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Abstract.
Background: Mild cognitive impairment (MCI) is considered a prodromal stage of Alzheimer’s disease. Early diagnosis of
MCI can allow for treatment to improve cognitive function and reduce modifiable risk factors.
Objective: This study aims to investigate the feasibility of individual MCI detection from healthy control (HC) using a
minimum duration of resting-state functional near-infrared spectroscopy (fNIRS) signals.
Methods: In this study, nine different measurement durations (i.e., 30, 60, 90, 120, 150, 180, 210, 240, and 270 s) were eval-
uated for MCI detection via the graph theory analysis and traditional machine learning approach, such as linear discriminant
analysis, support vector machine, and K-nearest neighbor algorithms. Moreover, feature representation- and classification-
based transfer learning (TL) methods were applied to identify MCI from HC through the input of connectivity maps with 30
and 90 s duration.
Results: There was no significant difference among the nine various time windows in the machine learning and graph theory
analysis. The feature representation-based TL showed improved accuracy in both 30 and 90 s cases (i.e., 30 s: 81.27% and
90 s: 76.73%). Notably, the classification-based TL method achieved the highest accuracy of 95.81% using the pre-trained
convolutional neural network (CNN) model with the 30 s interval functional connectivity map input.
Conclusion: The results indicate that a 30 s measurement of the resting-state with fNIRS could be used to detect MCI.
Moreover, the combination of neuroimaging (e.g., functional connectivity maps) and deep learning methods (e.g., CNN and
TL) can be considered as novel biomarkers for clinical computer-assisted MCI diagnosis.

Keywords: Alzheimer’s disease, convolutional neural network, functional connectivity, functional near-infrared spectroscopy,
mild cognitive impairment, resting state, transfer learning

INTRODUCTION

Alzheimer’s disease (AD) is the most common
type of dementia, and it gradually but certainly influ-
ences the patient’s memory and cognitive, mental,
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and language abilities [1, 2]. In the late stage of AD
(i.e., the severe stage), the symptoms have an increas-
ing impact on the patient’s motor and physical abi-
lities, requiring around-the-clock care [3]. Typically,
people with AD survive an average of four to eight
years after diagnosis. However, some AD patients can
live as long as 20 years. AD and related neurodegen-
erative diseases are arguably considered the most dre-
aded disorders of the aged [4]. None of the available
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pharmacologic or non-pharmacologic therapies can
slow or stop the destruction of neurons caused by AD
symptoms [3]. Mild cognitive impairment (MCI) is
a transitional state between healthy aging and AD
[5, 6]. Researchers believe that treatment in the early
stages (i.e., MCI) of the AD continuum may be effe-
ctive for preventing the progression of AD and sustai-
ning brain function [3, 7]. Therefore, timely diagnosis
of MCI from the healthy control (HC) presents an
opportunity for interventions to improve cognitive
function and reduce the modifiable risk factors impli-
cated in AD progression [8, 9].

Currently, the principal MCI diagnosis tools avail-
able to clinical doctors for making professional judg-
ments rely on information obtained from the patient’s
medical history, mental status examination, imaging
studies, and blood tests [10]. In comparison to sub-
jective characteristics (i.e., the medical history and
mental status examination), biomarker tests, such as
brain imaging, have the potential to provide a quan-
titative clinical determination for suspected MCI. In
particular, when assisted by computer science and
mathematics, brain imaging has provided the ability
to understand the neural destruction caused by MCI
in vivo [11].

There are two types of brain imaging techniques: 1)
hemodynamic-metabolic types such as single-photon
emission tomography (SPECT), positron emission
tomography (PET), functional magnetic resonance
imaging (fMRI), and functional near-infrared spec-
troscopy (fNIRS), and 2) electric-magnetic types,
which include electroencephalography (EEG) and
magnetoencephalography (MEG) [12, 13]. PET and
SPECT are based on the principle of radioactive iso-
topes. This characteristic has restricted its application
in children and pregnant women [14]. Generally, br-
ain imaging using electric-magnetic techniques pro-
vides high temporal resolution, but these methods
are susceptible to motor artifacts and environmental
interference [15]. Moreover, some of these techniq-
ues (e.g., EEG) also lack sufficient spatial resolution
(>1 cm) [16]. In recent years, fMRI use has achieved
valuable advancements in understanding neurologi-
cal diseases [17, 18]. However, physically constrai-
ned participants (e.g., disable patients) must also be
exposed to a loud noise environment [19]. Additi-
onally, owing to the effects of the electric and mag-
netic fields, these brain imaging modalities cannot be
applied simultaneously with brain stimulation (e.g.,
transcranial electrical stimulation) for further rehabi-
litation treatment [20]. In essence, fNIRS is an altern-
ative to conventional hemodynamic response-based

neuroimaging techniques that promises to shed
additional light on functional brain activity in envi-
ronments previously inaccessible to fMRI [21]. Sim-
ilarly, fNIRS can measure concentration changes of
oxygenated (�HbO) and deoxygenated (�HbR) he-
moglobin by shooting near-infrared light (i.e., wave-
lengths of 650 nm to 1000 nm) into the brain tissue to
monitor the brain activity. In comparison with other
non-invasive neuroimaging modalities (i.e., fMRI,
EEG, and MEG), fNIRS has the advantages of sa-
fety, lower cost, portability, tolerance of motion arti-
facts, good temporal resolution, and moderate spatial
resolution [22]. Additionally, the development of ini-
tial dip detection [23–25], bundled-optodes config-
urations [26–29], and adaptive algorithms [30–33]
have offered further opportunities to improve the tem-
poral and spatial resolution of fNIRS.

