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Abstract

This paper discusses the resilient H∞ performance for finite-time boundedness
of neutral-type neural networks with time-varying delays. The presented theo-
retical analysis allows establishing the finite-time bounded of the real response
of a delayed neural networks. In addition, we propose finite-time stability condi-
tions with time-varying delay. By choosing an appropriate Lyapunov-Krasovskii
functional, and employing an auxiliary function-based integral inequality and
Wirtinger's based integral inequality, the sufficient criteria are derived in terms
of linear matrix inequalities. The purpose is to design the system is not only
finite-time bounded with a specified decay rate but also satisfies an H∞ perfor-
mance requirement. Theoretical results are tested through a numerical example.
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1 INTRODUCTION

Neural networks constitute an effective information-
processing paradigm that can conveniently address many
practice problems, such as real-time pattern recognition,
fault tolerance via redundant information coding, signal
processing, image processing, and adaptive learning [1-7].
Moreover, to achieve design specifications in many prac-
tical applications of neural networks, the full information
on the states of neural networks is often required, which
is sometimes a difficult task. The more practical scenario
is that we have to face the unmeasurable states of neu-
ral networks or only partially available information from
the network outputs in practice. For instance, considering
the external disturbance, the robust conditions have been
presented in many existing works [8-12] under which the
desired estimators can be designed.

The stability of a time-delay system is always a hot
topic for researchers, see [13,14]. Even many researchers
were more concerned about the stabilizability prob-
lems, for example, see [15-19]. As a result, to obtain
stability criteria of time-delayed systems by using the
Lyapunov theorem, the main efforts were concentrated
on the following two directions: One is to find an
appropriate positive definite functional with a negative
definite-time derivative along the trajectory of the sys-
tem. The other is to reduce the upper bound of the time
derivative of Lyapunov-Krasovskii functional (LKF) as
much as possible by developing various inequality tech-
niques, such as Wirtinger's based integral inequality [20],
free-matrix-based integral inequality [21], relaxed integral
inequalities [22], the generalized free-weighting-matrix
approach [23], Bessel-Legendre inequality [24], recipro-
cally convex approach [25], extended reciprocally convex
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matrix inequalities [26,27], and so on. Dynamical systems
with time-delays and uncertain parameters have been of
considerable interest over the past decades. But, uncer-
tain systems and resilient control of uncertain systems
with time-varying delays are rare [28-32]. Time-delays are
always an important source of system instability and poor
performance [33,34].

As a special class of time-delay neural networks, the
neutral-type time-delayed systems have received atten-
tion in recent years. This time-delayed system contains
time-delays both in its state and in the derivatives of the
states. Moreover, neutral-type time-delayed systems are
frequently encountered in many dynamics, such as auto-
matic control, distributed network system containing loss-
less transmission line, heat exchangers, and population
ecology. Various analysis approaches have been utilized
to find stability criteria and control design conditions for
H∞ control of neutral-type systems and neural networks
with time-delays [35-37]. Also, neural information in the
biochemistry reactivity may result in a neutral-type pro-
cess; that is, the involved differential expression includes
not only the derivative term of the present state but also
one of the past state. So, it is natural and reasonable to pay
close attention to neutral-type neural networks with delays
[38,39].

Compared with the widely known asymptotic stabil-
ity, finite-time stability and finite-time boundedness are
different concepts concerning the boundedness of the
states during a fixed time interval, which almost relies
on the transient response. Since many practical appli-
cations require that the state does not exceed a certain
bound in a fixed time interval, e.g., to avoid saturation
or excitation, we focus on the finite-time boundedness
analysis in practical consideration. In recent years, many
results were reported on finite-time boundedness prob-
lems: The relevant concepts of finite-time boundedness
[40], finite-time stabilization [41], and finite-time H∞ per-
formance have been revisited in [42-45]. However, accord-
ing to the authors knowledge, resilient H∞ performance
for finite-time boundedness of uncertain neural networks
have not been investigated yet.

Motivated by the discussions above, in this paper, we
design an appropriate resilient state feedback controller
such that the closed-loop control system is finite-time
bounded and satisfies the given performance index con-
straints. The main contributions of this paper are sum-
marized as follows: i) A new criterion on the finite-time
boundedness is established for time-delayed neutral-type
neural networks by using the LMI-approach. In the
approach, the key is to find a suitable Lyapunov func-
tion satisfying the derivative condition of the finite-time
boundedness, which is more complicated than that of
asymptotic stability. ii) Another contribution of this paper

is that we present delay-dependent results on both the
finite-time boundedness and finite-time H∞ performance
design. Based on the results obtained, a state feedback
controller is designed such that the corresponding system
is finite-time bounded. Finally, an example is provided
to illustrate the efficiency of the proposed method, and
conclusions are drawn.

Notation: The notation used in this paper are as fol-
lows. Rn denotes the n-dimensional Euclidean space,
the superscript “T′ ′ denotes the transpose, and the
notation P > 0 (≥ 0) means P is a real symmet-
ric positive definite (semi-definite) matrix, max(P) and
min(P) denote the maximum and minimum eigenval-
ues of matrix P, respectively. I is an identity matrix with
appropriate dimension. diag{ai} denotes the diagonal
matrix with the diagonal elements ai, (i = 1, 2, … ,n).
The asterisk ∗ in a matrix is used to denote the term
induced by symmetry.

2 PROBLEM FORMULATION AND
PRELIMINARIES

Consider the following neutral-type neural networks with
time-varying delays as follows:

.x(t)− Ê .x(t − 𝜌(t)) = −Âx(t) + Ŵ0𝑓 (x(t))

+ Ŵ1𝑓 (x(t − 𝜏(t))) + B1u(t) + D̂1w(t),

z(t) =Ĉx(t) + B2u(t) + D̂2w(t),

x(t) =𝜙(t), t ∈ [−𝜏M , 0],

(1)

where x(t) = [x1(t), x2(t), … , xn(t)]T ∈ Rn is the state,
u(t) ∈ Rl is the control input, w(t) ∈ Rm is the dis-
turbance input which belongs to L2[0,∞), z(t) ∈ Rq is
the controlled output. f(x(t)) is the neuron activation func-
tion, 𝜙(t) is a continuous vector-valued initial function.
Â = A + ΔA(t), Ŵ0 = W0 + ΔW0(t), Ŵ1 = W1 +
ΔW1(t), D̂1 = D1 + ΔD1(t), Ê = E + ΔE(t), Ĉ =
C + ΔC(t), D̂2 = D2 + ΔD2(t) in which A is a posi-
tive diagonal matrix, W0,W1,B1,D1,E,C,B2, and D2 are
the weight connection matrices with appropriate dimen-
sions, and ΔA(t),ΔW0(t),ΔW1(t),ΔD1(t),ΔE(t),ΔE(t), and
ΔD2(t) are uncertain real-valued matrices. The variables
𝜏(t) and 𝜌(t) represent the time-varying delay and the neu-
tral delays, respectively, and satisfying 0 ≤ 𝜏(t) ≤ 𝜏, .

