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Abstract.

Background: Mild cognitive impairment (MCI) is considered a prodromal stage of Alzheimer’s disease. Early diagnosis of
MCI can allow for treatment to improve cognitive function and reduce modifiable risk factors.

Objective: This study aims to investigate the feasibility of individual MCI detection from healthy control (HC) using a
minimum duration of resting-state functional near-infrared spectroscopy (fNIRS) signals.

Methods: In this study, nine different measurement durations (i.e., 30, 60, 90, 120, 150, 180, 210, 240, and 270 s) were eval-
uated for MCI detection via the graph theory analysis and traditional machine learning approach, such as linear discriminant
analysis, support vector machine, and K-nearest neighbor algorithms. Moreover, feature representation- and classification-
based transfer learning (TL) methods were applied to identify MCI from HC through the input of connectivity maps with 30
and 90 s duration.

Results: There was no significant difference among the nine various time windows in the machine learning and graph theory
analysis. The feature representation-based TL showed improved accuracy in both 30 and 90s cases (i.e., 30s: 81.27% and
90s: 76.73%). Notably, the classification-based TL method achieved the highest accuracy of 95.81% using the pre-trained
convolutional neural network (CNN) model with the 30 s interval functional connectivity map input.

Conclusion: The results indicate that a 30 s measurement of the resting-state with fNIRS could be used to detect MCIL.
Moreover, the combination of neuroimaging (e.g., functional connectivity maps) and deep learning methods (e.g., CNN and
TL) can be considered as novel biomarkers for clinical computer-assisted MCI diagnosis.

Keywords: Alzheimer’s disease, convolutional neural network, functional connectivity, functional near-infrared spectroscopy,
mild cognitive impairment, resting state, transfer learning

INTRODUCTION and language abilities [1, 2]. In the late stage of AD
(i.e., the severe stage), the symptoms have an increas-

Alzheimer’s disease (AD) is the most common ing impact on the patient’s motor and physical abi-
type of dementia, and it gradually but certainly influ- lities, requiring around-the-clock care [3]. Typically,
ences the patient’s memory and cognitive, mental, people with AD survive an average of four to eight

years after diagnosis. However, some AD patients can
. o . on live as long as 20 years. AD and related neurodegen-
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pharmacologic or non-pharmacologic therapies can
slow or stop the destruction of neurons caused by AD
symptoms [3]. Mild cognitive impairment (MCI) is
a transitional state between healthy aging and AD
[5, 6]. Researchers believe that treatment in the early
stages (i.e., MCI) of the AD continuum may be effe-
ctive for preventing the progression of AD and sustai-
ning brain function [3, 7]. Therefore, timely diagnosis
of MCI from the healthy control (HC) presents an
opportunity for interventions to improve cognitive
function and reduce the modifiable risk factors impli-
cated in AD progression [8, 9].

Currently, the principal MCI diagnosis tools avail-
able to clinical doctors for making professional judg-
ments rely on information obtained from the patient’s
medical history, mental status examination, imaging
studies, and blood tests [10]. In comparison to sub-
jective characteristics (i.e., the medical history and
mental status examination), biomarker tests, such as
brain imaging, have the potential to provide a quan-
titative clinical determination for suspected MCI. In
particular, when assisted by computer science and
mathematics, brain imaging has provided the ability
to understand the neural destruction caused by MCI
in vivo [11].