Owing to the promising advancement of fNIRS,
several studies have investigated the competence of
fNIRS for the detection of hemodynamic changes in
AD and MCI. Through studies over the past decade,
researchers have demonstrated the feasibility of using
fNIRS to identify reduced cerebral oxygenation in the
resting state or the task period, such as during word
retrieval, memory tasks, motor tasks, and visuospa-
tial perception [34]. In the resting-state cases, alt-
ered connectivity [35–37] and abnormal fluctuations
[38–42] of cerebral oxygenation have been reported
in MCI and AD groups. For instance, the current study
demonstrated that the effective [33] and functional
connectivity [34, 35] of the MCI group decreased
compared to the HC subjects during the resting state
period. Similarly, the reduced hemoglobin oxygen
saturation [36, 38, 39], global brain hypoperfusion
oxygen [37], decreased low-frequency oscillations
[40], and altered neurovascular coupling [37] were
observed in a prodromal stage of AD (i.e., MCI). This
difference is considered to associate with the dysregu-
lation of information integration in the patient’s brain.
Moreover, a systematic review article (i.e., included
34 studies and 1,363 participants) stated that the rest-
ing state connectivity could be a biomarker for MCI
or AD identification [43]. In the task period cases,
oxygenation hypoactivation has been found in the
frontotemporal area of the MCI group during verbal
fluency tasks [44–46]. Additionally, a reduced hemo-
dynamic response has been reported in the prefrontal
cortex of the MCI group when performing memory
tasks [47–51]. Similarly, examination results during
motor [52, 53] and visuospatial [54, 55] tasks also
showed a difference between dementia and healthy
groups. This reveals that executive dysfunction and
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abnormal visuospatial perception may be underly-
ing in the patient’s brain. As mentioned above, these
findings are consistent with fMRI results indicating
a disrupted functional network and decreased hemo-
dynamic response in MCI pathology. This empirical
evidence also indicates that fNIRS-based indicators
could play a role in the identification of MCI from the
HC. Therefore, it is essential to develop and examine
the practicability of fNIRS-based biomarkers for the
diagnosis of MCI, as these could assist the clinical
doctor in making confident decisions.

In our initial studies [56, 57], we assessed the use of
fNIRS-based biomarkers to detect MCI from the HC
when participants were performing different mental
tasks, such as the N-back task, Stroop task, and verbal
fluency task. Seven digital biomarkers were extracted
from the fluctuating time series of �HbO and �HbR:
the mean, slope, peak value, kurtosis, and skewness.
The highest accuracy was 76.67%, classified by a
linear discriminant analysis (LDA) based on the N-
back task and Stroop task. The imaging biomarkers
were evaluated using a convolutional neural network
(CNN), which included t-map, mean map, slope map,
kurtosis map, skewness map, HbO map, and connec-
tivity map. The highest accuracy was 98.61% for the
slope map case during the N-back task. However, after
our initial investigations, some challenges and limi-
tations still needed to be addressed: 1) small datasets
may lead to overfitting and local minima during the
training of the deep learning model, 2) some of the
patients may be limited or dislike performing several
mental tasks for the examination, and 3) the lengthy

procedure of the cognitive task may cause fatigue
problems for the patients.

Therefore, based on the limitations mentioned
above, we further quantitatively investigated the pos-
sibility of using the features extracted from resting-
state fNIRS data over a short period to detect MCI
from the HC with a transfer learning method. Five
minutes of resting-state data were acquired from 24
subjects. The digital biomarkers were extracted to
examine the performance of the different resting-st-
ate periods. LDA, support vector machine (SVM),
and k-nearest neighbor (KNN) algorithms were used
to classify the digital biomarkers. The connectivity
map was analyzed as the input to the transfer learning
method. We hypothesized that 1) the transfer learn-
ing method could fine-tune the model trained with
the small MCI dataset and obtain excellent perfor-
mance, 2) the connectivity map of the resting state
would be a useful biomarker for MCI detection, and
3) using a shorter time window of the resting state
could achieve good classification accuracy. To the
best of the authors’ knowledge, this is the first quan-
titative fNIRS study to examine the resting state for
MCI detection using deep learning methods.

MATERIALS AND METHODS

Participants and system protocol

Twenty-four subjects (15 MCI patients: one male
and 14 females; nine HC participants: two males and
seven females) were recruited. All the participants

Fig. 1. System flowchart of the entire experimental process for the current study.
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were employed by the Pusan National University
Hospital (Busan, Rep. of Korea). The recruited sub-
jects satisfied the following conditions: 1) right-han-
ded, 2) able to communicate in Korean, 3) of a similar
age, and 4) similar educational backgrounds. Before
the fNIRS measurements, the mental health of the
subjects was evaluated using the Korean Mini-Mental
State Examination (K-MMSE) [58], Seoul Neuro-
psychological Screening Battery [59], and magnetic
resonance imaging (MRI). The Pusan National Uni-
versity Institutional Review Board approved the
experimental protocol. Before the experiment, all
subjects had the entire content of the experiment
explained to them and provided informed consent.
Figure 1 shows the system flowchart of the experi-
mental process.

fNIRS measurements

A multi-channel NIRSIT continuous wave system
(OBELAB Inc., Rep. of Korea) with 24 emitters and
32 detectors (Fig. 2a) was employed to measure the
fNIRS signals with a sampling rate of 8.138 Hz. The
wavelengths used for the detection of �HbO and
�HbR were 780 and 850 nm, respectively. In total,
48 channels were distributed equidistantly on the pre-
frontal cortex. The channel configuration is illustrated
in Fig. 2b, which was set to be consistent with the
International 10–20 EEG System with reference elec-
trode location FpZ. Each channel was defined as an

emitter-detector pair with a distance of 30 mm. For
instance, photodiode 1 and LED 8 generate Channel
1, and LED 1 and photodiode 4 produce Channel 2.
The experiment was conducted in a confined room to
avoid disturbance. The participants were seated on
a comfortable chair and asked to rest without un-
necessary movement. The duration of the fNIRS
resting-state measurement was approximately 5 min
for each participant.