𝜏(t) ≤
𝜏D, and 0 ≤ 𝜌(t) ≤ 𝜌̄, .

𝜌(t) ≤ 𝜌D, where 𝜏, 𝜌̄, 𝜏D and 𝜌D are
positive constants, and 𝜏M = max{𝜏, 𝜌̄}.

The uncertain matrices satisfy

[ΔA(t) ΔW0(t) ΔW1(t) ΔE(t) ΔD1(t)]

=F1𝜂(t)[G1 G2 G3 G4 G5],[
ΔC(t) ΔD2(t)

]
= F2𝜂(t)

[
G1 G4

] (2)
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where F1,F2,G1,G2,G3,G4, and G5 are known real matri-
ces with suitable dimension and 𝜂(t) is an unknown real
and possibly time-varying matrix with Lebesgue measur-
able elements satisfying

𝜂T(t)𝜂(t) ≤ I. (3)

In this paper, we design the state feedback controller as
the following form: u(t) = (K + ΔK(t))x(t), where K ∈
n is the gain matrix to be designed and ΔK(t) is the
time-varying controller gain which satisfies:

ΔK(t) = H1𝛿(t)H2, 𝛿T(t)𝛿(t) ≤ I. (4)

The system 1 with the controller 4 can be converted to
the following form

.x(t)− Ê .x(t − 𝜌(t)) = −Āx(t) + Ŵ0𝑓 (x(t))

+ Ŵ1𝑓 (x(t − 𝜏(t))) + B1u(t) + D̂1w(t),

z(t) =C̄x(t) + B2u(t) + D̂2w(t),

x(t) =𝜙(t), t ∈ [−𝜏M , 0],

(5)

where Ā = (A + B1K) + (ΔA(t) + B1ΔK(t)) and C̄ =
(C + B2K) + (ΔC(t) + B2ΔK(t)).

Assumption 1. The activation functions satisfy the
following condition, for any a = 1, 2, … ,n there exist
constants F−

a ,F+
a such that

F−
a ≤ 𝑓a(x1)−𝑓a(x2)

x1−x2
≤ F+

a ∀ x1, x2 ∈ R, x1 ≠ x2.

For presentation convenience, we denote Mt =
diag{F−

1 F+
1 ,F−

2 F+
2 , … F−

n F+
n },

Mu = diag{F−
1 +F+

1
2

,
F−

2 +F+
2

2
, … ,

F−
n +F+

n
2

}.

Definition 1 [46]. (finite-time boundedness). Given
a positive matrix R > 0, positive constants c1 > 0,
c2 > 0, (c2 > c1), and T the neural networks (1) with
u(t) = 0 is said to be finite-time bounded with respect
to (c1, c2,T,R, d), if the following inequalities hold:

limsup
−𝜏M≤t0≤0

{xT(t0)Rx(t0),
.xT(t0)R

.x(t0)} ≤ c1

⇒ xT(t)Rx(t) < c2, t ∈ [0,T].

Definition 2 [43]. Given a positive matrix R > 0, posi-
tive constants T > 0, c1 > 0 and c2 > 0 with c2 > c1, the
neural networks (1) is said to be finite-time bounded
with respect to (c1, c2,T,R, d) with a prescribed level
of noise attenuation 𝛾 > 0, and under a zero initial
condition, it holds that

∫ T
0 zT(s)z(s)ds ≤ 𝛾2 ∫ T

0 wT(t)w(t)dt.

Definition 3 [47]. The neural networks (1) is
said to be finite-time stabilizable with respect to
(c1, c2,T,R, d), if there exists a controller, u(t) =
(K + ΔK(t))x(t), t ∈ [0,T], such that the corresponding

closed-loop neural networks is finite-time bounded
with respect to (c1, c2,T,R, 𝛼).

Lemma 1 [20]. For any constant matrix M > 0, the
following inequality holds for all continuously differen-
tiable function 𝜑 on [a, b] → n×n:

(b − a) ∫ b
a 𝜑T(s)M𝜑(s)ds

≥ (∫ b
a 𝜑(s)ds

)T
M

(∫ b
a 𝜑(s)ds

)
+ 3ΩTMΩ,

where Ω = ∫ b
a 𝜑(s)ds − 2

b−a
∫ b

a ∫ s
a 𝜑(𝜃)d𝜃ds.

Lemma 2 [48]. Let M > 0 be any constant matrix, and
for given scalars a and b with a < b, the following rela-
tion is well defined for any differentiable function 𝜂 in
[a, b] → Rn:

− b2−a2

2
∫ −b
−a ∫ t

t+𝜃
.
𝜂T(s)M .

𝜂(s)dsd𝜃 ≤ −ΩT
1MΩ1 − 2ΩT

2MΩ2,

where Ω1 = (b − a)𝜂(t) − ∫ t−b
t−a 𝜂(s)ds,

Ω2 = −(b−a)
2

𝜂(t) − ∫ t−b
t−a 𝜂(s)ds+ 3

b−a
∫ −b
−a ∫ t

t+𝜃 𝜂(s)dsd𝜃.

Lemma 3 [49]. For a positive definite matrix M > 0,
and a differentiable function {x(u)|u ∈ [a, b]}, the
following inequality holds:

∫ b
a

.xT(s)Mx(s)ds ≥ 1
b−a

𝜋T
1 M𝜋1 + 3

b−a
𝜋T

2 M𝜋2 + 5
b−a

𝜋T
3 M𝜋3,

where𝜋1 = x(b)−x(a), 𝜋2 = x(b)+x(a)− 2
b−a

∫ b
a x(s)ds,

𝜋3 = x(b) − x(a) + 6
b−a

∫ b
a x(s)ds − 12

(b−a)2
∫ b

a ∫ b
𝜃

x(s)dsd𝜃.

Lemma 4 [50]. Given matrices J, E and 𝛩 = 𝛩T, then
𝛩+EF(t)G+GTFT(t)ET < 0 holds for any F(t) satisfying
FT(t)F(t) ≤ I, if there exists a scalar 𝜖 > 0 such that
𝛩 + 𝜖−1EET + 𝜖GTG < 0.

