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� Abstract: Background: Early diagnosis of Alzheimer’s disease (AD) is essential in preventing its 

progression to dementia. Mild cognitive impairment (MCI) can be indicative of early-stage AD. In this 

study, we propose a channel-wise feature extraction method of functional near-infrared spectroscopy 

(fNIRS) data to diagnose MCI when performing cognitive tasks, including two-back, Stroop, and  

semantic verbal fluency tasks (SVFT). 

Methods: A new channel-wise feature extraction method is proposed as follows: A region-of-interest 

(ROI) channel is defined as such channel having a statistical difference (p < 0.05) in t-values between 

two groups. For each ROI channel, features (the mean, slope, skewness, kurtosis, and peak value of 

oxy- and deoxy-hemoglobin) are extracted. The extracted features for the two classes (MCI, HC) are 

classified using the linear discriminant analysis (LDA) and support vector machine (SVM). Finally, the 

classifiers are validated using the area under curve (AUC) of the receiver operating characteristics. 

Furthermore, the suggested feature extraction method is compared with the conventional approach. 

Fifteen MCI patients and fifteen healthy controls (HCs) participated in the study. 

Results: In the two-back and Stroop tasks, HCs showed activation in the ventrolateral prefrontal cortex 

(VLPFC). However, in the case of MCI, the VLPFC was not activated. Instead, Ch. 30 was activated. 

In the SVFT task, the PFC was activated in both groups, but the t-values of HCs were higher than those 

of MCI. For the SVFT, the classification accuracies using the proposed feature extraction method were 

80.77% (LDA) and 83.33% (SVM), showing the highest among the three tasks; for the Stroop task, 

79.49% (LDA) and 73.08% (SVM); and for the two-back task, 73.08% (LDA) and 69.23% (SVM). 

Conclusion: The cognitive disparities between the MCI and HC groups were detected in the ventrolateral 

prefrontal cortex using fNIRS. The proposed feature extraction method has shown an improvement in the 

classification accuracies, see Subsection 3.3. Most of all, the suggested method contains a group-

distinction information per cognitive task. The obtained results successfully discriminated MCI patients 

from HCs, which reflects that the proposed method is an efficient tool to extract features in fNIRS signals.�
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1. INTRODUCTION 

 Alzheimer’s disease (AD) is the most common progres-
sive neurodegenerative brain disease characterized by a 
gradual deterioration in cognitive function [1]. Generally, 
patients with AD exhibit various impairments during 
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everyday tasks, such as difficulties in word-finding, spatial 

cognition, highly altered episodic memory, and executive 

functions, as well as neuropsychiatric changes [2]. An offi-

cial report indicated that about 5.7 million Americans have 

AD [3], and 11,561 people died of AD in the United States 

in 2018. AD is the fifth leading reason of death for Ameri-

cans aged over 65 years. The healthcare costs for patients 

with AD are expected to increase rapidly in the coming years 

because of the aging population. Many studies revealed that 

the effective treatment of drugs and routine training could 
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delay disease progression and thus enhance the quality of life 

for patients with AD [4, 5]. However, early diagnosis of AD 

is clinically crucial because the disease has already pro-

gressed a lot by the time when pathological symptoms of AD 

become apparent. Therefore, after diagnosing MCI, treat-

ment to delay AD progression should start as early as possi-

ble. Many researchers have searched for possible fea-

tures/biomarkers of AD that could enable early detection of 

AD, such as deposition of the amyloid-beta peptide [6], the 

presence of tau proteins, and the tangle of nerve fibers with 

neuronal loss in neurotransmitter systems [7]. In this study, 

we develop a diagnostic method for early detection of MCI, 

in which the cognitive abilities of aged people are measured 

with the use of functional near-infrared spectroscopy 
(fNIRS).  

 MCI is known to represent an early stage of dementia. It 

is a disorder in the intermediate state that exhibits a more 

rapid cognitive decline than that can be seen during normal 

aging [8]. Clinically, the possibility of progression from MCI 

to AD occurs within 5 years, which is shorter than that in the 

normal elderly [9]. Therefore, early diagnosis of MCI can 

serve as an important factor in delaying or preventing the 

onset of AD. Clinical diagnosis of MCI is made by examin-

ing the history of a patient’s behavior obtained from the pa-

tient’s caregiver and/or the results from neuropsychological 

examinations such as the Mini-Mental State Examination 

(MMSE) [10, 11]. However, the variability of clinical evalu-

ations (due to the experimenter’s manual inputs and interpre-

tation) requires experienced clinical professionals and a 

thorough clinical examination design, which results in addi-

tional medical costs, as well as the presence of subjectivity 

and variability of diagnostic results. To compensate for the 

limitations of these neuropsychological examination meth-

ods, the developed quantitative approaches to diagnose MCI 

include invasive methods, such as the collection and analysis 

of cerebrospinal fluid (CSF) [12-14], which is a common 

biomarker for AD, and non-invasive brain imaging tech-

niques, such as magnetic resonance imaging (MRI) [15], 

positron emission tomography (PET) [16], magnetoenceph-

alography (MEG) [17, 18], and electroencephalography 

(EEG) [19]. However, CSF examination requires a lumbar 

puncture, whereby a long needle is inserted into the spinal 

cord. Presently, MRI is commonly used to visualize the brain 

structure of patients with MCI (e.g., to measure the volume 

of the hippocampus and atrophy of the hippocampal path-

way) [20, 21] and to identify task-relevant functional brain 

connectivity [22-24]. Additionally, functional MRI (fMRI) 