Resting-state preprocessing

In this study, �HbO and �HbR throughout the
whole experiment were obtained from the raw optical
density using the modified Beer-Lambert Law [53,
54]. A fourth-order Butterworth low- and a high-pass
filter with a cut-off frequency of 0.0018–0.15 Hz was
applied to remove cardiac noise (∼1.1 Hz), respira-
tion (0.25 Hz), and other physiological noise [55–57].
Besides, a detrending algorithm was used to remove
shifts in the baseline. However, the slowly varying U-
shaped noise (< 0.1 Hz) associated with a deep bre-
ath or slow motion and other global unknown noise
(< 0.1 Hz) could not be removed by the bandpass filer
or low-/high-pass filter [65]. Also, the hair interfer-
ence and optode-scalp decoupling generated noise,
which is hard to remove from the normal dataset.
Therefore, after passing the signal through the filter,
we manually checked and removed the noise chan-
nel with the obvious abnormal fluctuation by the

Fig. 2. (a) Arrangement of the emitters and detectors; (b) channel configuration.
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experience. All of the preprocessing procedures were
analyzed offline using MATLAB™ software (Math-
Works, Natick, Massachusetts, version: R2020a).

Temporal features and functional connectivity

To identify MCI and examine the minimum req-
uired duration of the resting-state data, we selected
six temporal features to conduct the classification:
the mean of �HbO, mean of �HbR, the standard
deviation of �HbO, standard deviation �HbR, the
variance of �HbO, and variance of �HbR. Each fea-
ture was calculated by the different time intervals
(i.e., 0–30 s, 0–60 s, 0–90 s, 0–120 s, 0–150 s, 0–
180 s, 0–210 s, 0–240 s, and 0–270 s). Since some
data were corrupted in the middle of the pre-exp-
erimental period. Therefore, the portions (0–270 s)
that do not include any corruption throughout all the
subjects were analyzed for uniformity.

The functional connectivity of the brain signals
reveals the interaction among different brain regions,
which shows the temporal correlations between spati-
ally distant neural activity [66]. Pearson’s correlation
coefficients (r) were used to analyze the correlation
between the temporal signals of each channel. The
connectivity matrix consists of the underlying inter-
hemispheric relationships in the prefrontal cortex.
The connectivity matrices used in this study were
divided into two types: 1) calculations for graph
theory analysis and 2) imaging biomarkers for the
transfer learning method. In the first case (i.e., used
for the graph theory analysis), the input of the
functional connectivity depended on the different
time intervals (i.e., 0–30 s, 0–60 s, 0–90 s, 0–120 s,
0–150 s, 0–180 s, 0–210 s, 0–240 s, and 0–270 s). For
the transfer learning case, the connectivity matrices
were calculated with fixed 30 s durations (i.e., 0–30 s,
30–60 s, 60–90 s, 90–120 s, 120–150 s, 150–180 s,
180–210 s, 210–240 s, and 240–270 s) and 90 s dura-
tion (i.e., 0–90 s, 90–180 s, and 180–270 s) for each
subject.

Graph theory

Generally, graph theory has been employed to char-
acterize network communication ability. The nodes of
the network refer to the channels, and the correlation
coefficient is defined as the edge for each channel
pair. Typically, the calculated network parameters
(i.e., global efficiency, local efficiency, and small-
worldness) have been used to describe changes in
brain network architecture, disease development, and

brain evolution [67–69]. To quantify the network
characteristics and assess the minimum necessary
measurement duration, the global efficiency, local
efficiency, and small-worldness were analyzed with
an increased sparsity threshold range (0.5–0.9) with
an interval of 0.1 to evaluate the different periods in
the resting-state functional connectivity. The thresh-
old was applied to remove spurious connections,
defined as when the edge is lower than the threshold.
In essence, the global efficiency (Eglob) measures the
integration of the network, which indicates the abil-
ity to transfer information over the entire measured
brain network (G). The global efficiency is defined
in Equation 1. The local efficiency (Eloc) of the net-
work represents the communication ability in a local
region. As given in Equation 2, it can be calculated
based on the global efficiency. The small-worldness
(Sw) is an ensemble of the measured networks that
refers to the high-transferability network using the
shortest path distance. Practically, it can be mea-
sured based on a comparison (shown in Equation 3)
between the average cluster coefficient (K) and path
length (Li ) for a random network.

Eglob (G) = 1

N (N − 1)

∑
j /= i∈G

1

d (i, j)
, (1)

Eloc (G) = 1

N

∑
i∈G

Eglob (Gi) , (2)

Swi = k Lrand

Li Crand

, (3)

where N refers to the nodes of the network, and d (i, j)
represents the length of the shortest path between two
random nodes, i and j. The direct neighbor of the ith
node produces the local subgraph network (Gi). The
path length and clustering efficiency of the random
network is given by Lrand and Crand , respectively.

Classification algorithm

The vital objective of the classification algorithm is
to describe and predict unknown terms through train-
ing with the existing dataset. LDA, SVM, and KNN
are the most widely used machine learning methods
for brain disease identification [70]. The principle of
LDA is the generation of hyper-planes to discrimi-
nate data from different classes. Similarly, the main
function of the SVM is to construct a margin (i.e., sup-
port vectors) with a maximum boundary to generate
a linear extrication hyper-plane. In contrast, KNN is



652 D. Yang and K.-S. Hong / Quantitative Assessment of Resting-State for MCI Detection

Fig. 3. Schematic of the transfer learning algorithm: (a) feature representation-based transfer learning, (b) classification-based transfer
learning.

a type of instance-based learning, in which the vote
of its neighbors categorizes an object. In this study,
we selected six temporal features (mean of �HbO,
mean of �HbR, the standard deviation of �HbO, the
standard deviation of �HbR, the variance of �HbO,
and variance of �HbR) of the fNIRS signals with
different durations (0–30 s, 0–60 s, 0–90 s, 0–120 s,
0–150 s, 0–180 s, 0–210 s, 0–240 s, and 0–270 s) to
classify MCI from the HC. Five runs of 5-fold cross-
validation were applied for each classifier (i.e., LDA,
SVM, and KNN).