3 MAIN RESULTS

3.1 Finite-time boundedness
In this section, we first provide the finite-time bounded-
ness condition for the following system:

.x(t)− Ê .x(t − 𝜌(t)) = −Āx(t) + Ŵ0𝑓 (x(t))

+ Ŵ1𝑓 (x(t − 𝜏(t))) + D̂1w(t),

x(t) =𝜙(t), t ∈ [−𝜏M , 0],

(6)

Theorem 1. For given positive scalars T, c1, c2, d, 𝜏 , 𝜌̄,
𝜏D, 𝜌̄D and 𝛼, the system 6 is finite-time bounded if there
exist symmetric positive definite matrices P > 0, Qi > 0
(i = 1, 2, 3, 4), Sj > 0 (j = 1, 2, 3), the appropriate
dimensional matrices k > 0 (k = 1, 2, 3, 4), and posi-
tive diagonal matrices t > 0 and u > 0 such that the
following LMIs holds:

Ω = [Ωi𝑗]10×10 < 0, (7)
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e𝛼T (Λc1 + d𝜆10) < 𝜆1c2, (8)

where the elements of Ω = [Ωij]10×10 are the following
Ω11 = −PĀ− ĀTPT +Q1 +Q2 + 𝜏S1 −𝛼Pi − 1

𝜏
S2 − 3

𝜏
S2 +

5
𝜏

S2−𝜏2S3− 𝜏2

4
S3−Mtt−1Ā−ĀT T

1 ,Ω12 = −ĀT T
2 ,

Ω13 = 1
𝜏

S2 + 3
𝜏

S2 + 5
𝜏

S2 − ĀT T
3 , Ω14 = −1 − ĀT T

4 ,
Ω15 = 6

𝜏2 S2 − 30
𝜏2 S2 + 𝜏S3 + 𝜏

2
S3, Ω16 = 60

𝜏3 S2 − 3
2

S3,
Ω17 = PŴ0 + Mut + 1Ŵ0, Ω18 = PŴ1 + 1Ŵ1,
Ω19 = PÊ + 1Ê, Ω110 = PD̂1 + 1D̂1, Ω22 = −(1 −
𝜏D)Q1 − Mtu, Ω23 = 0, Ω24 = −2, Ω25 = 0, Ω26 = 0,
Ω27 = 2Ŵ0,Ω28 = Muu+2Ŵ1,Ω29 = 2Ê,Ω210 =
2D̂1, Ω33 = −Q2 − 1

𝜏
S2 − 3

𝜏
S2, Ω34 = −3, Ω35 =

6
𝜏2 S2 + 30

𝜏2 S2, Ω36 = − 60
𝜏3 S2, Ω37 = 3Ŵ0, Ω38 = 3Ŵ1,

Ω39 = 3Ê, Ω310 = 3D̂1, Ω44 = Q3 + 𝜏S2 −4, Ω45 =
0, Ω46 = 0, Ω47 = 4Ŵ0, Ω48 = 4Ŵ1, Ω49 = 4Ê,
Ω410 = 4D̂1,Ω55 = − 1

𝜏
S1− 3

𝜏
S1− 12

𝜏3 S2− 180
𝜏3 S2−S3−S3,

Ω56 = 6
𝜏2 S1

360
𝜏4 S2 + 3

𝜏
S3, Ω57 = 0, Ω58 = 0, Ω59 = 0,

Ω510 = 0, Ω66 = − 12
𝜏3 S1 − 720

𝜏5 S2 − 9
𝜏2 S3, Ω67 = 0, Ω68 = 0,

Ω69 = 0, Ω610 = 0, Ω77 = Q4 − t, Ω78 = 0, Ω79 = 0,
Ω710 = 0, Ω88 = −(1 − 𝜏D)Q4 − u, Ω89 = 0, Ω810 = 0,
Ω99 = −(1 − 𝜌D)Q3, Ω910 = 0, Ω1010 = −𝛼X.

𝜆1R < P < 𝜆2R, Q1 < 𝜆3R, Q2 < 𝜆4R,

Q3 < 𝜆5R, Q4 < 𝜆6R, S1 < 𝜆7R,

S2 < 𝜆8R, S3 < 𝜆9R, X < 𝜆10R,

(9)

𝜆1 = 𝜆min(P̄), 𝜆2 = 𝜆max(P̄), 𝜆3 = 𝜆max(Q̄1), 𝜆4 =
𝜆max(Q̄2), 𝜆5 = 𝜆max(Q̄3), 𝜆6 = 𝜆max(Q̄4), 𝜆7 = 𝜆max(S̄1),
𝜆8 = 𝜆max(S̄2), 𝜆9 = 𝜆max(S̄3), 𝜆10 = 𝜆max(X̄).

Proof. Choose the following LKF for the system 6 as

V(t) =
5∑

i=1
Vi(t), (10)

where
V1(t) = xT(t)Px(t),
V2(t) = ∫ t

t−𝜏(t) xT(s)Q1x(s)ds + ∫ t
t−𝜏 xT(s)Q2x(s)ds,

V3(t) = ∫ T
t−𝜌(t)

.xT(s)Q3
.x(s)ds

+ ∫ t
t−𝜏(t) 𝑓

T(x(s))Q4𝑓 (x(s))ds,
V4(t) = ∫ 0

−𝜏 ∫ t
t+𝜃 xT(s)S1x(s)dsd𝜃

+ ∫ 0
−𝜏 ∫ t

t+𝜃
.xT(s)S2

.x(s)dsd𝜃,
V5(t) = 𝜏2

2
∫ 0
−𝜏 ∫ 0

𝛽
∫ t

t+𝜃
.xT(s)S3

.x(s)dsd𝜃.

Calculating the time derivatives of the above LKF along
the trajectory of the system 6, we have

.
V 1 = 2xT(t)P .x(t), (11)

.
V 2 = xT(t) (Q1 + Q2) x(t) − (1 − 𝜏D)

× xT(t − 𝜏(t))Q1x(t − 𝜏(t))

− xT(t − 𝜏)Q2x(t − 𝜏),

(12)

.
V 3 = .xT(t)Q3

.x(t) − (1 − 𝜌D)xT(t − 𝜌(t))

× Q3x(t − 𝜌(t)) + 𝑓T(x(t))Q4𝑓 (x(t))

− 𝑓T(x(t − 𝜏(t)))Q4𝑓 (x(t − 𝜏(t))),

(13)

.
V 4 =𝜏xT(t)S1x(t) − ∫

t

t−𝜏
xT(s)S1x(s)ds

+ 𝜏
.xT(t)S2

.x(t) − ∫
t

t−𝜏

.xT(s)S2
.x(s)ds,

(14)

.
V 5 = (𝜏

2

2
)2 .xT(t)S3

.x(t)

−𝜏2

2 ∫
0

𝜏 ∫
t

t+𝜃

.xT(s)S3
.x(s)dsd𝜃.

