 q2 . . . qn

]T
, (15)

u =
[

u 0 0 . . . 0
]T

. (16)

The elements of the matrices in (13)-(14) are defined as
follows:

J = m+ρ

l∫
0

A(x)dx, (17)

hi = ρ

l∫
0

A(x)ϕi(x)dx, (18)

mi j = ρ

l∫
0

A(x)ϕi(x)ϕ j(x)dx, (19)
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ki j = E
l∫

0

{
ϕ j(x)

d2

dx2

(
I(x)

d2ϕi(x)
dx2

)}
dx. (20)

Equation (12) describes the dynamics of the undamped
system. In practical systems, the damping coefficient is
very small; therefore, this model is acceptable in many
situations. However, because we aim to analyze the modal
parameters, such as the natural frequency and damping ra-
tio, it is necessary to include the damping term in (12). We
consider the use of classical Rayleigh damping, which is
proportional to a linear combination of the system’s mass
and stiffness. This results in the following damping matrix
being added to (12):

C = α1M+α2K, (21)

where α1 and α1 are two Rayleigh damping coefficients.
These coefficients can be determined via the natural fre-
quency and damping ratio of the vibration modes using
the following equation:

ζr =
1
2

(
α1

ωr
+α2ωr

)
, (22)

where ω r and ζ r denote the natural frequency in rad/s
and damping ratio of the r-th mode, respectively. Under
Rayleigh damping, the damped model of the system is
given as follows:

Mq̈+Cq̇+Kq = u. (23)

3. MODAL PARAMETER IDENTIFICATION

Modal parameters, including the natural frequency,
damping ratio, and mode shape, indicate the mechanical
properties of the vibratory system. Identifying these modal
parameters has critical implications for the dynamic anal-
ysis and design of an open-loop controller. In this section,
the process of modal parameter identification using the
EMA approach is discussed.

3.1. Experimental modal analysis
EMA determines the model parameters (i.e., natural fre-

quency, damping ratio, and mode shape) based on exper-
imental data [41,42]. This approach records the excita-
tion force signals and corresponding displacements of the
beam in the time domain. Frequency response functions
(FRFs), which describe the dynamic behaviors, are then
estimated through digital signal processing. Finally, ac-
cording to these FRFs, the natural frequency and damping
ratio can be identified using fitting algorithms, such as the
least-squares complex exponential method and peak pick-
ing method.

EMA is based on the mode-superposition principle for
the ODE model of the beam [43]. For (12), if we consider

the free-vibration case, the characteristic equation of the
undamped system is given by

det
(
K−ω

2M
)
= 0, (24)

where the roots, ω r
2, are the eigenvalues (or squared nat-

ural frequencies). The eigenvector corresponding to the r-
th eigenvalue ω r

2 is called the r-th mode shape. It is noted
that the mode shape of the r-th mode is a vector that can
be scaled to have a unique amplitude by nomalization. The
resulting vector is called the modal vector of the r-th mode
of the undamped system ΦΦΦr [43]. Now, we consider the
ODE model with N degrees of freedom under a harmonic
excitation force as follows:

Mq̈+Cq̇+Kq = ueiωet . (25)

The model-superposition solution for the steady-state re-
sponse is derived by

q(t) =
N

∑
r=1

ΦΦΦrΦΦΦ
T
r u

Kr

1[
1−
(

ωe
ωr

)2
]
+ i2ζr

ωe
ωr

eiωet , (26)

where i represents the imaginary unit, ωe is the excita-
tion frequency in rad/s, ω r and ζ r are the natural fre-
quency and damping ratio of the r-th mode, respectively,
and Kr = ΦΦΦT

r KΦΦΦr is the modal stiffness of the r-th mode.
The frequency-response function at coordinate m due to
the harmonic excitation at coordinate n is denoted by Hmn.
If the response signal is the displacement, it is called the
receptance FRF and is defined as the ratio of the displace-
ment signal to the excitation force signal, i.e.,

Hmn (ωe) =
N

∑
r=1

φrmφrn

Kr

1
(1−R2

r )+ i(2ζrRr)
, (27)

where Rr = ωe/ωr is the frequency ratio of the r-th mode,
φ rm and φ rn are the m-th and n-th elements of ΦΦΦr, respec-
tively. It can be observed that the elements of the FRF ma-
trix are characterized by the natural frequency, damping
ratio, and further mode shape of the r-th mode. Therefore,
these modal parameters can be estimated by determining
and analyzing the FRFs.