With the development of deep learning and neural
imaging techniques, computer-assisted clinical diag-
nosis methods have achieved massive progress [71,
72]. In particular, CNNs have realized huge successes
in brain disease identification. However, many chal-
lenges remain, such as the cost of neural imaging
examinations, limited datasets for rare diseases, and
long procedures for clinical diagnosis [73]. It is dif-
ficult to accumulate a sufficient dataset to train CNN
models. To avoid overfitting and the lower general-
ization power of a small dataset, transfer learning is
a good solution [74]. In concept, transfer learning is
used as a pre-trained model for fine-tuning the new
model to extract features or classify unknown objects

[75], as shown in Fig. 3. In this study, we employed
two different transfer learning strategies: feature
representation-based transfer learning (FRTL) and
classification-based transfer learning (CTL). In the
FRTL case (i.e., Fig. 3a), the pre-trained CNN model
was used to extract the features from the connectiv-
ity map, and the extracted features were used as the
input to the SVM to classify MCI from the HC. Nor-
mally, it is suggested to choose deeper convolutional
layers to extract features, as deeper layers always con-
tain more detailed characteristics. In contrast, CTL
(Fig. 3b) applies the pre-trained model to fine-tune
the new model by altering the parameters of the input
and output layers directly. In this study, seven pre-
trained CNN models (i.e., VGG 16, VGG19, Alexnet,
Resnet18, Resnet50, Resnet101, and Densenet 201)
were used for conducting the transfer learning. To
evaluate the performance, confusion metrics were
calculated after the classification, which includes true
positive (TP), false negative (FN), true negative (TN),
and false-positive (FP) occurrence. TP refers to the
number of MCI cases classified correctly. FN repre-
sents the number of HC misclassified. Similarly, the
number of HC detected correctly is the TN, while FP
is the number of MCI cases that were misclassified.
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Based on the confusion metrics, accuracy, recall, pre-
cision, and F1-score could be calculated as follows:

Accuracy = TP + TN

TP + TN + FP + FN
(4)

Recall = TP

TP + FN
(5)

Precision = TP

TP + FP
(6)

F1-score = 2 × Precision × Recall

Precision + Recall
(7)

RESULTS

Demographics and clinical score

Table 1 summarizes the demographic and clinical
characteristics of all participants. The statistical dif-
ference (i.e., p-value), mean, and standard deviation
were calculated for the parameters of gender, educa-
tion, age, and K-MMSE score. Education [year] ref-
ers the entire education period from the elementary
school, which is a relevant factor for neural cognition
functions [76]. The statistical analysis was conducted
using two independent sample t-tests with a signif-
icance level of 0.05. In the age case, the p-value
was equal to 0.36, which indicates a non-significant
difference between the MCI and HC groups. There-
fore, the participants in the two groups are age
matched. Similarly, the MCI and HC had match-
ing educational backgrounds (p-value = 0.36 > 0.05).
The averaged K-MMSE score shows that the MCI
group (i.e., 25.13) had a lower score than the HC
group (i.e., 27.22), which indicates the decreased
cognitive state in the MCI group. To interpret the
K-MMSE values, normal cognition is categorized as
a score of 24 or greater (with a maximum of 30).

Table 1
Demographic information and clinical characteristics of the

participants

Characteristics MCI (n = 15) HC (n = 9) p

Gender (male/female) 1/14 2/7 0.44
Education [y] 11.2 (±4.81) 10.56 (±2.88) 0.36
(mean/std)
Age [y] (mean/std) 69.27 (±7.09) 68.33 (±4.69) 0.36
K-MMSE score 25.13 (±2.33) 27.22 (±1.98) 0.49
(mean/std)

K-MMSE, Korea Mini-Mental State Examination; std, standard
deviation; n, number of participants.

The mean of the K-MMSE scores in the MCI group
is higher than 24. Interestingly, the statistical analy-
sis results also revealed a non-significant difference
(p-value = 0.49 > 0.05) between the two groups.

Temporal feature classification results

Rather than using statistical analysis to identify the
differences between the two groups, individual iden-
tification using the machine learning method may
offer promising advantages for clinical diagnosis.
Figure 4 shows the classification accuracy obtained
with three different machine learning algorithms (i.e.,
LDA, SVM, and KNN) for the nine measurement dur-
ations. The mean accuracies of the LDA, SVM, and
KNN algorithms are 63.27%, 58.93%, and 57.71%,
respectively. Moreover, there is no significant imp-
rovement in accuracy with increasing measurement
duration in any of the classification cases. This sug-
gests that using the 30 s resting-state measurement
(LDA: 62.56%, SVM: 58.82%, and KNN: 57.54%)
may achieve a similar classification performance as
using the 270 s measurement (LDA: 62.96%, SVM:
57.14%, and KNN: 57.14%). Interestingly, the hig-
hest classification accuracy among the nine mea-
surement durations appears at the 90 s in the LDA
(i.e., 67.00%) and KNN (i.e., 60.20%) classification
accuracy.

Functional connectivity map

The connectivity maps are generated by the func-
tional connectivity matrix, which demonstrates the
temporal relationship among the 48 channels. Fig-
ure 5 illustrated the functional connectivity of the
MCI and HC from 30 s to 270 s for the�HbO and
�HbR cases. After the time window extends longer
than 90 s, the functional connectivity maps for all
four categories (i.e., �HbO of MCI, �HbO of HC,
�HbR of MCI, and �HbR of HC) exhibit similar
patterns. However, The HC group displays stronger
functional connectivity than the MCI group, which
can be observed for all the measurement durations.