(15)

By applying Lemma 3, we can get,

− ∫
t

t−𝜏

.xT(s)S2
.x(s)ds

≤ − 1
𝜏
𝜋T

1 S2𝜋1 −
3
𝜏
𝜋T

2 S2𝜋2 −
5
𝜏
𝜋T

3 S2𝜋3.

(16)

where 𝜋1 = x(t)−x(t−𝜏), 𝜋2 = x(t)+x(t−𝜏)− 2
𝜏
∫ t

t−𝜏 x(s)ds,
𝜋3 = x(t) − x(t − 𝜏) + 6

𝜏
∫ t

t−𝜏 x(s)ds − 12
𝜏2 ∫ 0

𝜏
∫ t

t+𝜃 x(s)dsd𝜃. By
using Lemma 1, we can obtain,

− ∫
t

t−𝜏
xT(s)Q4x(s)ds

≤−1
𝜏

(
∫

t

t−𝜏
x(s)ds

)T

S1

(
∫

t

t−𝜏
x(s)ds

)
− 3

𝜏
𝜋T

4 S1𝜋4,

(17)
where 𝜋4 = ∫ t

t−𝜏 x(s)ds − 2
𝜏
∫ 0
−𝜏 ∫ t

t+𝜃 x(s)dsd𝜃. And

− 𝜏2

2 ∫
0

𝜏 ∫
t

t+𝜃

.xT(s)S3
.x(s)dsd𝜃

≤ −
[
𝜋5
𝜋6

]T [
S3 0
0 2S3

] [
𝜋5
𝜋6

]
,

(18)

where 𝜋5 = 𝜏x(t) − ∫ t
t−𝜏 x(s)ds, 𝜋6 = − 𝜏

2
x(t) − ∫ t

t−𝜏 x(s)ds +
3
𝜏
∫ 0
−𝜏 ∫ t

t+𝜃 x(s)dsd𝜃. Based on Assumption 1, we obtain

[𝑓a(xa(t)) − M−
a xa(t)][𝑓a(xa(t)) − M−

a xa(t)] ≤ 0,

[𝑓a(xa(t − 𝜏(t))) − M−
a xa(t − 𝜏(t))][𝑓a(xa(t − 𝜏(t)))

−M−
a xa(t − 𝜏(t))] ≤ 0,

where a = 1, 2, … ,n, The above equations can be com-
pactly written as follows.[

x(t)
𝑓 (x(t))

]T [
Mt −Mu
∗ I

] [
x(t)

𝑓 (x(t))

]
≤ 0,[

x(t − 𝜏(t))
𝑓 (x(t − 𝜏(t)))

]T [
Mt −Mu
∗ I

] [
x(t − 𝜏(t))

𝑓 (x(t − 𝜏(t)))

]
≤ 0.

Then for any positive matrices t = diag{s1, s2, … , sn}
and u = diag{ŝ1, ŝ2, … , ŝn}, the following inequalities
hold:[

x(t)
𝑓 (x(t))

]T [
Mtt −Mut
∗ t

] [
x(t)

𝑓 (x(t))

]
≤ 0, (19)
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[
x(t − 𝜏(t))

𝑓 (x(t − 𝜏(t)))

]T [
Mtu −Muu
∗ u

]

×
[

x(t − 𝜏(t))
𝑓 (x(t − 𝜏(t)))

]
≤ 0.

(20)

On the other hand, for any matrices 1, 2, 3, 4

with appropriate dimensions, it follows that

0 =2
[
xT(t)1 + xT(t − 𝜏(t))2

+xT(t − 𝜏(t))3 +
.xT(t)4

]
×
[
−Āx(t) + Ŵ0𝑓 (x(t)) + Ŵ1𝑓 (x(t − 𝜏(t)))

+D̂1w(t) + Ê .x(t − 𝜌(t)) − .x(t)
]
.

(21)

Therefore, for given 𝛼 > 0 and from 11-21, one can
obtain that

.
V(t) − 𝛼V(x(t)) − 𝛼wT(t)Xw(t) ≤ 𝜗T(t)Ω𝜗(t), (22)

where 𝜗T(t) = [xT(t)xT(t − 𝜏(t))xT(t −
𝜏) .xT(t)(∫ t

t−𝜏 x(s)dsT(∫ 0
−𝜏 ∫ t

t+𝜃 x(s)dsd𝜃)T𝑓T(x(t))𝑓 (x(t −
𝜏(t))) .xT(t − 𝜌(t))wT(t)] Then we can write that

.
V(x(t)) ≤ 𝛼V(x(t)) + 𝛼wT(t)Xw(t), (23)

Multiplying both sides in 23 by e−𝛼t we get

d
dt

(
e−𝛼tV(t)

) ≤ 𝛼wT(t)Xw(t). (24)

Then integrating inequality 24 0 to t, where t ∈ [0,T], we
get

e−𝛼tV(t) ≤ V(0) + 𝛼 ∫
t

0
e𝛼swT(s)Xw(s)ds,

V(t) < e𝛼t
(

V(0) + 𝛼 ∫
t

0
e𝛼swT(s)Xw(s)ds

)
, (25)

V(t) < e𝛼T (V(0) + 𝜆6d) . (26)

Define P̄ = R−1∕2PR−1∕2, Q̄1 = R−1∕2Q1R−1∕2, Q̄2 =
R−1∕2Q2R−1∕2, Q̄3 = R−1∕2Q3R−1∕2, Q̄4 = R−1∕2Q4R−1∕2,
S̄1 = R−1∕2S1R−1∕2, S̄2 = R−1∕2S2R−1∕2, S̄3 = R−1∕2S3R−1∕2.

