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Control of Axially Moving Systems: A Review
Keum-Shik Hong* ■ and Phuong-Tung Pham

Abstract: This paper presents a comprehensive review of significant works on active vibration control of axially
moving systems. Owing to their broad applications, vibration suppression techniques for these systems have gen-
erated active research over decades. Mathematical equations for five different models (i.e., string, beam, coupled,
plate, and approximated model) are outlined. Active vibration control of axially moving systems can be performed
based on a finite-dimensional model described by ordinary differential equations (ODEs) or an infinite-dimensional
model described by partial differential equations (PDEs). For ODE models, the sliding mode control is most repre-
sentative. For PDE models, however, there exist various methods, including wave cancellation, Lyapunov method,
adaptive control, and hybrid control. Control applications (lifting systems, steel industry, flexible electronics, and
roll-to-roll systems) are also illustrated. Finally, several issues for future research in vibration control of axially
moving systems are discussed.

Keywords: Axially moving systems, control methods, modeling, PDE control, review, roll-to-roll systems, vibra-
tion suppression.

1. INTRODUCTION

Axially moving systems play an essential role in vari-
ous engineering systems (Fig. 1) including continuous ma-
terial manufacturing lines, roll-to-roll processes (e.g., zinc
galvanization line, technical textile production lines, etc.),
and transport processes (e.g., elevator cable systems, ca-
ble cars, etc.). In these systems, an adverse effect of the
mechanical vibrations of the transported materials is a sig-
nificant problem that affects the overall performance. As
such, the analysis and suppression of the vibrations of ax-
ially moving systems have attracted considerable research
interest for over six decades. The primary purpose of this
paper is to present a detailed survey of the studies on vi-
bration suppression of axially moving systems performed
hitherto. The main focus is the detailed analyses of control
methods and their applications.

Axially moving systems can be considered as a string
model, a beam model, a coupled model, and a plate
model depending on the flexibility, the existence of damp-
ing, and geometric parameters of the system. The mov-
ing string/beam/coupled models are a one-dimensional
system, whereas the moving plate model is a two-
dimensional one (i.e., the oscillation is a function of
spatial variables x and y, and temporal variable t). Fur-
ther, a moving string is often utilized to model a con-
tinuously moving system without considering the bend-

(a) (b)

(c) (d)

Fig. 1. Axially moving systems: (a) Technical textile-
manufacturing process [1], (b) versatile instru-
ment for minimally invasive robotic surgery [2],
(c) zinc-galvanization line [3], and (d) nanoscale
metal-printing process [4].
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ing stiffness of the material [5–9] (e.g., threads in the
textile-manufacturing processes (Fig. 1(a)), cables in auto-
matic winding machines). The flexible components whose
bending stiffness is significant are generally modeled us-
ing a beam model [10–14] (e.g., a cantilever beam with a
prismatic joint for flexible robotic arms (Fig. 1(b)), host-
ing rods employed in an object carrying system). An ax-
ially moving string/beam model focuses on the influence
of the lateral vibration but ignores the longitudinal vibra-
tion, whereas the coupled model accounts for both vibra-
tions [15–20]. The coupled model is suitable for modeling
materials of significant length (e.g., belts used in a power
transmission system). The axially moving plate model is
appropriate for the analysis of moving materials with con-
siderable width (e.g., the metal layer in nanoscale metal
printing processes, continuous roll-process technology for
transferring and packaging flexible large-scale integrated
circuits, see Fig. 1(d) [21–27]. Fig. 2 shows the distribu-
tion of mathematical models of axially moving systems
(i.e., string, beam, coupled, and plate models), in which
the string and beam models are the most commonly used
models.

Fig. 3 depicts the distribution of about 40% of the to-

Fig. 2. Modeling (dynamics) of axially moving systems
(total: 292 papers).

Fig. 3. Control of axially moving systems (total: 115 pa-
pers).