There are two types of brain imaging techniques: 1)
hemodynamic-metabolic types such as single-photon
emission tomography (SPECT), positron emission
tomography (PET), functional magnetic resonance
imaging (fMRI), and functional near-infrared spec-
troscopy (fNIRS), and 2) electric-magnetic types,
which include electroencephalography (EEG) and
magnetoencephalography (MEG) [12, 13]. PET and
SPECT are based on the principle of radioactive iso-
topes. This characteristic has restricted its application
in children and pregnant women [14]. Generally, br-
ain imaging using electric-magnetic techniques pro-
vides high temporal resolution, but these methods
are susceptible to motor artifacts and environmental
interference [15]. Moreover, some of these techniq-
ues (e.g., EEQG) also lack sufficient spatial resolution
(>1cm) [16]. In recent years, fMRI use has achieved
valuable advancements in understanding neurologi-
cal diseases [17, 18]. However, physically constrai-
ned participants (e.g., disable patients) must also be
exposed to a loud noise environment [19]. Additi-
onally, owing to the effects of the electric and mag-
netic fields, these brain imaging modalities cannot be
applied simultaneously with brain stimulation (e.g.,
transcranial electrical stimulation) for further rehabi-
litation treatment [20]. In essence, fNIRS is an altern-
ative to conventional hemodynamic response-based

neuroimaging techniques that promises to shed
additional light on functional brain activity in envi-
ronments previously inaccessible to fMRI [21]. Sim-
ilarly, fNIRS can measure concentration changes of
oxygenated (AHbO) and deoxygenated (AHbR) he-
moglobin by shooting near-infrared light (i.e., wave-
lengths of 650 nm to 1000 nm) into the brain tissue to
monitor the brain activity. In comparison with other
non-invasive neuroimaging modalities (i.e., fMRI,
EEG, and MEG), fNIRS has the advantages of sa-
fety, lower cost, portability, tolerance of motion arti-
facts, good temporal resolution, and moderate spatial
resolution [22]. Additionally, the development of ini-
tial dip detection [23-25], bundled-optodes config-
urations [26-29], and adaptive algorithms [30-33]
have offered further opportunities to improve the tem-
poral and spatial resolution of fNIRS.

Owing to the promising advancement of fNIRS,
several studies have investigated the competence of
fNIRS for the detection of hemodynamic changes in
AD and MCI. Through studies over the past decade,
researchers have demonstrated the feasibility of using
fNIRS to identify reduced cerebral oxygenation in the
resting state or the task period, such as during word
retrieval, memory tasks, motor tasks, and visuospa-
tial perception [34]. In the resting-state cases, alt-
ered connectivity [35-37] and abnormal fluctuations
[38—42] of cerebral oxygenation have been reported
in MClI and AD groups. For instance, the current study
demonstrated that the effective [33] and functional
connectivity [34, 35] of the MCI group decreased
compared to the HC subjects during the resting state
period. Similarly, the reduced hemoglobin oxygen
saturation [36, 38, 39], global brain hypoperfusion
oxygen [37], decreased low-frequency oscillations
[40], and altered neurovascular coupling [37] were
observed in a prodromal stage of AD (i.e., MCI). This
difference is considered to associate with the dysregu-
lation of information integration in the patient’s brain.
Moreover, a systematic review article (i.e., included
34 studies and 1,363 participants) stated that the rest-
ing state connectivity could be a biomarker for MCI
or AD identification [43]. In the task period cases,
oxygenation hypoactivation has been found in the
frontotemporal area of the MCI group during verbal
fluency tasks [44—46]. Additionally, a reduced hemo-
dynamic response has been reported in the prefrontal
cortex of the MCI group when performing memory
tasks [47-51]. Similarly, examination results during
motor [52, 53] and visuospatial [54, 55] tasks also
showed a difference between dementia and healthy
groups. This reveals that executive dysfunction and
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abnormal visuospatial perception may be underly-
ing in the patient’s brain. As mentioned above, these
findings are consistent with fMRI results indicating
a disrupted functional network and decreased hemo-
dynamic response in MCI pathology. This empirical
evidence also indicates that fNIRS-based indicators
could play arole in the identification of MCI from the
HC. Therefore, it is essential to develop and examine
the practicability of fNIRS-based biomarkers for the
diagnosis of MCI, as these could assist the clinical
doctor in making confident decisions.