On the other hand,

V(x0, 0) =𝜆max(P̄)xT(0)Rx(0)

+ 𝜆max(Q̄1)∫
0

−𝜏(0)
xT(s)Rx(s)ds

+ 𝜆max(Q̄2)∫
0

−𝜏
xT(s)Rx(s)ds

+ 𝜆max(Q̄3)∫
0

−𝜌(0)

.xT(s)R .x(s)ds

+ 𝜆max(Q̄4)max |M−
t ,M+

u |2
∫

0

−𝜏(0)
xT(s)Rx(s)ds

+ 𝜆max(S̄1)∫
0

−𝜏 ∫
0

𝜃

xT(s)Rx(s)dsd𝜃

+ 𝜆max(S̄2)∫
0

−𝜏 ∫
0

𝜃

.xT(s)R .x(s)dsd𝜃

+ 𝜆max(S̄3)∫
0

−𝜏 ∫
0

𝛽 ∫
0

𝜃

.xT(s)R .x(s)dsd𝜃

≤{
𝜆max(P̄) + 𝜏𝜆max(Q̄1) + 𝜏𝜆max(Q̄2)

+ 𝜌̄𝜆max(Q̄3) + 𝜏 max |M−
t ,M+

u |2𝜆max(Q̄4)

+𝜏2

2
𝜆max(S̄1) +

𝜏2

2
𝜆max(S̄2) +

𝜏3

6
𝜆max(S̄3)

}
× sup

−𝜏M≤s≤0
{xT(s)Rx(s), .xT(s)R .x(s)},

V(x(t)) ≤ e𝛼T (Λc1 + d𝜆10) . (27)

Noting that

V(x(t)) ≥ 𝜆min(P̄)xT(t)Rx(t) = 𝜆1xT(t)Rx(t).

From 8, we have

xT(t)Rx(t) < c2. (28)

By Definition 1, the system 6 is finite-time boundedness.
This completes the proof.

3.2 Finite-time H∞ performance
In this section, we consider the following neutral-type
neural networks with disturbance:

.x(t)− Ê .x(t − 𝜌(t)) = −Āx(t) + Ŵ0𝑓 (x(t))

+ Ŵ1𝑓 (x(t − 𝜏(t))) + D̂1w(t),

z(t) =C̄x(t) + D̂2w(t),

x(t) =𝜙(t), t ∈ [−𝜏M , 0],

(29)

Theorem 2. For given positive scalars T, c1, c2, d, 𝜏 , 𝜌̄,
𝜏D, 𝜌̄D and 𝛼 with a prescribed level of noise attenuation
𝛾 > 0. The system 29 is finite-time bounded if there exist
symmetric positive definite matrices P > 0, Qi > 0 (i =
1, 2, 3, 4), Sj > 0 (j = 1, 2, 3), appropriate dimensional
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matrices k > 0 (k = 1, 2, 3, 4), and positive diagonal
matricest > 0 andu > 0 such that the following LMIs
holds:

Ω̄ =
[
Ω̄1 
∗ −I

]
< 0, (30)

e𝛼T (Λc1 + d𝜆10) < 𝜆1c2, (31)

where the elements of Ω̄1 = [Ω̄1i𝑗]10×10 are the following

 =
[

C̄ 0 0 0 0 0 0 0 0 D̂2
]
,

Ω̄11 = −PĀ − ĀTPT + Q1 + Q2 + 𝜏S1 − 𝛼Pi − 1
𝜏

S2

− 3
𝜏

S2 + 5
𝜏

S2 − 𝜏2S3 − 𝜏2

4
S3 − Mtt −1Ā − ĀT T

1 ,

Ω̄12 = −ĀT T
2 , Ω̄13 = 1

𝜏
S2 + 3

𝜏
S2 + 5

𝜏
S2 − ĀT T

3 ,

Ω̄14 = −1 − ĀT T
4 , Ω̄15 = 6

𝜏2 S2 − 30
𝜏2 S2 + 𝜏S3 + 𝜏

2
S3,

Ω̄16 = 60
𝜏3 S2 − 3

2
S3, Ω̄17 = PŴ0 + Mut +1Ŵ0,

Ω̄18 = PŴ1 +1Ŵ1, Ω̄19 = PÊ +1Ê,
Ω̄110 = PD̂1 +1D̂1, Ω̄22 = −(1 − 𝜏D)Q1 − Mtu,

Ω̄23 = 0, Ω̄24 = −2, Ω̄25 = 0, Ω̄26 = 0,
Ω̄27 = 2Ŵ0, Ω̄28 = Muu +2Ŵ1, Ω̄29 = 2Ê,
Ω̄210 = 2D̂1, Ω̄33 = −Q2 − 1

𝜏
S2 − 3

𝜏
S2, Ω̄34 = −3,

Ω̄35 = 6
𝜏2 S2 + 30

𝜏2 S2, Ω̄36 = − 60
𝜏3 S2, Ω̄37 = 3Ŵ0,

Ω̄38 = 3Ŵ1, Ω̄39 = 3Ê, Ω̄310 = 3D̂1,

Ω̄44 = Q3 + 𝜏S2 −4, Ω̄45 = 0, Ω̄46 = 0, Ω̄47 = 4Ŵ0,

Ω̄48 = 4Ŵ1, Ω̄49 = 4Ê, Ω̄410 = 4D̂1,

Ω̄55 = − 1
𝜏

S1 − 3
𝜏

S1 − 12
𝜏3 S2 − 180

𝜏3 S2 − S3 − S3,

Ω̄56 = 6
𝜏2 S1 + 360

𝜏4 S2 + 3
𝜏

S3, Ω̄57 = 0, Ω̄58 = 0, Ω̄59 = 0,
Ω̄510 = 0, Ω̄66 = − 12

𝜏3 S1 − 720
𝜏5 S2 − 9

𝜏2 S3, Ω̄67 = 0,
Ω̄68 = 0, Ω̄69 = 0, Ω̄610 = 0, Ω̄77 = Q4 − t, Ω̄78 = 0,
Ω̄79 = 0, Ω̄710 = 0, Ω̄88 = −(1 − 𝜏D)Q4 − u, Ω̄89 = 0,
Ω̄810 = 0, Ω̄99 = −(1 − 𝜌D)Q3, Ω̄910 = 0, Ω̄1010 = −𝛾2I.

Proof. By the following similar derivatives in Theorem
1, we have,

.
V(t, e(t)) − 𝛼V(t) + zT(t)z(t)

− 𝛾2wT(t)w(t) < 𝜗T(t)Ω̄𝜗(t) < 0.
(32)

Define

J = 𝛾2wT(t)w(t) − zT(t)z(t). (33)

Multiplying 33 by e−𝛼t, we have,

d
dt
{e−𝛼tV(t)} < e−𝛼tJ(t). (34)

Integrating this inequality on [0,T] yields

0 ≤ e−𝛼TV(t) < ∫
T

0
e−𝛼tJ(t)dt. (35)

We have

e−𝛼T ∫
T

0
zT(t)z(t)dt < ∫

T

0
e−𝛼tzT(t)z(t)dt

<𝛾2 ∫
T

0
e−𝛼twT(t)w(t)dt < 𝛾2 ∫

T

0
wT(t)w(t)dt.