has been used to image the changes in brain activity over 

time. PET imaging has also been used to investigate the 

brain metabolic system of patients with MCI and to visualize 

the deposition of amyloid-beta [25-29]. However, MRI and 

PET cannot be repeatedly used for clinical purposes owing to 

the strict measurement requirements, device size, low tem-

poral resolution, motion artifacts, high cost, and potential 

harm to the brain [30]. EEG has also been used in MCI  

research by recording electric signals that are propagated 

from activated neuron populations (i.e., alpha, beta, and delta 

waves) [20, 31]. People with MCI have been found to have 

different functional connectivity [32], frequency relative 

power [33], and event-related potentials (ERPs) [34] com-

pared to those of age-matched healthy controls. EEG has a 

high temporal resolution, and the apparatus can be portable. 

However, it has a limited spatial resolution, and its signals 

are often contaminated by electrical devices (environmental 

artefacts) and motion artefacts [35]. CSF, MRI, and PET are 

not suitable for periodic checkups, limiting the ability to 

track the course of the disease [30], and the EEG data for 
MCI diagnosis are not conclusive yet. 

 Recently, fNIRS has been widely used to image brain 
functions [36]; it uses more than two near-infrared wave-
lengths to measure the concentration changes of oxy-
hemoglobin (ΔHbO) and deoxy-hemoglobin (ΔHbR) associ-
ated with the metabolic activity of neurons in the cerebral 
cortex. Compared with MRI and PET, fNIRS is known for 
its high temporal resolution, mobility, low cost, low suscep-
tibility to motion artefacts, safety, and less restriction of the 
subjects to remain constrained during experiments (like 
fMRI). fNIRS also has a better spatial resolution than EEG 
and can provide functional imaging by measuring the cere-
bral cortical hemodynamic responses (HRs). Thus, fNIRS 
has the potential to be an alternative to fMRI [37] once the 
number of channels is increased. 

 Recently, researchers have investigated whether the HRs 
between healthy controls (HCs) and the patients with MCI 
using fNIRS can be compared or not [38-40]. Previous 
fNIRS studies have demonstrated that brain activities can be 
measured during various tasks, including working memory 
tasks [41-43], memory encoding tasks [44, 45], Stroop task 
[46], and verbal fluency tasks [47, 48]. Furthermore, connec-
tivity analysis [49], graph-based analysis [50], and convolu-
tional neural network [51] were suggested as methods that 
can discriminate MCI patients from HCs based on the fNIRS 
signal. These results indicate that fNIRS is a viable tool to 
detect the differences between MCI patients and HCs in the 
early stage of the disease. 

 The objective of this study is to propose a different fea-
ture extraction method from the literature, that is, a channel-
specific classification. It is noted that the traditional feature 
extraction and classification methods have analyzed the 
time-domain characteristics of the averaged hemodynamic 
responses after extracting the ROI channels per task. How-
ever, in this paper, activation scores of all the channels per 
task are utilized as a feature. In this way, if we can narrow 
down the number of specific channels, the size of the entire 
fNIRS device can be reduced. Subsequently, using the pro-
posed feature selection framework, we investigate whether 
fNIRS can distinguish patients with MCI from HCs accord-
ing to task-relevant time-series hemodynamic signals. As 
cognitive tasks, a two-back task, a Stroop task, and a seman-
tic verbal fluency task (SVFT) are examined. Activated brain 
regions are analyzed, and the features showing statistical 
between-group differences are extracted. Finally, linear dis-
criminant analysis (LDA) is used to classify individuals into 
MCI and HC groups. 

2. METHODS 

2.1. Subjects 

 For this study, 15 patients with MCI were recruited from 
the Pusan National University Hospital, and 15 healthy peo-
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ple participated as HCs, but 4 HCs were discarded due to 
experimental problems. No subjects had a history of cere-
brovascular diseases or psychiatric disorders. Patients with 
MCI had been diagnosed by neurosurgery doctors, using the 
following three criteria: the Korean version of the MMSE 
(K-MMSE) [52], the Seoul Neuropsychological Screening 
Battery [53], and MRI data. The demographic information 
for all subjects is summarized in Table 1, including age, sex, 
and K-MMSE scores. Before the experiment, each subject 
was fully informed about the purpose of the research and 
was asked to provide written informed consent. The entire 
experiment was approved by the Institute Review Board of 
Pusan National University Hospital and performed in ac-
cordance with the Declaration of Helsinki. 