In ourinitial studies [56, 57], we assessed the use of
fNIRS-based biomarkers to detect MCI from the HC
when participants were performing different mental
tasks, such as the N-back task, Stroop task, and verbal
fluency task. Seven digital biomarkers were extracted
from the fluctuating time series of AHbO and AHbR:
the mean, slope, peak value, kurtosis, and skewness.
The highest accuracy was 76.67%, classified by a
linear discriminant analysis (LDA) based on the N-
back task and Stroop task. The imaging biomarkers
were evaluated using a convolutional neural network
(CNN), which included #~-map, mean map, slope map,
kurtosis map, skewness map, HbO map, and connec-
tivity map. The highest accuracy was 98.61% for the
slope map case during the N-back task. However, after
our initial investigations, some challenges and limi-
tations still needed to be addressed: 1) small datasets
may lead to overfitting and local minima during the
training of the deep learning model, 2) some of the
patients may be limited or dislike performing several
mental tasks for the examination, and 3) the lengthy
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procedure of the cognitive task may cause fatigue
problems for the patients.

Therefore, based on the limitations mentioned
above, we further quantitatively investigated the pos-
sibility of using the features extracted from resting-
state fNIRS data over a short period to detect MCI
from the HC with a transfer learning method. Five
minutes of resting-state data were acquired from 24
subjects. The digital biomarkers were extracted to
examine the performance of the different resting-st-
ate periods. LDA, support vector machine (SVM),
and k-nearest neighbor (KNN) algorithms were used
to classify the digital biomarkers. The connectivity
map was analyzed as the input to the transfer learning
method. We hypothesized that 1) the transfer learn-
ing method could fine-tune the model trained with
the small MCI dataset and obtain excellent perfor-
mance, 2) the connectivity map of the resting state
would be a useful biomarker for MCI detection, and
3) using a shorter time window of the resting state
could achieve good classification accuracy. To the
best of the authors’ knowledge, this is the first quan-
titative fNIRS study to examine the resting state for
MCI detection using deep learning methods.

MATERIALS AND METHODS
Participants and system protocol
Twenty-four subjects (15 MCI patients: one male

and 14 females; nine HC participants: two males and
seven females) were recruited. All the participants
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Fig. 1. System flowchart of the entire experimental process for the current study.
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were employed by the Pusan National University
Hospital (Busan, Rep. of Korea). The recruited sub-
jects satisfied the following conditions: 1) right-han-
ded, 2) able to communicate in Korean, 3) of a similar
age, and 4) similar educational backgrounds. Before
the fNIRS measurements, the mental health of the
subjects was evaluated using the Korean Mini-Mental
State Examination (K-MMSE) [58], Seoul Neuro-
psychological Screening Battery [59], and magnetic
resonance imaging (MRI). The Pusan National Uni-
versity Institutional Review Board approved the
experimental protocol. Before the experiment, all
subjects had the entire content of the experiment
explained to them and provided informed consent.
Figure 1 shows the system flowchart of the experi-
mental process.

JNIRS measurements

A multi-channel NIRSIT continuous wave system
(OBELAB Inc., Rep. of Korea) with 24 emitters and
32 detectors (Fig. 2a) was employed to measure the
fNIRS signals with a sampling rate of 8.138 Hz. The
wavelengths used for the detection of AHbO and
AHbR were 780 and 850 nm, respectively. In total,
48 channels were distributed equidistantly on the pre-
frontal cortex. The channel configuration is illustrated
in Fig. 2b, which was set to be consistent with the
International 10-20 EEG System with reference elec-
trode location FpZ. Each channel was defined as an

emitter-detector pair with a distance of 30 mm. For
instance, photodiode 1 and LED 8 generate Channel
1, and LED 1 and photodiode 4 produce Channel 2.
The experiment was conducted in a confined room to
avoid disturbance. The participants were seated on
a comfortable chair and asked to rest without un-
necessary movement. The duration of the fNIRS
resting-state measurement was approximately 5 min
for each participant.