Graph theory analysis

In this study, graph theory was employed to further
evaluate the functional connectivity network and qua-
ntify the difference between different measurement
durations. Figure 6 shows the global network effi-
ciency, local network efficiency, and small-worldness



654 D. Yang and K.-S. Hong / Quantitative Assessment of Resting-State for MCI Detection

Fig. 4. Classification results of the linear discrimination analysis, support vector machine, and K-nearest neighbor algorithms for nine
measurement durations (0–30, 0–60, 0–90, 0–120, 0–150, 0–180, 0–210, 0–240, and 0–270 s): (a) LDA, (b) SVM, and (c) KNN.

for nine measurement durations and four (i.e., �HbO
of MCI, �HbO of HC, �HbR of MCI, and �HbR
of HC). The results for the global (Fig. 6a) and local
(Fig. 6b) efficiencies do not exhibit a significant dif-
ference with increasing measurement duration. In
Fig. 6c, the 30 s duration has a lower small-worldness
than the 90 s duration. However, after 90 s, the small-
world results remain consistent. This result is based
on the functional connectivity map and the temporal
feature classification result. It indicates that the res-
ting-state duration required for stable analysis of the
difference between the MCI and HC groups can be set
as 90 s. However, based on the results of the temporal
classification accuracy and functional connectivity, a
measurement duration of 30 s is also able to discrimi-
nate the difference between the MCI and HC groups.

Feature representation-based transfer learning

To examine the minimum measurement duration,
we further selected 30 s and 90 s as time windows
for the generation of the connectivity map. The total
resting-state period (270 s) was thus divided into
nine sections (270 ÷ 30 = 9) and three sections (270
÷ 90 = 3), respectively. Therefore, the inputs to the
transfer learning were 216 (i.e., 9×24 = 216) and 72
(i.e., 3×24 = 72), respectively. The input size of the
first layer was normalized according to the require-
ment of each CNN model. The dataset was divided
to designate 80% and 70% as the training datasets in
two cases. The remaining 20% and 30% are consid-
ered to be testing sets. The source of training data was
a connectivity map generated based on the acquired
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Fig. 5. Connectivity maps of the resting state for the MCI and HC groups during nine measurement durations (i.e., 0–30, 0–60, 0–90, 0–120,
0–150, 0–180, 0–210, 0–240, and 0–270 s).

fNIRS signals. The classification results of the �HbO
and �HbR biomarkers were presented in Tables 2
and 3, respectively, with seven pre-trained CNN mod-
els. The accuracy obtained using �HbO ranged from
71.16% (with Alexnet) to 86.05% (with Resnet 201);
the average accuracy was 79.15%. As presented in
Table 3, the mean accuracy of the classification based
on �HbR (i.e., 76.73%) was lower than that based on
�HbO, and it ranged from 63.04% (with Resnet101)
to 90.44% (with Densenet 201). For the 90 s time win-
dow, the accuracies of the classifications using both
�HbO (i.e., 76.73%) and �HbR (i.e., 74.18%) were
lower than those for the 30 s time window, as listed
in Tables 4 and 5.

Classification-based transfer learning

Owing to the long training time cost and the similar
classification performance obtained with the FRTL,
in this section, only the three pre-trained CNN mod-
els with the fewest layers (i.e., VGG 16, VGG 19, and
Alexnet) were considered. The classification results
of these three models with �HbO and �HbR for
the 30 s and 90 s measurement durations are summa-
rized in Tables 6–9. In comparison to the performance
of the FRTL, the accuracy of the CTL is improved,
especially for the 30 s time window (i.e., �HbO:
89.62% and HbR: 93.38%). In particular, the highest
accuracy reaches 95.81% (with VGG 19). The accu-
racy is slightly increased with the 90 s time window
(i.e., �HbO: 76.08% and �HbR: 79.09%). Further-
more, the 80% training set always presents a higher

accuracy than the 70% training set in the 30 s classi-
fication. Interestingly, this trend does not occur when
the 90 s time window is used.

DISCUSSION

In this study, our goal was to evaluate the mini-
mum resting-state fNIRS signal and investigate the
possibility of using transfer learning to detect MCI
from the HC based on the resting-state fNIRS. To
the best of the authors’ knowledge, this is the first
study to examine the minimum resting-state dura-
tion required for MCI detection using fNIRS signals.
In addition, we believe it is the first study to apply
transfer learning for individual classification of MCI
based on the resting-state fNIRS signal. The cost of
the neural imaging technique, difficulty of the sig-
nal acquisition for patients, and limited data available
for rare diseases have always been major challenges
for the application of computer-assisted brain dis-
ease diagnosis. Our system provides a solution for
the comfortable and accurate detection of individual
MCI from the HC, which is obtained using the trans-
fer learning classification method with an input of the
minimum resting-state fNIRS data.

MCI and dementia are multifaceted diseases,
which cause accumulated pathological brain injury
leading to a decline in progressive motor, cognitive,
and language abilities [77, 78]. The well-established
biomarkers are neurodegeneration, amyloid plaques,
and neurofibrillary tangles [79]. With the develop-
ment of non-invasive neuroimaging techniques, the
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Fig. 6. Graph theory parameters of the resting-state functional connectivity of the MCI and HC groups for nine measurement durations (i.e.,
0–30, 0–60, 0–90, 0–120, 0–150, 0–180, 0–210, 0–240, and 0–270 s): (a) global efficiency, (b) local efficiency, and (c) small-worldness.

use of imaging biomarkers has emerged owing to their
promising advantages of ease of signal measurement,
safety, non-invasive nature, and low cost. In compar-
ison to fMRI, EEG, PET, and SPECT, fNIRS as a
novel non-invasive neural imaging technique is more
environmentally unconstrained and has a moderate
temporal and spatial resolution. Thus, it is a promis-
ing tool for assessing biomarkers for brain disease
diagnosis.