2.2. Equipment 

 A high-density fNIRS device (NIRSIT; OBELAB, Ko-
rea), which has 24 sources (laser diodes) and 32 detectors (a 
total of 204 channels, including short separations), was used 
to measure the hemodynamic responses in the prefrontal 
cortex at a sampling rate of 8.138 Hz. The NIRSIT is a 
wearable device that measures ΔHbO and ΔHbR, utilizing 
the difference in absorption rates of the near-infrared light 
through the cerebral cortex. To measure the concentration 
levels of two chromophores (ΔHbO and ΔHbR), two wave-
lengths (780 nm and 850 nm) were used. The distance be-
tween all sources and corresponding detectors was selected 
to be 3 cm, which resulted in a total of 48 channels from the 
prefrontal cortex (Fig. 1). The NIRSIT and a tablet computer 

Table 1. Demographic data for all subjects. 

- MCI (n = 15) HC (n = 11) p-Value1 

Sex (male:female) 1:14 3:8 0.95 

Age (range) 69.27 ± 7.09 (65~72) 69.09 ± 5.11 (65~75) 0.36 

K-MMSE score 25.13 ± 2.33 27.22 ± 1.98 0.49 

Abbreviations: MCI: mild cognitive impairment; HCs: healthy controls; K-MMSE: Korean Mini-Mental State Examination. 
Note: 1Two sample t-test. 
 

 

Fig. (1). The NIRSIT device: (a) Optodes configuration (red circles: sources; blue squares: detectors), (b) channel configurations, and (c) a 

photo illustrating how the NIRSIT is worn (https://fccid.io/2AHYINIRSIT/User-Manual/User-Manual-3032004). (A higher resolution / col-
our version of this figure is available in the electronic copy of the article). 
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(Galaxy Tab, Samsung, Republic of Korea) were connected 
via WLAN communication; the data were recorded on the 
tablet computer during the experiments. 

2.3. Experimental Design 

 All subjects in both groups (HC, MCI) participated in 
three sessions, which consisted of three trials: two-back task, 
Stroop task, and SVFT. In the two-back task and Stroop task 
sessions, each trial was comprised of a 60 sec task period 
with a 30 sec rest period between tasks. Each SVFT trial 
consisted of three categories of words; each category block 
lasted for 20 sec, resulting in a total task period of 60 sec and 
followed by a 30 sec rest period. There was a 30 sec period 
before the trial started, which allowed participants to prepare 
for the SVFT. Before the two-back session, there was an 
initial resting time of 5 min (Fig. 2). Experiment sessions 
consisted and applied to every subject in the same way. 

 The two-back task evaluates working memory. Words or 
numbers are presented, and the number of words (or num-
bers) remembered is taken as a measure of working memory. 
In this study, a two-back task was used, in which a number 
between one and nine was displayed on the monitor. Sub-
jects were asked to press a keyboard key when the number 
presented was the same as that shown two trials ahead (Fig. 
3a). 

 The Stroop test is a widely used measure of executive 
function, mental control, and response flexibility. The Stroop 
task requires new reactions while suppressing the dominant 
response, such as letter reading conditions and color reading 

conditions. The Korean-Color Word Stroop Test (K-CWST) 
was used in the current study. Subjects were required to state 
the color of letters, which were written in red, blue, yellow, 
and black, within a limited period (Fig. 3b). 

 The SVFT requires participants to generate as many 
words as possible related to a given semantic category within 
a limited time. The semantic categories were selected with 
enough words to say in 1 min such as ‘food’, ‘animal’, and 
‘what can be seen at the mountain’. The task measures how 
much information can be retrieved from the categorization 
and memory repository within 1 min (Fig. 3c).  

2.4. Preprocessing 
 fNIRS signals were processed using MATLAB

TM
 

(2017a, MathWorks, USA). The fNIRS raw data were con-
verted to concentration changes of HbO and HbR using the 
modified Beer-Lambert’s law [54]. A 5th order Butterworth 
band-pass filter was applied to remove physiological noise 
(cardiac noise ~1 Hz, respiration ~0.25 Hz, and Mayer signal 
~0.1 Hz) and machine noise with a cut-off frequency range 
of 0.005 Hz ~ 0.1 Hz. Then, the data were segmented into 
individual trials. Baseline correction was performed for each 
subject by subtracting the mean resting-state data (60 sec 
before the two-back task onset) from the task data [55]. 

2.5. ROI Channel Selection 
 Verifying the region where cortical activation occurred 
for a given stimulus is of primary importance in fNIRS data 
analysis [56]. The desired hemodynamic response function 
(dHRF)  in  this  paper  was  generated  by   convoluting   the  

 

Fig. (2). Experimental paradigm: (a) One experiment including three sessions, (b) a session including three trials (two-back, Stroop), and  
(c) SVFT session showing three trials and three categories of words in each trial. 
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Fig. (3). Task contents: (a) two-back task, (b) Stroop task, and  

(c) semantic verbal fluency task. (A higher resolution / colour  
version of this figure is available in the electronic copy of the article). 