Resting-state preprocessing

In this study, AHbO and AHbR throughout the
whole experiment were obtained from the raw optical
density using the modified Beer-Lambert Law [53,
54]. A fourth-order Butterworth low- and a high-pass
filter with a cut-off frequency of 0.0018-0.15 Hz was
applied to remove cardiac noise (~1.1 Hz), respira-
tion (0.25 Hz), and other physiological noise [55-57].
Besides, a detrending algorithm was used to remove
shifts in the baseline. However, the slowly varying U-
shaped noise (<0.1 Hz) associated with a deep bre-
ath or slow motion and other global unknown noise
(<0.1 Hz) could not be removed by the bandpass filer
or low-/high-pass filter [65]. Also, the hair interfer-
ence and optode-scalp decoupling generated noise,
which is hard to remove from the normal dataset.
Therefore, after passing the signal through the filter,
we manually checked and removed the noise chan-
nel with the obvious abnormal fluctuation by the

(a)
B B O OB BB O O E @ O O &
I5mm  1Smm | 15mm
B A OOBENEOORSZAO M@ H
45 mm| T
Em OB @AOO®BBEOOIB@B@A O
: H © 0o B m 0ox0 B B © © M
| ]
l 225mm |
(b)
1] H B E @ E E B EBE E B
15mm | 1Smm
0 B0 0 0@ B 3 @ @ @ @ @
45 mm|
B DR R EED D EEEEN
- N EE D@D B DD M
‘ 195 mm
. Photo diode (32) O LED(24) . Channel (48) x FpZ

Fig. 2. (a) Arrangement of the emitters and detectors; (b) channel configuration.
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experience. All of the preprocessing procedures were
analyzed offline using MATLAB™ software (Math-
Works, Natick, Massachusetts, version: R2020a).

Temporal features and functional connectivity

To identify MCI and examine the minimum req-
uired duration of the resting-state data, we selected
six temporal features to conduct the classification:
the mean of AHbO, mean of AHbR, the standard
deviation of AHDbO, standard deviation AHbR, the
variance of AHbO, and variance of AHbR. Each fea-
ture was calculated by the different time intervals
(i.e., 0-30s, 0-60s, 0-90s, 0-120s, 0-150s, 0-
1805, 0-210s, 0-240s, and 0-270s). Since some
data were corrupted in the middle of the pre-exp-
erimental period. Therefore, the portions (0-270s)
that do not include any corruption throughout all the
subjects were analyzed for uniformity.

The functional connectivity of the brain signals
reveals the interaction among different brain regions,
which shows the temporal correlations between spati-
ally distant neural activity [66]. Pearson’s correlation
coefficients (r) were used to analyze the correlation
between the temporal signals of each channel. The
connectivity matrix consists of the underlying inter-
hemispheric relationships in the prefrontal cortex.
The connectivity matrices used in this study were
divided into two types: 1) calculations for graph
theory analysis and 2) imaging biomarkers for the
transfer learning method. In the first case (i.e., used
for the graph theory analysis), the input of the
functional connectivity depended on the different
time intervals (i.e., 0-30s, 0-60s, 0-90s, 0-120s,
0-150s,0-180s,0-210s, 0-240s, and 0-270s). For
the transfer learning case, the connectivity matrices
were calculated with fixed 30 s durations (i.e., 0-30's,
30-60s, 60-90s, 90-120s, 120-150s, 150-180s,
180-210s, 210-240s, and 240-270s) and 90 s dura-
tion (i.e., 0-90s, 90-180s, and 180-2705s) for each
subject.

Graph theory

Generally, graph theory has been employed to char-
acterize network communication ability. The nodes of
the network refer to the channels, and the correlation
coefficient is defined as the edge for each channel
pair. Typically, the calculated network parameters
(i.e., global efficiency, local efficiency, and small-
worldness) have been used to describe changes in
brain network architecture, disease development, and