The process of the EMA used for identifying the modal
parameters can be summarized as follows:

Step 1: Collect the experimental data consisting of the
time histories of the excitation force and cor-
responding displacements of the beam.

Step 2: Estimate the FRFs based on the experimental
data and computing power spectral density us-
ing the discrete Fourier transform with a Ham-
ming window [44].

Step 3: Identify the natural frequencies and damping
ratio corresponding to each natural frequency
using the fitting algorithms.

Note that this approach can also identify the mode shape.
However, we only need the natural frequencies and damp-
ing ratios to design the input shaping control.
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3.2. Logarithmic decrement algorithm
Another approach used to determine the damping ra-

tio of underdamped systems is the logarithmic decrement
algorithm [45]. This algorithm considers the system as a
single-degree-of-freedom harmonic oscillator and derives
the damping ratio via successive positive peak amplitudes.
Accordingly, the damping ratio can be computed using the
following formulation:

ζ =
1√

1+(2π/δ )2
, (28)

where δ is the logarithmic decrement relating to the natu-
ral log of the ratio of the amplitudes of any two successive
peaks, i.e.,

δ =
1
n

ln
w1

wn
, (29)

where w1 is the first successive peak, and wn is the ampli-
tude of the n-th successive peak. In this study, the damping
ratios of the two first modes are assumed to be equal, and
the results evaluated by logarithmic decrement can repre-
sent both modes.

4. INPUT SHAPING CONTROL

According to the modal parameters obtained by EMA,
an open-loop control scheme is designed based on the in-
put shaping technique for vibration suppression of a beam.
The key to this technique is to create an appropriate com-
mand signal (i.e., shaped command) to minimize the sys-
tem’s residual vibration. The shaped command is gener-
ated by convolving an arbitrary command with a sequence
of impulses applied at different times. This sequence of
impulses is known as the input shaper. Each impulse of
the input shaper is characterized by its amplitude and time
location. These values can be determined based on the nat-
ural frequency and damping ratio.

The input shaper is designed based on the constraint
relating to the percentage vibration (i.e., the percentage
vibration is the ratio of the vibration’s amplitude for a
multi-impulse input and that for a single unity-magnitude
impulse). Various input shapers were designed in the liter-
ature [37]. The fundamental input shaper, the ZV shaper,
is described as follows:[

A1 A2

t1 t2

]
=

[
1

1+K
K

1+K
0 π

ω

√
1−ζ 2

]
, (30)

where K = e−ζ π/
√

1−ζ 2 , and ω is the natural frequency in
rad/s. The drawback of the ZV shaper is its high sensitiv-
ity to variations in modal parameters. To improve the ro-
bustness of the input shaping control, the ZVD and ZVDD
shapers can be used. The amplitudes and time locations of

the impulses of the ZVD shaper are derived as follows:[
A1 A2 A3

t1 t2 t3

]
=

[
1

(1+K)2
2K

(1+K)2
K2

(1+K)2

0 π

ω

√
1−ζ 2

2π

ω

√
1−ζ 2

]
. (31)

Those of the ZVDD shaper is derived as follows:[
A1 A2 A3 A4

t1 t2 t3 t4

]
=

[
1

(1+K)3
3K

(1+K)3
3K2

(1+K)3
K3

(1+K)3

0 π

ω

√
1−ζ 2

2π

ω

√
1−ζ 2

3π

ω

√
1−ζ 2

]
. (32)

The input shaping can be extended to a multi-mode sys-
tem based on the convolution method [46,47]. This is
a straightforward method that generates a multi-mode
shaper by directly convolving single-mode shapers de-
signed for individual modes. Accordingly, the total num-
ber of impulses of a multi-mode shaper is N = nm, where n
is the number of impulse of each single-mode shaper, and
m is the number of considered modes. In the next section,
we report the use of input shaping control to deal with the
first two modes of the considered system.