 

stimulus pattern/period (i.e., the period 60 sec task and 30 
sec rest) with the canonical hemodynamic response function 
composed of two gamma functions [36]. The t-value is de-
fined as the ratio of the weighting factor (when the measured 
data is fit linearly to the dHRF) and the standard error [57]. 
The meaning of the t-value in this work is conceptually the 
same as that in the fMRI field. A high t-value indicates that a 
signal is strongly correlated with the dHRF.  

 For each subject, the region of interest (ROI) was identi-
fied (for the three tasks), which indicates a brain region in 
which the t-value is higher than the critical t-value (tcrt). In 
this study, tcrt was set to 1.9632, which was calculated using 
the degree of freedom of the data and the level of statistical 
significance (p < 0.05 for two-sided tests) [36]. Fig. (4) 
compares the proposed method and the conventional one 
available in the literature. Conventionally (see the right-hand 
side in Fig. 4), for a given task, the activated channels (i.e., 
t-value > tcrt) for a trial are identified, which becomes the 
ROI channels. Subsequently, the ROI channels are averaged 
over all the trials and all the subjects (for the given task), 
resulting in the averaged HbOs for tasks. Then, features are 
extracted from the averaged HbOs. Finally, classification is 
performed using the extracted features. 

 In this paper, for a given task, the group analysis  
(between MCI and HC) for the channels showing the differ-
ence between the two groups is carried out first. It is noted 
that there exist 45 MCI data (i.e., 3 trials × 15 subjects) and 
33 HC data (i.e., 3 trials × 11 HC subjects) per channel. To 
identify the activated channels for a task, the activated trial 
with a t-value higher than tcrt was assigned a value of 1, the 
deactivated trial with a t-value less than the -tcrt was assigned 
a value of -1, and anything else was assigned a value of 0. 
For example, when all trials for a given channel are activated 
during the two-back task, the activation score of the channel 
becomes 3. To know whether a certain channel is activated 
or not, the activation scores between the two groups were 
tested using the two-sample t-test. Then, the channels whose 
p-value < 0.05 are identified as the ROI channels. 

2.6. Feature Selection 

 Signals from each ROI were collected for further analysis 
in feature selection and classification. Using only the 
(unaveraged) signals from the relevant ROI improved classi-
fication accuracy. The features selected were the mean, 
slope, skewness, kurtosis, and peak value [58, 59]. The mean 
is the average hemodynamic response throughout the trial 
time window, which can distinguish the activation that oc-
curs by comparing it with the resting state. The slope indi-
cates the speed of activation. The slope was calculated by 
MATLAB

TM
 function polyfit. The skewness is a measure of 

the asymmetry of a signal, and the kurtosis is a measure of 
the peakedness of the distribution. Most studies focused on 
the mean and peak of HbO to differentiate tasks, but we ex-
tracted various features that reflect prefrontal cortex activa-
tion from hemodynamic function’s shape. The following 
equations were applied to calculate features: 
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where N is the number of data of each trial, and Ai are the 
data points. The mean, slope, and skewness were used for the 
traditional method. For the proposed method, to verify ROI 
channels, the features were extracted from two types of ROI 
channels which were selected by the number of activated 
trials and t-values. Extracted features of ROI channels were 
divided into MCI and HC groups, and a two-sample t-test 
was performed. Features with p-values less than 0.05 were 
selected for classification. 

2.7. Classification 

 Extracted features based on ROIs for 78 trials (26 sub-
jects × 3 trials for each task) were classified by the LDA and 
SVM to distinguish between the MCI and HC groups. In this 
study, 10-fold cross-validation was used to assess the classi-
fication accuracy. The performance of the classifier was test-
ed by receiver operating characteristic (ROC) analysis.  
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3. RESULTS  

3.1. ROI Channel Selection 

 To identify the activated channel within one task, the 
activated trial with a t-value higher than tcrt was assigned a 
value of 1. The deactivated trial with a t-value less than the -
tcrt was assigned a value of -1. Anything else was assigned a 
value of 0. For example, when all trials of the channel were 
activated during the two-back task, the maximum number of 
activated trials for the channel was 3. 

 The number of activated trials of each channel and calcu-
lated t-values for each group during the two-back task are 
shown in Tables 2 and 3, respectively. From these results, 
Chs. 2, 3, 4, 6, 7, 30, 33, and 39 were selected as ROIs. The 
hemodynamic signal was averaged for each group. MCI 
group’s HbO of Ch.30 was strongly correlated with dHRF, 
but no such correlation was seen in that of the HC group. 
Based on calculated t-values, the brain activation map was 
plotted (Fig. 4). As shown in Table 2, Chs. 2, 3, 4, 6, 7, 30, 

33, and 39 show varying activation levels between the two 
groups. In the activation map, the activation in the left and 
right ventrolateral PFC (VLPFC) was significantly higher in 
the HCs compared to the Ch.30 in the MCI patients. It can be 
explained that the function of VLPFC is not working enough 
in MCI patients. 