(36)

By Definition 2, the system 29 is finite-time bounded
with respect to (c1, c2,T,R, d) and with a prescribed level of
noise attenuation 𝛾 > 0. This completes the proof.

3.3 Resilient finite-time H∞ performance
In this section we consider the uncertain neural networks
with time-varying delays:

.x(t)− Ê .x(t − 𝜌(t)) = −Āx(t) + Ŵ0𝑓 (x(t))

+ Ŵ1𝑓 (x(t − 𝜏(t))) + B1u(t) + D̂1w(t),

z(t) =C̄x(t) + B2u(t) + D̂2w(t),

x(t) =𝜙(t), t ∈ [−𝜏M , 0],

(37)

Theorem 3. For given positive scalars T, c1, c2, d, 𝜏 , 𝜌̄,
𝜏D, 𝜌̄D and 𝛼 with a prescribed level of noise attenuation
𝛾 > 0. The neural networks under state feedback con-
troller 37 is finite-time bounded if there exist symmetric
positive definite matrices P > 0, Qi > 0 (i = 1, 2, 3, 4),
Sj > 0 (j = 1, 2, 3), appropriate dimensional matrices
k > 0 (k = 1, 2, 3, 4), and positive diagonal matrices
t > 0, u > 0 such that the following LMIs holds:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Σ̄ 1 Υ1 𝜚1Υ2 Υ3 𝜚2Υ4
∗ −I −𝜚1I 0 0 0
∗ ∗ ∗ −𝜚1I 0 0
∗ ∗ ∗ ∗ −𝜚2I 0
∗ ∗ ∗ ∗ ∗ −𝜚2I
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
𝜚3Υ6 Υ7 𝜚4Υ8 Υ9 𝜚5Υ10 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

−𝜚3I 0 0 0 0 0
∗ −𝜚3I 0 0 0 0
∗ ∗ −𝜚4I 0 0 0
∗ ∗ ∗ −𝜚4I 0 0
∗ ∗ ∗ ∗ −𝜚5I 0
∗ ∗ ∗ ∗ ∗ −𝜚5I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0,

(38)

e𝛼T (Λc1 + d𝜆10) < 𝜆1c2, (39)
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where the elements of [Σ̄]10×10 are the following.

Σ̄11 = −AX + B1L − XAT + LTBT
1 + Q̄1 + Q̄2 + 𝜏S̄1

−𝛼X − 1
𝜏

S̄2 − 3
𝜏

S̄2 + 5
𝜏

S̄2 − 𝜏2S̄3 − 𝜏2

4
S̄3 − Mt̄t

−̄1A + LB1 − AT̄ T
1 + BT

1 L, Σ̄12 = −A̄ T
2 + LTBT

1 ,

Σ̄13 = 1
𝜏

S̄2 + 3
𝜏

S̄2 + 5
𝜏

S̄2 − ̄ T
3 AT + LTBT

1 ,

Σ̄14 = −̄1 − AT̄ T
4 + LTBT

1 , Σ̄15 = 6
𝜏2 S̄2 − 30

𝜏2 S̄2

+𝜏S̄3 + 𝜏

2
S̄3, Σ̄16 = 60

𝜏3 S̄2 − 3
2

S̄3, Σ̄17 = W0 + Mu̄t

+̄1W0, Σ̄18 = W1 + ̄1W1, Σ̄19 = E + ̄1E,
Σ̄110 = D1 + ̄1D1, Σ̄22 = −(1 − 𝜏D)Q̄1 − Mt̄u,

Σ̄23 = 0, Σ̄24 = −̄2, Σ̄25 = 0, Σ̄26 = 0, Σ̄27 = ̄2W0,

Σ̄28 = Mu̄u + ̄2W1, Σ̄29 = ̄2E, Σ̄210 = ̄2D1,

Σ̄33 = −Q̄2 − 1
𝜏

S̄2 − 3
𝜏

S̄2, Σ̄34 = −̄3,

Σ̄35 = 6
𝜏2 S̄2 + 30

𝜏2 S̄2, Σ̄36 = − 60
𝜏3 S̄2, Σ̄37 = ̄3W0,

Σ̄38 = ̄3W1, Σ̄39 = ̄3E, Σ̄310 = ̄3D1,

Σ̄44 = Q̄3 + 𝜏S̄2 − ̄4, Σ̄45 = 0, Σ̄46 = 0, Σ̄47 = ̄4W0,

Σ̄48 = ̄4W1, Σ̄49 = ̄4E, Σ̄410 = ̄4D1,

Σ̄55 = − 1
𝜏

S̄1 − 3
𝜏

S̄1 − 12
𝜏3 S̄2 − 180

𝜏3 S̄2 − S̄3 − S̄3,

Σ̄56 = 6
𝜏2 S̄1 + 360

𝜏4 S̄2 + 3
𝜏

S̄3, Σ̄57 = 0, Σ̄58 = 0,
Σ̄59 = 0, Σ̄510 = 0, Σ̄66 = − 12

𝜏3 S̄1 − 720
𝜏5 S̄2 − 9

𝜏2 S̄3,

Σ̄67 = 0, Σ̄68 = 0, Σ̄69 = 0, Σ̄610 = 0, Σ̄77 = Q̄4 − ̄t,

Σ̄78 = 0, Σ̄79 = 0, Σ̄710 = 0, Σ̄88 = −(1 − 𝜏D)Q̄4 − ̄u,

Σ̄89 = 0, Σ̄810 = 0, Σ̄99 = −(1 − 𝜌D)Q̄3, Σ̄910 = 0,
Σ̄1010 = −𝛾2I,
1 =

[
C + B2K 0 0 0 0 0 0 0 0 D2

]
.

Let K = P−1L, X = P−1, Q̄i = XQiXT (i = 1, 2, 3, 4), S̄𝑗 =
XS𝑗XT ( 𝑗 = 1, 2, 3), ̄k = XkXT (k = 1, 2, 3, 4),  t =
XtXT , and u = XuXT .

Proof. Replace Ā by (A + B1K) + (ΔA(t) + B1ΔK(t)), C̄
by (C + B2K) + (ΔC(t) + B2ΔK(t)), Ŵ0 by W0 +ΔW0(t),
Ŵ1 by W1 +ΔW1(t), D̂1 by D1 +ΔD1(t), Ê by E+ΔE(t),
D̂2 by D2 + ΔD2(t) in 30, we get

Ω̂ =
[
Ω̂1 
∗ −I

]
< 0, (40)

We can rewrite equation 40 as follows.