5. EXPERIMENTAL RESULTS

5.1. Experimental system
The experiment aimed to control a stainless steel beam

clamped on a moving base. The system parameters were
l = 0.9 m, ρ = 8190 kg·m−3, E = 190× 109 Nm−2, and
m = 2.5 kg. The testbed shown in Fig. 3 was used to col-
lect the experimental data for EMA and verify the perfor-
mance of the proposed control laws. The motion of the
moving base was controlled by a Yokogawa linear mo-
tor using a UMAC motion controller. The motion pro-
gram controlling the whole linear motor system was gen-
erated from the UMAC controller’s corresponding soft-
ware (PeWin32Pro). The beam’s vibration was measured
by a Keyence high-speed camera with a sampling time of
0.01 s.

5.2. Parameter identification
The modal parameters of the first two modes were iden-

tified based on EMA using the input/output experimental
data. The input signal was the excitation force, and the
output signal was the displacement of the beam’s tip. The
input/output data in the time domain were collected via a
sine sweep test, where the instantaneous frequency of the
excitation input was varied with time. Two sweep types,
linear sweep and exponential sweep, were considered. The
linear and exponential sweep rates, respectively, are de-
fined as follows:

βlinear = ( fb− fa)/T, (33)

βexp =
ln( fb/ fa)

ln(2)
60
T
, (34)
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Fig. 3. Experimental testbed [48].

where fa = 0.1 Hz and fb = 8 Hz are the lower and upper
frequency limits, respectively, and T is the testing time.
The input/output signals in the time domain were recorded
by a vision system using the Keyence high-speed camera.
Accordingly, the frequency-response functions were de-
termined using the discrete Fourier transform with a Ham-
ming window. The spectra of the system under differential
excitations are illustrated in Fig. 4. Based on these FRFs,
the modal parameters could be identified using the least-
squares complex exponential method. Table 1 lists the es-
timated modal parameters under various sweep rates. It
can be seen that most of the natural frequencies estimated
using the exponential sweeps are similar (i.e., the first-
and second-mode frequencies are all approximately 1.1
and 6.9 Hz, respectively). The percentage difference be-
tween the estimated frequencies did not exceed 0.4%. In
contrast, the percentage difference between the damping
ratios is considerable at more than 40%. Furthermore, the
first natural frequency and first damping ratio estimated
based on the linear sweep are significantly different from
those in other cases. This is because of the disadvantage
of using linear sweep in handling systems, wherein the
first natural frequency is close to the lower limit frequency
[49].

Besides the damping ratios identified based on EMA,
these parameters can be estimated using the logarithmic
decrement. In this experiment, the assumption that the
damping ratios of the two first modes are equal was ac-

Fig. 4. Spectra of the system under differential excitations.

Table 1. Estimated modal parameters.

Sweep type
Natural frequency Damping ratio
First
mode

Second
mode

First
mode

Second
mode

Linear
βlinear = 1

1.0063 7.0017 0.0011 0.0089

Exponential
βexp = 3

1.0951 6.8917 0.0071 0.0059

Exponential
βexp =−5

1.0988 6.9146 0.0059 0.0033

Exponential
βexp = 7

1.0976 6.9196 0.0083 0.0012

ceptable. The free vibration response shows that the de-
caying rate significantly depends on the first mode, and
the damping ratio estimated by the logarithmic decrement
is close to this mode. Based on the first two successive
positive peaks, the following damping ratios are obtained:

ζ1 = ζ2 = 0.0074. (35)

There is a considerable difference between the damping
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Fig. 5. Comparison between the actual model and esti-
mated ones: The solid and dashed lines indicate
the responses of the actual model and the estimated
ones with different natural frequencies and damp-
ing ratios.

ratios estimated by the different methods. We performed
simulation verifications to determine the two damping ra-
tios of the first two modes showing the closest behavior
with the experimental data. The Rayleigh damping coef-
ficients for each case are computed based on the natural
frequencies and damping ratios of the first two modes. Ac-
cording to these values and (21), the vibration responses
for each case could be obtained via simulation. Fig. 5 com-
pares the experimental and simulated vibration results. It
can be seen that the damping ratios under the linear sine
sweep are too small; hence, the modal parameters of this
case cannot be used to describe the system dynamics. On

Table 2. Comparison of input shaping controllers.