 During the Stroop task, the ROIs were chosen according 
to the results presented in Tables 4 and 5. Chs. 2, 3, 4, 9, 14, 
25, 30, 31, and 36 were selected as ROIs. The brain activa-
tion map is shown in Fig. (5), which shows that the activa-
tion of many channels was significantly different between 
the two groups. 

 Finally, the ROIs for the SVFT were selected according 
to the results shown in Tables 6 and 7. Chs. 14, 36, 40, 47, 
and 48 were chosen as the ROIs in this task. The brain acti-
vation map using t-values is shown in Fig. (6); it shows that 
HbO was higher in the HC group compared with the MCI 
group. 

 

Fig. (4). Feature selection framework of the suggested method (red) and traditional method (blue). (A higher resolution / colour version of 
this figure is available in the electronic copy of the article). 
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Table 2. The number of activated trials in the two-back task. 

- MCI Group HC Group p-Value 

Ch. 2 0.27 ± 2.31 1.00 ± 1.61 0.377 

Ch. 3 -0.53 ± 1.68 0.91 ± 1.76 0.045* 

Ch. 4 -0.53 ± 2.10 1.27 ± 0.90 0.014* 

Ch. 6 -0.27 ± 1.79 1.64 ± 1.80 0.014* 

Ch. 7 0.33 ± 2.13 1.45 ± 1.81 0.171 

Ch. 30 1.33 ± 2.13 -0.54 ± 2.38 0.045* 

Ch. 33 -0.60 ± 1.88 1.36 ± 1.29 0.007* 

Ch. 39 -1.07 ± 2.05 0.09 ± 2.21 0.182 

Note: (* indicates that p < 0.05). 

 

Table 3. t-values in the two-back task. 

- MCI Group HC Group p-Value 

Ch. 2 -2.01 ± 24.57 9.69 ± 17.50 0.022* 

Ch. 3 -3.78 ± 20.55 8.20 ± 19.01 0.012* 

Ch. 4 -1.69 ± 17.59 6.71 ± 18.81 0.047* 

Ch. 6 -3.90 ± 19.66 9.26 ± 24.64 0.011* 

Ch. 7 1.96 ± 24.45 12.99 ± 23.15 0.048* 

Ch. 30 10.91 ± 22.46 0.27 ± 23.74 0.047* 

Ch. 33 -4.98 ± 17.93 7.55 ± 18.95 0.004* 

Ch. 39 -5.73 ± 17.48 3.61 ± 17.78 0.024* 

Note: (*p < 0.05). 

 

Table 4. The number of activated trials in the Stroop task. 

- MCI Group HC Group p-Value 

Ch. 2 -0.33 ± 2.06 0.36 ± 2.46 0.440 

Ch. 3 -0.60 ± 2.20 0.82 ± 2.27 0.122 

Ch. 4 -0.40 ± 2.13 0.64 ± 2.06 0.226 

Ch. 9 1.20 ± 1.74 -0.73 ± 2.37 0.025* 

Ch. 14 0.53 ± 2.26 1.36 ± 2.16 0.355 

Ch. 25 0.40 ± 2.32 -1.82 ± 0.98 0.007* 

Ch. 30 1.87 ± 1.55 -0.09 ± 2.47 0.020* 

Ch. 31 1.93 ± 1.53 0.18 ± 2.48 0.036* 

Ch. 36 0.07 ± 2.22 -1.45 ± 2.07 0.088 

Note: (*p < 0.05). 
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� �
Fig. (5). Two-back task t-map: (a) MCI group, and (b) HC group. (A 
higher resolution / colour version of this figure is available in the elec-
tronic copy of the article).�

Fig. (6). Stroop task t-map: (a) MCI group, and (b) HC group. (A 
higher resolution / colour version of this figure is available in the elec-
tronic copy of the article).�

 
Table 5. t-values in the Stroop task. 

- MCI Group HC Group p-Value 

Ch. 2 -4.69 ± 18.89 9.26 ± 32.73 0.020* 

Ch. 3 -8.55 ± 28.72 17.62 ± 36.51 0.001* 

Ch. 4 -6.23 ± 24.23 11.81 ± 28.85 0.004* 

Ch. 9 6.02 ± 18.08 1.23 ± 29.02 0.373 

Ch. 14 1.54 ± 26.89 15.47 ± 33.82 0.046* 

Ch. 25 -0.35 ± 25.07 -16.25 ± 27.55 0.010* 

Ch. 30 23.10 ± 32.81 -0.07 ± 24.63 0.001* 

Ch. 31 23.96 ± 33.85 9.39 ± 30.33 0.053 

Ch. 36 0.69 ± 25.57 -16.76 ± 32.10 0.009* 

Note: (*p < 0.05). 

 
Table 6. The number of activated trials in the semantic verbal fluency task. 

- MCI Group HC Group p-Value 

Ch. 14 0.53 ± 1.84 1.36 ± 1.91 0.275 

Ch. 36 -0.2 ± 2.01 1.36 ± 1.57 0.042* 

Ch. 40 -0.47 ± 2.03 1.64 ± 1.43 0.007* 

Ch. 47 0.4 ± 2.35 2.09 ± 1.22 0.040* 

Ch. 48 0.87 ± 2.42 3.18 ± 0.65 0.021* 

Note: (*p < 0.05). 
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Table 7. t-values in the semantic verbal fluency task. 