Ω̂ = Ψ̄ + ΔΨ̂ < 0, (41)

where the elements of Ψ̄ = [Ψ̄i𝑗]10×10 and Ψ̂ = [Ψ̂i𝑗]10×10

are the following.

Ψ̄11 = −P (A + B1K) − (A + B1K)TPT + Q1

+Q2 + 𝜏S1 − 𝛼Pi − 1
𝜏

S2 − 3
𝜏

S2 + 5
𝜏

S2 − 𝜏2S3 − 𝜏2

4
S3

−Mtt −1 (A + B1K) − (A + B1K)T T
1 ,

Ψ̄12 = −(A + B1K)T T
2 , Ψ̄13 = 1

𝜏
S2 + 3

𝜏
S2 + 5

𝜏
S2

−(A + B1K)T T
3 , Ψ̄14 = −1 − (A + B1K)T T

4 ,

Ψ̄15 = 6
𝜏2 S2 − 30

𝜏2 S2 + 𝜏S3 + 𝜏

2
S3, Ψ̄16 = 60

𝜏3 S2 − 3
2

S3,

Ψ̄17 = PW0 + Mut +1W0, Ψ̄18 = PW1 +1W1,

Ψ̄19 = PE +1E, Ψ̄110 = PD1 +1D1,

Ψ̄22 = −(1 − 𝜏D)Q1 − Mtu, Ψ̄23 = 0, Ψ̄24 = −2,

Ψ̄25 = 0, Ψ̄26 = 0, Ψ̄27 = 2W0, Ψ̄28 = Muu +2W1,

Ψ̄29 = 2E, Ψ̄210 = 2D1, Ψ̄33 = −Q2 − 1
𝜏

S2 − 3
𝜏

S2,

Ψ̄34 = −3, Ψ̄35 = 6
𝜏2 S2 + 30

𝜏2 S2, Ψ̄36 = − 60
𝜏3 S2,

Ψ̄37 = 3W0, Ψ̄38 = 3W1, Ψ̄39 = 3E, Ψ̄310 = 3D1,

Ψ̄44 = Q3 + 𝜏S2 −4, Ψ̄45 = 0, Ψ̄46 = 0, Ψ̄47 = 4W0,

Ψ̄48 = 4W1, Ψ̄49 = 4E, Ψ̄410 = 4D1,

Ψ̄55 = − 1
𝜏

S1 − 3
𝜏

S1 − 12
𝜏3 S2 − 180

𝜏3 S2 − S3 − S3,

Ψ̄56 = 6
𝜏2 S1 + 360

𝜏4 S2 + 3
𝜏

S3, Ψ̄57 = 0, Ψ̄58 = 0, Ψ̄59 = 0,
Ψ̄510 = 0, Ψ̄66 = − 12

𝜏3 S1 − 720
𝜏5 S2 − 9

𝜏2 S3, Ψ̄67 = 0,
Ψ̄68 = 0, Ψ̄69 = 0, Ψ̄610 = 0, Ψ̄77 = Q4 − t, Ψ̄78 = 0,
Ψ̄79 = 0, Ψ̄710 = 0, Ψ̄88 = −(1 − 𝜏D)Q4 − u, Ψ̄89 = 0,
Ψ̄810 = 0, Ψ̄99 = −(1 − 𝜌D)Q3, Ψ̄910 = 0, Ψ̄1010 = −𝛾2I,
1 =

[
C + B2K 0 0 0 0 0 0 0 0 D2

]
.

Ψ̂11 = −P (ΔA(t) + B1ΔK(t)) − (ΔA(t) + B1ΔK(t))T

PT + Q1 + Q2 + 𝜏S1 − 𝛼Pi − 1
𝜏

S2 − 3
𝜏

S2

+ 5
𝜏

S2 − 𝜏2S3 − 𝜏2

4
S3 − Mtt

−1 (ΔA(t) + B1ΔK(t)) − (ΔA(t) + B1ΔK(t))T

 T
1 , Ψ̂12 = −(ΔA(t) + B1ΔK(t))T T

2 ,
Ψ̂13 = 1

𝜏
S2 + 3

𝜏
S2 + 5

𝜏
S2 − (ΔA(t) + B1ΔK(t))T T

3 ,

Ψ̂14 = −1 − (ΔA(t) + B1ΔK(t))T T
4 , Ψ̂15 = 0,

Ψ̂16 = 0, Ψ̂17 = PΔW0(t) + Mut +1ΔW0(t),
Ψ̂18 = PΔW1(t) +1ΔW1(t), Ψ̂19 = PΔE(t)
+1ΔE(t), Ψ̂110 = PΔD1(t) +1ΔD1(t),
Ψ̂22 = 0, Ψ̂23 = 0, Ψ̂24 = 0, Ψ̂25 = 0, Ψ̂26 = 0,
Ψ̂27 = 2ΔW0(t), Ψ̂28 = Muu +2ΔW1(t),
Ψ̂29 = 2ΔE(t), Ψ̂210 = 2D̂1, Ψ̂33 = 0, Ψ̂34 = 0,
Ψ̂35 = 0, Ψ̂36 = 0, Ψ̂37 = 3ΔW0(t),
Ψ̂38 = 3ΔW1(t), Ψ̂39 = 3ΔE(t),
Ψ̂310 = 3ΔD1(t), Ψ̂44 = 0, Ψ̂45 = 0, Ψ̂46 = 0,
Ψ̂47 = 4ΔW0(t), Ψ̂48 = 4ΔW1(t),
Ψ̂49 = 4ΔE(t), Ψ̂410 = 4ΔD1(t), Ψ̂55 = 0,
Ψ̂56 = 0, Ψ̂57 = 0, Ψ̂58 = 0, Ψ̂59 = 0, Ψ̂510 = 0,
Ψ̂66 = 0, Ψ̂67 = 0, Ψ̂68 = 0, Ψ̂69 = 0, Ψ̂610 = 0,
Ψ̂77 = 0, Ψ̂78 = 0, Ψ̂79 = 0, Ψ̂710 = 0, Ψ̂88 = 0,
Ψ̂89 = 0, Ψ̂810 = 0, Ψ̂99 = 0, Ψ̂910 = 0, Ψ̂1010 = 0,

2 =
[
ΔC(t) + ΔB2K(t) 0 … 0

⏟⏟⏟
8times

ΔD2(t)
]
.