brain evolution [67-69]. To quantify the network
characteristics and assess the minimum necessary
measurement duration, the global efficiency, local
efficiency, and small-worldness were analyzed with
an increased sparsity threshold range (0.5-0.9) with
an interval of 0.1 to evaluate the different periods in
the resting-state functional connectivity. The thresh-
old was applied to remove spurious connections,
defined as when the edge is lower than the threshold.
In essence, the global efficiency (£ y,p) measures the
integration of the network, which indicates the abil-
ity to transfer information over the entire measured
brain network (G). The global efficiency is defined
in Equation 1. The local efficiency (E;,.) of the net-
work represents the communication ability in a local
region. As given in Equation 2, it can be calculated
based on the global efficiency. The small-worldness
(Sw) is an ensemble of the measured networks that
refers to the high-transferability network using the
shortest path distance. Practically, it can be mea-
sured based on a comparison (shown in Equation 3)
between the average cluster coefficient (K) and path
length (L;) for a random network.

1
Evor (O = 5u= 2 picc ai )

1
Eioe (G)= 5> Egor (G, ()
k L
Sw; = L, 3)
Li Crand

where N refers to the nodes of the network, and d (i, j)
represents the length of the shortest path between two
random nodes, i and j. The direct neighbor of the ith
node produces the local subgraph network (G;). The
path length and clustering efficiency of the random
network is given by L,qnq and Cygpq, respectively.

Classification algorithm

The vital objective of the classification algorithm is
to describe and predict unknown terms through train-
ing with the existing dataset. LDA, SVM, and KNN
are the most widely used machine learning methods
for brain disease identification [70]. The principle of
LDA is the generation of hyper-planes to discrimi-
nate data from different classes. Similarly, the main
function of the SVM is to construct a margin (i.e., sup-
port vectors) with a maximum boundary to generate
a linear extrication hyper-plane. In contrast, KNN is
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learning.

a type of instance-based learning, in which the vote
of its neighbors categorizes an object. In this study,
we selected six temporal features (mean of AHbO,
mean of AHDbR, the standard deviation of AHbO, the
standard deviation of AHbR, the variance of AHbO,
and variance of AHbR) of the fNIRS signals with
different durations (0-30s, 0-60s, 0-90s, 0-120s,
0-150s, 0-180s, 0-210s, 0-240s, and 0-2705s) to
classify MCI from the HC. Five runs of 5-fold cross-
validation were applied for each classifier (i.e., LDA,
SVM, and KNN).

With the development of deep learning and neural
imaging techniques, computer-assisted clinical diag-
nosis methods have achieved massive progress [71,
72]. In particular, CNNs have realized huge successes
in brain disease identification. However, many chal-
lenges remain, such as the cost of neural imaging
examinations, limited datasets for rare diseases, and
long procedures for clinical diagnosis [73]. It is dif-
ficult to accumulate a sufficient dataset to train CNN
models. To avoid overfitting and the lower general-
ization power of a small dataset, transfer learning is
a good solution [74]. In concept, transfer learning is
used as a pre-trained model for fine-tuning the new
model to extract features or classify unknown objects

[75], as shown in Fig. 3. In this study, we employed
two different transfer learning strategies: feature
representation-based transfer learning (FRTL) and
classification-based transfer learning (CTL). In the
FRTL case (i.e., Fig. 3a), the pre-trained CNN model
was used to extract the features from the connectiv-
ity map, and the extracted features were used as the
input to the SVM to classify MCI from the HC. Nor-
mally, it is suggested to choose deeper convolutional
layers to extract features, as deeper layers always con-
tain more detailed characteristics. In contrast, CTL
(Fig. 3b) applies the pre-trained model to fine-tune
the new model by altering the parameters of the input
and output layers directly. In this study, seven pre-
trained CNN models (i.e., VGG 16, VGG19, Alexnet,
Resnet18, Resnet50, Resnet101, and Densenet 201)
were used for conducting the transfer learning. To
evaluate the performance, confusion metrics were
calculated after the classification, which includes true
positive (TP), false negative (FN), true negative (TN),
and false-positive (FP) occurrence. TP refers to the
number of MCI cases classified correctly. FN repre-
sents the number of HC misclassified. Similarly, the
number of HC detected correctly is the TN, while FP
is the number of MCI cases that were misclassified.
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Based on the confusion metrics, accuracy, recall, pre-
cision, and F1-score could be calculated as follows:
TP + TN