- MCI Group HC Group p-Value 

Ch. 14 2.03 ± 12.46 11.54 ± 22.00 0.018* 

Ch. 36 -2.42 ± 21.44 5.57 ± 24.51 0.130 

Ch. 40 -4.45 ± 22.13 14.06 ± 19.10 0.000* 

Ch. 47 2.55 ± 18.93 12.78 ± 14.96 0.012* 

Ch. 48 5.33 ± 19.05 16.94 ± 11.97 0.003* 

Note: (*p < 0.05). 

 

 

 

Fig. (7). SVFT t-map: (a) MCI group, and (b) HC group. (A higher 
resolution / colour version of this figure is available in the electronic 
copy of the article). 

3.2. Feature Extraction 

 From the selected ROIs for each task, features (mean of 
HbO, mean of HbR, slope, skewness, kurtosis, and peak) 
were calculated. The p-values for features of the two groups 
were calculated using two-sample t-tests (Table 8). For the 
two-back task, the peak of Ch. 4, the peak of Ch. 6, the peak 
of Ch. 7, and HbO mean of Ch. 7 were selected as features. 
For the Stroop task, the peak of Ch. 4, skewness of Ch. 30, 
kurtosis of Ch. 30, and skewness of Ch. 36 were used for 
classification. Finally, the skewness of Ch. 14, the slope of 
Ch. 36, the peak of Ch. 36, and HbO mean of Ch. 47 were 
selected for the SVFT. Fig. (7) shows the channels with the 
lowest t-values of features. For the SVFT, Ch. 30 of the HC 
group showed stronger activation than the MCI group (Fig. 
7c). 

3.3. Classification 

 The classification accuracies of the traditional method 
have shown in Table 9. For the two-back task, classification 
accuracies were 70.33% (LDA) and 66.67% (SVM). For the 
Stroop task, classification accuracies were 58.33% (LDA) 
and 62.5% (SVM). For the SVFT, classification accuracies 
were 75% (LDA) and 68.75% (SVM).  

 The extracted features by the suggested method were 
classified into MCI and HC groups (Table 10). For the two-
back task, classification accuracies were 64.10% (LDA) and 
57.67% (SVM) for the peak of Ch. 7, 65.38% (LDA), and 
67.95% (SVM) for the peaks of Ch. 4 and 7, and 69.23% 
(LDA) and 69.23 (SVM) for the peaks of Ch. 4 and 7 and 
HbO mean of Ch. 7. When combining all these features, the 
classification accuracy was 73.08% (LDA) and 69.23 
(SVM). For the Stroop task, classification accuracies were 
64.10% (LDA) and 71.79% (SVM) for the skewness of Ch. 
30, 70.51% (LDA), and 75.64% (SVM) for the skewness of 
Ch. 30 and 36, 78.21% (LDA) and 70.51% (SVM) for the 
skewness of Ch. 30 and 36 and the peak of Ch. 4, and 
79.49% (LDA) and 73.08% (SVM) for the skewness of Ch. 
30 and 36, the peak of Ch. 4, and kurtosis of Ch. 30. Classi-
fication accuracy of the SVFT was 67.95% (LDA) and 
64.10% (SVM) for the HbO mean of Ch. 47, 71.79% (LDA), 
and 73.08% (SVM) for the slope of Ch. 36 and HbO mean of 
Ch. 47, 79.49% (LDA) and 82.05% (SVM) for the slope and 
peak of Ch. 36 and HbO mean of Ch. 47, and 80.77% (LDA) 
and 83.33% (SVM) for the skewness of Ch. 14, slope and 
peak of Ch. 36, and HbO mean of Ch. 47. 

 To verify the classifier’s performance, ROC analysis was 
performed for each classifier (Fig. 8). For the two-back task, 
the area under the ROC curve (AUC) of LDA was 0.77, and 
the AUC of SVM was 0.91 when all four features were used. 
For the Stroop task, the AUC was 0.839 for LDA and 0.969 
for SVM when all four features were used. The SVFT had 
the highest AUC of all three tasks, at 0.851 for LDA and 
0.982 for SVM in the case of four channels. 

4. DISCUSSIONS 

4.1. Overview 

 In this study, through the variation of subject-wise and 
channel-specific hemodynamic signals using fNIRS, the 
ROIs were selected in the PFC for distinguishing MCI pa-
tients from HC. From the selected ROIs based on p-value, 
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Table 8. p-values of extracted features. 