Input
shaper

Settling
time

Overshoot
(%)

Percentage
vibration

(%)

Single-
mode

ZV 0.73 22.04 5.83
ZVD 1.12 14.96 3.62

ZVDD 1.57 8.48 2.84

Two-
mode

ZV 0.75 13.18 1.96
ZVD 1.27 6.86 1.26

ZVDD 1.75 2.26 0.36

the contrary, the model using the damping ratios under
the exponential sine sweep and logarithmic decrement can
capture the dynamics of the actual system. Therefore, we
can use these damping ratios to design the shaper of the
input shaping control. The insignificant error of the esti-
mated modal parameters can be handled by the robustness
of the ZVD and ZVDD shapers.

5.3. Input shaping control
The control objective is to move the base from 0 to 50

mm and minimize the residual vibration of the beam’s
tip. Furthermore, this study aims to reduce the percent-
age vibration to below 2%. Because most of the vibration
problem is caused by the first flexible mode of the sys-
tem, we first consider the system under the single-mode
input shaping control. The shapers are designed based on
the first natural frequency f1 = 1.1 Hz and the damping
ratio ζ1 = 0.0074. Fig. 6 shows the performance of the
single-mode ZV shaper. In this case, the percentage vibra-
tion is less than 6%. The ZVD and ZVDD shapers slightly
improve the input shaping control performances, where
residual vibration is reduced to less than 4% and 3%, re-
spectively, compared to the uncontrolled systems (see Fig.
7). Although the performance of the single-mode input
shaping control is good, the percentage vibration is still
larger than 2%. This is due to influence from the higher
modes on the residual vibration. The controller’s perfor-
mance can be further improved by including the shapers
for the second mode.

Fig. 6. Single-mode ZV input shaping control.



Control of a Non-uniform Flexible Beam: Identification of First Two Modes 3705

The responses of the beam’s tip under the two-mode
ZV shaper and two-mode ZVD and ZVDD shapers are
shown in Figs. 8 and 9, respectively. The residual vibra-
tion is sharply suppressed, and the goal of 2% percentage
vibration is achieved. Table 2 lists the percentage vibra-
tion, settling time, and system overshoot results under dif-
ferent input shaping control laws. It can be seen that the
two-mode shapers suppress vibration more efficiently than
the single-mode shapers. In addition, the residual vibra-
tions of the system using the ZVD and ZVDD shapers are
smaller than those using the ZV shaper due to the robust-
ness of these shapers. However, as mentioned in Section
4, the time locations of the final impulses of the ZVD and
ZVDD shapers is larger than that of the ZV shaper. This
results in a significant difference in the settling time of the
system under these shapers. As shown in Table 3, the set-
tling time of the system under the ZVDD shaper is three
times that under the ZV shaper. The differences in the set-
tling time between the first mode and convolution of the
two modes are small; however, the increments of residual
vibrations are considerable, corresponding to at least 50%
of the improvement.

6. CONCLUSION

In this study, single- and multi-mode input shaping con-
trols of a non-uniform flexible beam attached to a moving
base were investigated. The mathematical model of the
beam and base system was developed based on Hamilton’s
principle. An approximated model with a finite number
of vibration modes was also established via the Galerkin
method. The experimental modal analysis was conducted
to identify the natural frequencies and damping ratios.
Both single- and two-mode input shaping controllers with
ZV, ZVD, and ZVDD shapers were designed using the es-
timated modal parameters. The experimental results were
used to compare the performances of the single- and two-
mode input shaping controllers. Although the settling time
of the latter was slightly larger than that of the former, its
effectiveness in vibration suppression was improved sig-

Fig. 7. Single-mode ZVD and ZVDD input shaping con-
trol.

Fig. 8. Two-mode ZV input shaping control.

Fig. 9. Two-mode ZVD and ZVDD input shaping control.

nificantly.
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