Accuracy = “4)
TP+ TN + FP + FN

TP

Recall = —— (®)]
TP+ FN
.. TP
Precision = ——— (6)
TP + FP

Precision x Recall
Fl-score = 2 x — )
Precision + Recall

RESULTS
Demographics and clinical score

Table 1 summarizes the demographic and clinical
characteristics of all participants. The statistical dif-
ference (i.e., p-value), mean, and standard deviation
were calculated for the parameters of gender, educa-
tion, age, and K-MMSE score. Education [year] ref-
ers the entire education period from the elementary
school, which is a relevant factor for neural cognition
functions [76]. The statistical analysis was conducted
using two independent sample 7-tests with a signif-
icance level of 0.05. In the age case, the p-value
was equal to 0.36, which indicates a non-significant
difference between the MCI and HC groups. There-
fore, the participants in the two groups are age
matched. Similarly, the MCI and HC had match-
ing educational backgrounds (p-value =0.36>0.05).
The averaged K-MMSE score shows that the MCI
group (i.e., 25.13) had a lower score than the HC
group (i.e., 27.22), which indicates the decreased
cognitive state in the MCI group. To interpret the
K-MMSE values, normal cognition is categorized as
a score of 24 or greater (with a maximum of 30).

Table 1
Demographic information and clinical characteristics of the
participants

Characteristics MCI (n=15) HC (n=9) P
Gender (male/female) 1/14 2/7 0.44
Education [y] 11.2 (£4.81) 10.56 (£2.88) 0.36
(mean/std)

Age [y] (mean/std)
K-MMSE score
(mean/std)

K-MMSE, Korea Mini-Mental State Examination; std, standard
deviation; n, number of participants.

69.27 (£7.09) 68.33 (£4.69) 0.36
25.13 (£2.33) 27.22(£1.98) 0.49

The mean of the K-MMSE scores in the MCI group
is higher than 24. Interestingly, the statistical analy-
sis results also revealed a non-significant difference
(p-value =0.49 > 0.05) between the two groups.

Temporal feature classification results

Rather than using statistical analysis to identify the
differences between the two groups, individual iden-
tification using the machine learning method may
offer promising advantages for clinical diagnosis.
Figure 4 shows the classification accuracy obtained
with three different machine learning algorithms (i.e.,
LDA, SVM, and KNN) for the nine measurement dur-
ations. The mean accuracies of the LDA, SVM, and
KNN algorithms are 63.27%, 58.93%, and 57.71%,
respectively. Moreover, there is no significant imp-
rovement in accuracy with increasing measurement
duration in any of the classification cases. This sug-
gests that using the 30s resting-state measurement
(LDA: 62.56%, SVM: 58.82%, and KNN: 57.54%)
may achieve a similar classification performance as
using the 270 s measurement (LDA: 62.96%, SVM:
57.14%, and KNN: 57.14%). Interestingly, the hig-
hest classification accuracy among the nine mea-
surement durations appears at the 90s in the LDA
(i.e., 67.00%) and KNN (i.e., 60.20%) classification
accuracy.

Functional connectivity map

The connectivity maps are generated by the func-
tional connectivity matrix, which demonstrates the
temporal relationship among the 48 channels. Fig-
ure 5 illustrated the functional connectivity of the
MCI and HC from 30s to 270s for the AHbO and
AHDbR cases. After the time window extends longer
than 90, the functional connectivity maps for all
four categories (i.e., AHbO of MCI, AHbO of HC,
AHDbR of MCI, and AHbR of HC) exhibit similar
patterns. However, The HC group displays stronger
functional connectivity than the MCI group, which
can be observed for all the measurement durations.