Two-Back Task 

- Mean (HbO) Mean (HbR) Slope Skewness Kurtosis Peak 

Ch. 2 0.578 0.426 0.552 0.340 0.425 0.032* 

Ch. 3 0.045* 0.480 0.195 0.595 0.979 0.453 

Ch. 4 0.160 0.202 0.772 0.394 0.792 0.003* 

Ch. 6 0.017* 0.173 0.822 0.177 0.537 0.010* 

Ch. 7 0.008* 0.238 0.131 0.395 0.364 0.002* 

Ch. 30 0.626 0.055 0.629 0.535 0.309 0.453 

Ch. 33 0.821 0.276 0.429 0.157 0.262 0.053 

Ch. 39 0.972 0.784 0.482 0.516 0.563 0.098 

Stroop Task 

Ch. 2 0.101 0.544 0.863 0.562 0.680 0.062 

Ch. 3 0.020* 0.558 0.099 0.419 0.080 0.383 

Ch. 4 0.757 0.145 0.887 0.034* 0.213 0.000* 

Ch. 9 0.612 0.301 0.236 0.853 0.195 0.002* 

Ch. 14 0.038* 0.890 0.547 0.045* 0.878 0.020* 

Ch. 25 0.845 0.609 0.174 0.029* 0.119 0.915 

Ch. 30 0.063 0.009* 0.276 0.000* 0.018 0.842 

Ch. 31 0.624 0.360 0.823 0.547 0.781 0.072 

Ch. 36 0.907 0.480 0.128 0.000* 0.027* 0.710 

Semantic Verbal Fluency Task 

Ch. 14 0.945 0.045* 0.325 0.002* 0.046* 0.356 

Ch. 36 0.186 0.204 0.000* 0.966 0.720 0.001* 

Ch. 40 0.135 0.064 0.149 0.197 0.548 0.017 

Ch. 47 0.000* 0.016* 0.024* 0.512 0.013* 0.245 

Ch. 48 0.490 0.528 0.557 0.313 0.567 0.594 

Note: (*p < 0.05). 
 
Table 9. Classification accuracies of traditional method. 

- LDA SVM 

Two-back 70.33% 66.67% 

Stroop 58.33% 62.5% 

VFT 75% 68.75% 

 
Table 10. Classification accuracies of suggested method. 

- # of Features Two-Back (%) Stroop (%) SVFT (%) 

LDA 

1 64.10 64.10 67.95 

2 65.38 70.51 71.79 

3 69.23 78.21 79.49 

4 73.08 79.49 80.77 

SVM 

1 57.69 71.79 64.10 

2 67.95 75.64 73.08 

3 69.23 70.51 82.05 

4 69.23 73.08 83.33 
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Fig. (8). Hemodynamic responses: (a) two-back task (Ch. 7), (b) 
Stroop task (Ch. 30), and (c) semantic verbal fluency task (Ch. 30) 
(red solid line: desired hemodynamic response function; black sol-
id/dotted lines: HbO/HbR of a representative patient in the MCI 
group, respectively; blue solid/dotted lines: HbO/HbR of a repre-
sentative patient in the HC group, respectively). (A higher resolution 
/ colour version of this figure is available in the electronic copy of the 
article). 
 
the graphical features were extracted for classification and 
achieved over 80% classification accuracies by LDA and 
SVM. Therefore, the results suggest the feature selection 
method has the possibility to enable the identification of 
MCI at an individual level. 

4.2. ROIs Depending on the Tasks 

 First, during the two-back task, Chs. 2, 3, 4, 6, 7, 30, 33, 
and 39 have been selected as the ROIs. There are significant-
ly higher brain activations in the HCs’ ROIs except Ch. 30. 

The Chs. 2, 3, 4, 6, 7, 33, and 39 are located on the left and 
right ventrolateral prefrontal cortex (VLPFC), which is 
known for interpreting the meaning of the detection infor-
mation and to signal which response to cancel or block, 
thereby facilitating decision-making on future responses 
[60]. Second, Chs. 2, 3, 4, 9, 14, 25, 30, 31, and 36 have 
been selected for the Stroop task. Specifically, Chs. 9, 30, 
31, and 36 showed higher activation in the MCI than HC. In 
common with the two tasks, MCI patients showed higher 
brain activation in Ch 30. Finally, Chs. 14, 36, 40, 47, and 48 
showed significantly high brain activation in HC during the 
SVFT (Fig. 9). 
 Based on these results, the brain was activated differently 
between both groups during the same performing tasks. Al-
so, our results showed that the MCI patients’ decision mak-
ing seems more difficult than HC because of dysfunction of 
PFC. MCI patients’ HR was higher than HC in the Ch. 30 
during the two-back and Stroop task. It might be caused by 
the dysfunction of VLPFC oxygen consumption which is 
higher than HC while performing the same tasks. Even 
though the magnitude of HR does not seem significantly 
different, the fluctuation of HR is higher in the MCI patients. 