Empirical fNIRS studies have investigated the dif-
ferences between MCI and HC [34]. Some of the
literature [48, 51] has stated that less hemodynamic
response appears in the frontal and parietal regions
of the MCI and AD groups in comparison to the
HC group when performing working memory tasks.
Similarly, in the resting state [36, 68], and during

other cognitive tasks [38], the hypoactivation mea-
sured by fNIRS has also been reported in statistical
analyses at the group level. As such, the reduced hem-
odynamic response and functional connectivity were
also obtained in our study, and the MCI group ex-
hibited lower functional connectivity than the HC
group (Fig. 5). Similarly, this finding is consistent
with the literature on fMRI [79] and EEG [80].
These experiential studies provide interpretability
of the dysregulation and neurodegeneration of MCI
and also verify the feasibility of using fNIRS as a
biomarker for MCI detection.

Mass-univariate analysis (i.e., statistical paramet-
ric mapping) plays a vital role in the determination
of abnormal hemodynamic responses and the neuro-
functional difference between the patient and control
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Table 2
Feature representation-based transfer learning classification results of different pre-trained CNN models using 30 s measurement duration

for the resting state of �HbO

CNN model Feature layer Dataset Averaged performance (HbO) 30 s

Accuracy Recall Precision F1-score

VGG16 fc6 80% training 81.86% 67.50% 84.85% 72.94%
70% training 84.38% 91.67% 74.23% 81.49%

fc7 80% training 80.00% 70.00% 79.58% 68.63%
70% training 78.44% 69.17% 77.82% 66.91%

Resnet50 fc1000 80% training 83.72% 72.50% 86.11% 75.12%
70% training 78.13% 82.50% 74.12% 73.66%

Resnet18 fc1000 80% training 82.79% 78.75% 78.11% 77.05%
70% training 81.56% 65.00% 84.26% 70.74%

Resnet101 fc1000 80% training 73.49% 70.00% 72.39% 60.93%
70% training 80.00% 62.50% 79.71% 68.99%

Densenet201 fc1000 80% training 84.19% 90.00% 76.34% 81.62%
70% training 83.13% 85.83% 76.01% 79.69%

VGG19 fc6 80% training 85.12% 76.25% 83.65% 79.16%
70% training 80.94% 85.00% 74.02% 76.69%

fc7 80% training 84.19% 76.25% 80.85% 77.75%
70% training 81.56% 64.17% 88.02% 68.59%

Alexnet fc6 80% training 78.60% 85.00% 68.93% 74.96%
70% training 80.94% 86.67% 72.42% 77.47%

fc7 80% training 83.26% 85.00% 77.28% 79.42%
70% training 79.06% 74.17% 75.79% 71.77%

Mean 81.27% 76.90% 78.22% 74.18%

Table 3
Feature representation-based transfer learning classification results of different pre-trained CNN models using 30 s measurement duration

for the resting state of �HbR

CNN model Feature layer Dataset Averaged performance (HbR) 30 s

Accuracy Recall Precision F1-score

VGG16 fc6 80% training 78.14% 60.00% 79.60% 65.18%
70% training 79.06% 76.67% 72.11% 72.09%

fc7 80% training 79.07% 57.50% 86.88% 65.30%
70% training 76.56% 56.67% 78.27% 62.67%

Resnet50 fc1000 80% training 74.88% 42.50% 87.39% 54.13%
70% training 80.31% 61.67% 85.09% 69.64%

Resnet18 fc1000 80% training 83.72% 78.75% 80.66% 78.26%
70% training 84.69% 85.00% 79.38% 80.67%

Resnet101 fc1000 80% training 76.74% 71.25% 77.28% 68.39%
70% training 76.88% 72.50% 75.71% 68.18%

Densenet201 fc1000 80% training 86.05% 80.00% 86.80% 80.73%
70% training 81.56% 72.50% 83.74% 73.77%

VGG19 fc6 80% training 81.40% 75.00% 77.80% 74.56%
70% training 76.25% 75.83% 71.78% 70.46%

fc7 80% training 79.53% 80.00% 72.69% 74.49%
70% training 78.44% 73.33% 75.56% 71.96%

Alexnet fc6 80% training 74.88% 83.75% 65.64% 71.08%
70% training 84.38% 85.00% 76.35% 80.23%

fc7 80% training 71.16% 66.25% 65.06% 56.08%
70% training 79.38% 61.67% 83.92% 65.22%

Mean 79.15% 70.79% 78.09% 70.15%

groups [81]. However, for individual MCI diagno-
sis, the statistical analysis cannot be easily applied
[82]. Similarly, in our initial evaluation study [57],
the statistical analysis outcomes showed inconsisten-
cies with the results of the individual classifications.
Therefore, it is essential to validate the biomarker

results based on individual classifications before the
established biomarker can be applied as a clinical
assistance tool.

In our previous study [56, 57], digital biomark-
ers (i.e., mean, slope, peak, kurtosis, and skewness)
and imaging biomarkers (i.e., mean map, slope map,
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Table 4
Feature representation-based transfer learning classification results of different pre-trained CNN models using 90 s measurement duration

for the resting state of �HbO

CNN model Feature layer Dataset Averaged performance (HbO) 90 s

Accuracy Recall Precision F1-score

VGG16 fc6 80% training 67.78% 75.21% 60.00% 59.21%
70% training 74.29% 80.60% 70.00% 71.80%

fc7 80% training 74.89% 77.62% 72.00% 73.11%
70% training 72.50% 79.99% 65.00% 67.70%

Resnet50 fc1000 80% training 67.56% 73.17% 64.00% 62.01%
70% training 81.96% 83.55% 82.50% 81.72%

Resnet18 fc1000 80% training 75.56% 77.32% 80.00% 76.34%
70% training 65.00% 66.47% 60.00% 61.46%

Resnet101 fc1000 80% training 73.56% 75.82% 76.00% 72.35%
70% training 63.04% 72.34% 57.50% 56.70%