Graph theory analysis

In this study, graph theory was employed to further
evaluate the functional connectivity network and qua-
ntify the difference between different measurement
durations. Figure 6 shows the global network effi-
ciency, local network efficiency, and small-worldness
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Fig. 4. Classification results of the linear discrimination analysis, support vector machine, and K-nearest neighbor algorithms for nine
measurement durations (0-30, 0-60, 0-90, 0-120, 0-150, 0-180, 0-210, 0-240, and 0-2705): (a) LDA, (b) SVM, and (c) KNN.

for nine measurement durations and four (i.e., AHbO
of MCI, AHbO of HC, AHbR of MCI, and AHbR
of HC). The results for the global (Fig. 6a) and local
(Fig. 6b) efficiencies do not exhibit a significant dif-
ference with increasing measurement duration. In
Fig. 6¢c, the 30 s duration has a lower small-worldness
than the 90 s duration. However, after 90 s, the small-
world results remain consistent. This result is based
on the functional connectivity map and the temporal
feature classification result. It indicates that the res-
ting-state duration required for stable analysis of the
difference between the MCI and HC groups can be set
as 90 s. However, based on the results of the temporal
classification accuracy and functional connectivity, a
measurement duration of 30 s is also able to discrimi-
nate the difference between the MCI and HC groups.

Feature representation-based transfer learning

To examine the minimum measurement duration,
we further selected 30s and 90s as time windows
for the generation of the connectivity map. The total
resting-state period (270s) was thus divided into
nine sections (270 + 30=9) and three sections (270
=+ 90=3), respectively. Therefore, the inputs to the
transfer learning were 216 (i.e., 9x24=216) and 72
(i.e., 3x24 =72), respectively. The input size of the
first layer was normalized according to the require-
ment of each CNN model. The dataset was divided
to designate 80% and 70% as the training datasets in
two cases. The remaining 20% and 30% are consid-
ered to be testing sets. The source of training data was
a connectivity map generated based on the acquired
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Fig. 5. Connectivity maps of the resting state for the MCI and HC groups during nine measurement durations (i.e., 0-30, 0-60, 0-90, 0-120,

0-150, 0-180, 0-210, 0-240, and 0-270s).

fNIRS signals. The classification results of the AHbO
and AHbR biomarkers were presented in Tables 2
and 3, respectively, with seven pre-trained CNN mod-
els. The accuracy obtained using AHbO ranged from
71.16% (with Alexnet) to 86.05% (with Resnet 201);
the average accuracy was 79.15%. As presented in
Table 3, the mean accuracy of the classification based
on AHDbR (i.e., 76.73%) was lower than that based on
AHbO, and it ranged from 63.04% (with Resnet101)
t0 90.44% (with Densenet 201). For the 90 s time win-
dow, the accuracies of the classifications using both
AHDO (i.e., 76.73%) and AHbR (i.e., 74.18%) were
lower than those for the 30 s time window, as listed
in Tables 4 and 5.

Classification-based transfer learning

Owing to the long training time cost and the similar
classification performance obtained with the FRTL,
in this section, only the three pre-trained CNN mod-
els with the fewest layers (i.e., VGG 16, VGG 19, and
Alexnet) were considered. The classification results
of these three models with AHbO and AHbR for
the 30 s and 90 s measurement durations are summa-
rized in Tables 6-9. In comparison to the performance
of the FRTL, the accuracy of the CTL is improved,
especially for the 30s time window (i.e., AHbO:
89.62% and HbR: 93.38%). In particular, the highest
accuracy reaches 95.81% (with VGG 19). The accu-
racy is slightly increased with the 90 s time window
(i.e., AHbO: 76.08% and AHDbR: 79.09%). Further-
more, the 80% training set always presents a higher

accuracy than the 70% training set in the 30 s classi-
fication. Interestingly, this trend does not occur when
the 90 s time window is used.

DISCUSSION

In this study, our goal was to evaluate the mini-
mum resting-state fNIRS signal and investigate the
possibility of using transfer learning to detect MCI
from the HC based on the resting-state fNIRS. To
the best of the authors’ know