4.3. Classification 

 Classification of the hemodynamic signals according to a 
given task within subjects has primarily been studied using 
fNIRS. Distinguishing between different tasks using hemo-
dynamic responses within one subject does not require con-
sideration of different personal health conditions [61]. How-
ever, the discrimination of hemodynamic signals using 
fNIRS for the diagnosis of diseases should not overlook the 
complexity of and the individual differences in hemodynam-
ic signals. The potential for fNIRS to be used for medical 
diagnosis has been investigated in the context of migraine 
[62], dementia [63], incremental swing balance task [64], 
attention-deficit/hyperactivity disorder [65, 66], psychosis, 
schizophrenia [67], and post-traumatic stress disorder [68]. 
Akin et al. [62] have researched that the hemodynamic 
changes during migraine which is hypothesized to be a neu-
rovascular coupling disorder where the cerebral vascular 
reactivity is malfunctioning using fNIRS. For the diagnosis 
of attention-deficit/hyperactivity disorder, Ichikawa et al. 
[65] found that fNIRS had an 84% of classification accuracy 
from autism spectrum disorders, and Yukifumi et al. [66] 
classified individuals with attention-deficit/hyperactivity 
disorder from HCs with an AUC value of 0.85 and 90% sen-
sitivity. According to the previous studies, our approach 
simplifies the process of selecting ROIs and features to not 
only account for subject-wise differences but also achieve a 
better performance of classifiers. 
 Several studies have investigated the ability of different 
imaging methods to distinguish patients with MCI from 
healthy controls. Ritchie et al. [69] evaluated the diagnostic 
criteria for MCI and reported an AUC of 0.485 using behav-
ioral data. T1-weighted MRI-based classification has shown 
a 94% specificity, 73% sensitivity, and an AUC of 0.91 [70]. 
Another study reported specificity of over 85% and a sensi-
tivity of 73% [71]. Multidimensional classification of hippo-
campal shape features has resulted in a classification accuracy 
of 83% [72]. Additionally, multimodal classification 
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Fig. (9). ROC analysis of extracted features: (a) Two-back using LDA, (b) Two-back using SVM, (c) Stroop using LDA, (d) Stroop using 

SVM, (e) SVFT using LDA, (f) SVFT using SVM. (A higher resolution / colour version of this figure is available in the electronic copy of the 
article). 
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using multiple biomarkers (i.e., structural MRI, fluorodeox-
yglucose-PET, and CSF analysis) showed a classification 
accuracy of 76.4% [73]. In this study, the classification accu-
racy was the highest in the case of the SVFT, at 83.33% with 
an AUC of 0.982 by SVM. Compared to these previous stud-
ies, our research has the limitation of having a smaller num-
ber of participants.  

 Selecting proper features is the most important step in 
achieving good performance in the classifier. In this paper, 
LDA and SVM are used as the classifier, which is the most 
basic classifier still used in various areas [74, 75]. Therefore, 
the use of classifiers like a neural network, which has recent-
ly been studied as showing better performance, could pro-
vide better performance with the same features [76, 77]. Al-
so, nonetheless, the small number of subjects, our results 
have shown better performance than other studies. Although 
there is a limit to generalization due to a small number of 
subjects, considering the values of other methods reported in 
previous studies, our results show sufficient accuracy and 
reliability. This indicates that fNIRS can be used to diagnose 
MCI. 

4.4. Future Work 

 During the revision process of the manuscript, one re-
viewer raised two interesting questions: i) whether two 
groups can be identified with the resting state fNIRS data, 
and ii) classification accuracy with the augmented data of 
three tasks. Out of 48-channel resting-state data before the 
two-back task, we were not able to find any statistical differ-
ence from the mean values between the two groups in the 
case of HbO. However, a statistical difference was found in 
the case of mean HbRs at two channels (i.e., Ch. 26, Ch. 33). 
Since the evidence is weak, our preliminary conclusion is 
that two groups cannot be distinguished from resting-state 
data. However, since the resting-state analysis is an interest-
ing topic, it is left for our future research. Regarding the data 
augmentation of three tasks, the authors conjecture that if the 
data of three tasks are augmented in the classification pro-
cess, the accuracy will be improved. However, this is also 
left for future research. 

CONCLUSION 

 We individually evaluated the variation of subject-wise 
and channel-specific hemodynamic signals using fNIRS, 
which allowed us to select ROIs for each task successfully 
and to distinguish patients with MCI from HCs. The extract-
ed features from the selected ROIs had an accuracy of 
80.77% (LDA) and 83.33% (SVM) for the SVFT. In con-
trast, the conventional feature selection method had shown 
the 75% (LDA) and 68.75% (SVM). As a result, the pro-
posed feature selection method showed better classification 
accuracy than the existing method. This was more pro-
nounced in SVM than in LDA, apparently due to the reduc-
tion in the complexity of fNIRS data from the proposed 
method. Additionally, the classifier performance was vali-
dated with an AUC of 0.851 (LDA) and 0.982 (SVM).  
According to our results, this new fNIRS-based channel  
selection method could be an efficient diagnostic tool to 
identify MCI while considering individual differences in 
hemodynamics. However, future work should verify this 

conclusion using a larger sample size to compensate for our 
limitations, which were biased using the ROIs showing the 
most significant between-group differences. In addition, es-
tablishing an fNIRS system that has potential diagnostic ap-
plications will require future studies to address the limita-
tions and to increase the classification accuracies up to 90%. 
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