Densenet201 fc1000 80% training 90.44% 89.92% 92.00% 90.42%
70% training 74.82% 76.21% 72.50% 73.99%

VGG19 fc6 80% training 78.22% 81.10% 72.00% 75.58%
70% training 78.57% 78.01% 80.00% 78.64%

fc7 80% training 76.89% 76.14% 76.00% 75.62%
70% training 75.71% 79.82% 70.00% 73.86%

Alexnet fc6 80% training 74.89% 83.17% 72.00% 70.39%
70% training 73.57% 87.75% 60.00% 64.65%

fc7 80% training 77.11% 78.01% 72.00% 72.11%
70% training 70.89% 85.25% 57.50% 63.98%

Mean 76.73% 70.68% 71.33% 66.82%

Table 5
Feature representation-based transfer learning classification results of different pre-trained CNN models using 90 s measurement duration

for the resting state of �HbR

CNN model Feature layer Dataset Averaged performance (HbR) 90 s

Accuracy Recall Precision F1-score

VGG16 fc6 80% training 80.00% 72.00% 78.93% 71.26%
70% training 71.82% 92.50% 58.81% 71.18%

fc7 80% training 71.43% 76.00% 47.94% 58.57%
70% training 75.45% 60.00% 66.67% 60.64%

Resnet50 fc1000 80% training 71.43% 44.00% 43.50% 43.01%
70% training 77.27% 80.00% 65.83% 71.62%

Resnet18 fc1000 80% training 72.86% 56.00% 62.50% 55.64%
70% training 80.91% 67.50% 78.17% 70.15%

Resnet101 fc1000 80% training 78.57% 60.00% 84.50% 63.26%
70% training 73.64% 50.00% 71.50% 56.87%

Densenet201 fc1000 80% training 72.86% 56.00% 60.33% 57.40%
70% training 77.27% 70.00% 72.33% 68.44%

VGG19 fc6 80% training 75.71% 84.00% 70.29% 70.76%
70% training 71.82% 62.50% 51.90% 55.44%

fc7 80% training 67.14% 36.00% 46.67% 38.02%
70% training 71.82% 85.00% 61.67% 68.53%

Alexnet fc6 80% training 70.00% 72.00% 58.33% 64.34%
70% training 70.91% 77.50% 64.90% 63.34%

fc7 80% training 77.14% 60.00% 78.33% 65.22%
70% training 75.45% 55.00% 84.31% 57.26%

Mean 74.18% 65.80% 65.37% 61.55%

HbO map, skewness map, kurtosis map, t-map, and
connectivity map) during mental tasks (i.e., the N-
back task, Stroop task, and VFT) were evaluated for
MCI detection using LDA and CNN. The highest
accuracies for the digital and imaging biomarkers
were 76.67% (with LDA) and 98.61% (with CNN),
respectively. The biomarkers in our initial work are

comparable to the established biomarkers, such as
PET, SPECT, and cerebrospinal fluid [83]. In addi-
tion, a novel study [37] reported that using K-mean
clustering analysis of the functional connectivity
index could detect MCI with a sensitivity of 84% and
specificity of 70%. In comparison to those studies,
the current study used a resting-state signal with the
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Table 6
Classification-based transfer learning classification results of different pre-trained CNN models using 30 s measurement duration for the

resting state of �HbO

CNN model Altered layer Dataset Averaged performance (HbO) 30 s

Accuracy Recall Precision F1-score

Alexnet Layer23/25 80% training 89.30% 87.50% 84.96% 85.87%
70% training 81.88% 77.50% 76.71% 76.26%

VGG16 Layer39/41 80% training 90.70% 86.25% 90.10% 87.33%
70% training 90.00% 87.50% 87.45% 86.90%

VGG19 Layer45/47 80% training 95.81% 95.00% 94.17% 94.29%
70% training 90.00% 86.67% 88.05% 86.53%

Mean 86.74% 86.62% 86.91% 86.20%

Table 7
Classification-based transfer learning classification results of different pre-trained CNN models using 30 s measurement duration for the

resting state of �HbR

CNN model Altered layer Dataset Averaged performance (HbR) 30 s

Accuracy Recall Precision F1-score

Alexnet Layer23/25 80% training 91.63% 92.50% 86.59% 89.24%
70% training 92.19% 90.00% 89.52% 89.57%

VGG16 Layer39/41 80% training 95.35% 91.25% 96.40% 93.53%
70% training 90.31% 81.67% 92.86% 85.01%

VGG19 Layer45/47 80% training 95.81% 95.00% 94.62% 94.40%
70% training 95.00% 92.50% 94.61% 93.36%

Mean 93.38% 90.49% 92.43% 90.85%

Table 8
Classification-based transfer learning classification results of different pre-trained CNN models using 90 s measurement duration for the

resting state of �HbO

CNN model Altered layer Dataset Averaged performance (HbO) 90 s

Accuracy Recall Precision F1-score

Alexnet Layer23/25 80% training 80.00% 64.00% 74.33% 67.52%
70% training 80.00% 80.00% 71.11% 74.67%

VGG16 Layer39/41 80% training 74.29% 72.00% 70.92% 65.31%
70% training 76.36% 67.50% 69.29% 66.45%

VGG19 Layer45/47 80% training 68.57% 68.00% 58.50% 60.79%
70% training 77.27% 65.00% 72.57% 66.45%

Mean 76.08% 69.42% 69.45% 66.87%

Table 9
Classification-based transfer learning classification results of different pre-trained CNN models using 90 s measurement duration for the

resting state of �HbR

CNN model Altered layer Dataset Averaged performance (HbR) 90 s

Accuracy Recall Precision F1-score

Alexnet Layer23/25 80% training 82.86% 72.00% 83.10% 74.85%
70% training 78.18% 75.00% 71.27% 71.47%

VGG16 Layer39/41 80% training 70.00% 52.00% 59.76% 54.44%
70% training 82.73% 82.50% 73.67% 77.75%

VGG19 Layer45/47 80% training 77.14% 60.00% 72.67% 63.39%
70% training 83.64% 65.00% 88.93% 73.50%

Mean 79.09% 67.75% 74.90% 69.23%

minimum time window, in which the most salient fea-
ture is the convenience of data acquisition for MCI
patients without performing any tasks. In addition,
the transfer learning method offers the opportunity
for using small datasets, which may occur owing to

the limitation of cost or patient numbers, to make
decisions based on deep learning methods.