ΔΨ̂ =ΥT
1 𝜂(t)Υ2 + ΥT

2 𝜂(t)Υ1 + ΥT
3 𝜂(t)Υ4

+ ΥT
4 𝜂(t)Υ3 + ΥT

5 𝛿(t)Υ6 + ΥT
6 𝛿(t)Υ5

+ ΥT
7 𝜂(t)Υ8 + ΥT

8 𝜂(t)Υ7 + ΥT
9 𝛿(t)Υ10

+ ΥT
10𝛿(t)Υ9,

(42)

and
Υ1 =

[
FT

1 PT 0 0 0 0 0 0 0 0 0
]
,

Υ2 =
[
−G1 0 0 0 0 0 G2 G3 G4 G5

]
,

Υ3 =
[

FT
1  T

1 FT
1  T

2 FT
1  T

3 FT
1  T

4 0 … 0
⏟⏟⏟

6times

]
,

Υ4 =
[
−G1 0 0 0 0 0 G2 G3 G4 G5

]
,

Υ5 =
[

HT
1 ( T

1 + PT) HT
1  T

2 HT
1  T

3
HT

1  T
4 0 0 0 0 0 0

]
,

Υ6 =
[
−B1H2 0 0 0 0 0 0 0 0 0

]
,

Υ7 =
[

FT
2 0 0 0 0 0 0 0 0 0

]
,

Υ8 =
[
−G1 0 0 0 0 0 0 0 0 G5

]
,

Υ9 =
[

HT
1 0 0 0 0 0 0 0 0 0

]
,

Υ10 =
[
−B2H2 0 0 0 0 0 0 0 0 0

]
.
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Using Lemma 4, the above inequality 42 is equivalent to
the following inequality

𝚿 =Ψ̄ + 𝜚1Υ1ΥT
1 + 𝜚−1

1 ΥT
2 Υ2 + 𝜚2Υ3ΥT

3

+ 𝜚−1
2 ΥT

4 Υ4 + 𝜚3Υ5ΥT
5 + 𝜚−1

3 ΥT
6 Υ6 + 𝜚4Υ7ΥT

7

+ 𝜚−1
4 ΥT

8 Υ8 + 𝜚5Υ9ΥT
9 + 𝜚−1

5 ΥT
10Υ10 < 0.

(43)

By using Schur complement Lemma,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ψ̄ 1 Υ1 𝜚1Υ2 Υ3 𝜚2Υ4 Υ5
∗ −I −𝜚1I 0 0 0 0
∗ ∗ ∗ −𝜚1I 0 0 0
∗ ∗ ∗ ∗ −𝜚2I 0 0
∗ ∗ ∗ ∗ ∗ −𝜚2I 0
∗ ∗ ∗ ∗ ∗ ∗ −𝜚3I
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
𝜚3Υ6 Υ7 𝜚4Υ8 Υ9 𝜚5Υ10

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

−𝜚3I 0 0 0 0
∗ −𝜚4I 0 0 0
∗ ∗ −𝜚4I 0 0
∗ ∗ ∗ −𝜚5I 0
∗ ∗ ∗ ∗ −𝜚5I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0,

(44)

pre and post mult iplying 44 by diag
{X, I, I, I, I, I, I, I, I, I, I, I, I, I, I, I, I, I, I, I, I} respectively, we
get 38. By Definition 3, the system 37 is finite-time
bounded, which completes the proof.

4 NUMERICAL EXAMPLE

In this section we present a numerical example to illustrate
the correctness and feasibility of the obtained results.

Example 1. Consider the neural networks with
time-varying delays 37 with the following values.

A =
[

12.5 0
0 10

]
, W0 =

[
−0.2 4.5
0.4 −0.1

]
,

W1 =
[

0.2 0.2
1 0.3

]
, B1 =

[
2
1

]
, D1 =

[
0
1

]
,

C =
[

1.8 0
0 2.8

]
, B2 =

[
−0.01
0.1

]
, D2 =

[
0.02
0.03

]
,

F1 = F2 =
[

1
0

]
, G1 =

[
1 0.1

]
, G2 =

[
0.5 0.2

]
,

G3 =
[

0.2 0.3
]
, G4 = 0.2, G5 = 0.1, 𝜏 = 0.6,

𝜌̄ = 0.9, 𝜏D = 0.3, 𝜌̄ = 0.2, d = 0.03, T = 5,
c1 = 1.3, c2 = 12.3 𝛼 = 0.02.

TABLE 1 Calculated 𝛾min for different values of 𝜏

𝜏 0.6 0.7 0.8 0.9 1.0
𝛾min 0.5610 0.6942 0.7380 0.7946 0.8651

TABLE 2 Calculated maximum upper bound of 𝜏 for
different 𝛾

𝛾min 1.0 2.0 3.0 4.0 5.0
𝜏 0.8651 1.4215 2.0316 2.8744 3.2145

FIGURE 1 State trajectories of neural networks in Example 1
[Color figure can be viewed at wileyonlinelibrary.com]

The activation function and the time-varying delay are
taken as f(x) = (1)∕(4)(|x + 1| − |x − 1|) and 𝜏(t) = 0.3 +
0.3 cos(t), respectively. Then, it is obvious that, 𝜏 = 0.6 and
𝜏D = 0.3.

Then, by solving LMI 38, the control gain matrix can be
found as

K = P−1L =
[
−0.8721 −0.2346

]
.

Our purpose is to design a uncertain neutral-type neu-
ral networks is finite-time bounded with H∞ prescribed
attenuation level 𝛾 = 0.5610. The guaranteed optimal
H∞ performance level 𝛾 > 0 for different values of
fixed time-delay upper bound 𝜏 is shown in Table 1. Also
for different values of 𝛾 > 0, by solving the LMI con-
dition, we obtain values of time-delay upper bound 𝜏,
which are given in Table 2. Figure 1 and Figure 2 rep-
resents different value of the time response of the state
vector x(t).

http://wileyonlinelibrary.com
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FIGURE 2 State trajectories of neural networks in Example 1
[Color figure can be viewed at wileyonlinelibrary.com]

5 CONCLUSIONS

In this paper, the problem of resilient H∞ performance
for finite-time boundedness of uncertain neutral-type neu-
ral networks has been investigated. By constructing an
appropriate Lyapunov-Krasovskii functional, a sufficient
condition is derived such that the closed-loop system is
finite-time bounded and satisfies the given level. The H∞

performance can be obtained by using the exiting LMI
optimization techniques. Finally, a numerical example
has been provided to show the usefulness of the pro-
posed method. Our future work will focus on finding
the new methods or integral inequalities to reduce the
conservativeness of the stability criteria for time-delay
systems.
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