In fNIRS, which is a novel and promising tech-
nique, the necessary resting-state acquisition duration
for accurate and stable MCI detection remains largely
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unknown. In the fMRI case, the minimum scanning
time should be longer than 5 min to achieve stable,
functional connectivity. One study on a child via the
fNIRS resting state [84] demonstrated that 2.5 min
might be the minimum time for accurate measure-
ment. In our study, this is consistent with the results of
the functional connectivity observations (i.e., Fig. 5),
in which the measurement durations of longer than
2.5 min show stable patterns. However, interestingly,
the quantitative assessments based on the classifica-
tion (i.e., LDA, SVM, and KNN) and graph theory
analysis (i.e., global efficiency, local efficiency, and
small-worldness) show that measurement durations
of at least 1.5 min have similar performance (i.e.,
Figs. 4 and 6). In particular, the classification results
demonstrate that a measurement duration of 0.5 min
could also achieve satisfactory results. This is why
30 s and 90 s time windows were selected to divide
the resting-state data for the transfer learning classi-
fication.

To avoid overfitting and local minima during the
classification due to the small dataset, transfer learn-
ing was used to solve this problem for the traditional
deep learning. In the FRTL case, we employed seven
pre-trained CNN models to extract the features. Each
pre-trained model has trained by millions of images
and had the ability to classify the 1000 categories.
However, each well-established CNN models have
different CNN structures (layers) [85]. Nevertheless,
the performance of the FRTL with seven pre-trained
CNN models exhibited no significant difference in
this study. In addition, the performance of the 80%
training set was generally higher than that of the 70%
training set. One possible reason is that some of the
datasets were not sufficient to fine-tune the pre-tra-
ined CNN model. However, the 90 s time window
could obtain a more stable performance than the 30 s
window during the analysis using traditional machine
learning methods and the graph theory analysis. Both
transfer learning results classified using the 90 s dura-
tion datasets showed a lower accuracy than those
classified using the 30 s duration datasets. This may
be due to the imbalance in the input data.

Although the CTL provided satisfactory diagnosis
accuracy (maximum accuracy: 95.81%), there are
some limitations to this technique, and future dire-
ctions must be discussed. First, owing to the insuf-
ficient resting-state data, the clipped sections with
durations of 30 s and 90 s were unbalanced. Increas-
ing and balancing the input numbers may further im-
prove the classification accuracy. Second, owing to
the long time required for the CTL procedure and

the similar performances obtained with the FRTL,
we only selected three pre-trained CNN models to
differentiate the MCI from the HC group using CTL.
Therefore, a future study could examine the rest of
the models with the assistance of a supercomputer to
check whether the higher performance may achieve
or not. Besides, a real-time deep learning diagnosis
system can be built based on the training model by
a big dataset [86]. Finally, the prefrontal cortex has
the benefit of no overlying hair, which can reduce the
scattering and attenuation effects. This study only ex-
amines the resting state in the prefrontal cortex. How-
ever, the default mode network may have a high
possibility of identifying biomarkers useful for MCI
detection.

Conclusively, this study assessed the minimum re-
sting-state duration required to obtain an accurate
functional connectivity map. Moreover, a novel me-
thod to identify MCI from the HC using trans-
fer learning methods was proposed. The traditional
machine learning and graph theory analysis results
for nine measurement intervals (i.e., 0–30 s, 0–60 s,
0–90 s, 0–120 s, 0–150 s, 0–180 s, 0–210 s, 0–240 s,
and 0–270 s) illustrated that there was no significant
difference in these measurement durations. The trans-
fer learning results demonstrated that the minimum
time window of 30 s in the resting state could achieve
good accuracy (maximum accuracy: 95.81%) for
MCI detection. This investigation can provide a ref-
erence for future studies to select the minimum mea-
surement duration of the resting state for fNIRS. In
addition, these methodologies could present a novel
approach for MCI detection, especially for cases with
small datasets. Moreover, the proposed biomarkers of
the resting state connectivity map with the combined
deep learning method could be used as a tool to assist
the clinical MCI diagnosis.
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J, Nikkinen J, Zang YF, LeVan P, Kiviniemi V (2014)
Synchronous multiscale neuroimaging environment for crit-
ically sampled physiological analysis of brain function:
Hepta-scan concept. Brain Connect 4, 677-689.

[67] Ghafoor U, Lee JH, Hong K-S, Park SS, Kim J, Yoo HR
(2019) Effects of acupuncture therapy on MCI patients using
functional near-infrared spectroscopy. Front Aging Neurosci
11, 237.

[68] Niu H, He Y (2014) Resting-state functional brain connec-
tivity: Lessons from functional near-infrared spectroscopy.
Neuroscientist 20, 173-188.

[69] Wada A, Tsuruta K, Irie R, Kamagata K, Maekawa T, Fujita
S, Koshino S, Kumamaru K, Suzuki M, Nakanishi A, Hori
M, Aoki S (2019) Differentiating Alzheimer’s disease from
dementia with Lewy bodies using a deep learning technique
based on structural brain connectivity. Magn Reson Med Sci
18, 219-224.

[70] Manohar N, Shanta M (2020) Machine learning techniques
to identify dementia. SN Comput Sci 1, 118.

[71] Vazquez-Nicolas JM, Zamora E, González-Hernández I,
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