Fig. 4. Control methods applied to axially moving sys-
tems (115 papers).

tal papers that developed control methods, in which the
string and beam models were mostly used. Vibration sup-
pression can be achieved based on passive control [28–36]
or active control [37–46], see Fig. 4. An axially moving
system is characterized by its distributed and gyroscopic
properties due to the mass distribution of the material and
the existence of Coriolis acceleration. An axially mov-
ing system has an infinite number of vibration modes, and
it can be described as an infinite-dimensional system us-
ing partial differential equations (PDEs). Although a PDE
model can precisely show the dynamic behavior of the
system, the analysis and control of the vibrations of ax-
ially moving systems by directly using the PDE model is
a challenge because of their infinite number of vibration
modes. Therefore, the early investigations related to con-
trol were undertaken based on a finite-dimensional set of
ordinary differential equations (ODEs), which was estab-
lished by discretizing the PDE model to a set of ODEs.
The control design based on an ODE model is conve-
nient for its implementation using the conventional control
methods, which are well developed for ODEs. Ulsoy [42]
introduced a feedback control scheme for a moving string
based on a modal control. Yang [47] proposed a direct ve-
locity feedback controller for a gyroscopic system. Based
on the ODE model, robust control such as variable struc-
ture control [48] and H∞ control [49] were employed in the
design of vibration controllers. Instead, a PDE model is an
exact model: A direct use of this model in the control sys-
tem design not only enhances the control performance but
also avoids the spillover phenomenon. Due to this advan-
tage, control strategies for vibration suppression of axially
moving systems based on a PDE model have attracted sig-
nificant research interest: Control methods such as wave
cancellation [37,50,51], Lyapunov method [45,46,52–54],
optimal control [38], computed-torque control [40], adap-
tive control [55–58], and intelligent control [59, 60] have
been utilized in the dissipation of vibrations in axially
moving systems, wherein the control laws were designed
in the frequency or in the time domain.
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Approaches for controlling PDEs can be categorized
into two schemes; “in domain” control [34, 42, 50, 51, 61–
64] and boundary control [43, 44, 53, 54, 65–72]. “In do-
main” control techniques suppress vibrations via actuators
and sensors located at several points within the domain
(i.e., pointwise control) or evenly distributed along the do-
main (i.e., distributed control), whereas boundary control
techniques utilize actuators and sensors at the boundary of
the considered system. Per boundary control, the actuators
and sensors generally do not interfere with the operation
of the system. Therefore, it is considered as a practical
control solution for the control problem of axially moving
systems.

Surveys on axially moving systems were conducted by
Wang et al. [73] and Chen [74]. Wang et al. [73] presented
insights on studies related to the suppression of linear vi-
brations of axially moving systems, whereas Chen [74]
focused on the investigation of lateral vibration control
of axially moving strings. In [74, 75], vibration control
of only string models was discussed (i.e., modeling and
control of the beam, coupled, and plate models were not
done). This paper is a comprehensive compilation of sig-
nificant studies on the control of axially moving systems.
In particular, the various essential dynamic models of ax-
ially moving systems are introduced. Moreover, the state
of knowledge on the design of active control schemas for
systems using control methods based on ODE and PDE
models is examined. Further, the applications of these
control algorithms in the suppression of the vibrations of
engineering systems are also discussed.

The remainder of this paper is organized into seven sec-
tions. In Section 2, the dynamic models of axially mov-
ing systems are presented. Section 3 introduces investiga-
tions into vibration suppression of axially moving systems
based on control methods using ODE models, whereas
Section 4 discusses studies on control methods based on
PDE models. Studies on hybrid control methods are intro-
duced in Section 5. In Section 6, the applications of vibra-
tion control of axially moving systems are examined. Fi-
nally, a discussion on future research is presented in Sec-
tion 7.

2. DYNAMIC MODELS

2.1. Partial differential equations
2.1.1 String model (1 PDE)

The string model is recognized as the simplest and most
common model used to analyze the dynamics of axially
moving systems (Fig. 5). This model is generally used
in the investigation of the system where the bending mo-
ment is negligible. The schematic of a translating string
with length l and axial velocity v is shown in Fig. 5, where
w(x, t) and u(x, t) represent the lateral and longitudinal vi-
brations of the string. Dynamic analysis of axially moving
strings was pioneered in the late fifties by Mahalingam [9],

Fig. 5. Axially moving string (or beam) [13].

and the fundamental formulation of the dynamic model of
a uniform moving string is represented as follows:

ρA
(
wtt +2vwxt + v2wxx

)
−P0wxx = 0, (1)

where ρ is the mass density, A denotes the cross-sectional
area, and P0 indicates the initial tension. Equation (1) is
a linear PDE, in which the first term describes the local
string acceleration, the second and third terms correspond
to the Coriolis force due to axial movement and the cen-
trifugal acceleration, respectively, and the fourth term rep-
resents the pretension. The boundary conditions for a sim-
ply supported string model is given as follows:

w(0, t) = w(l, t) = 0. (2)

In other studies on nonlinear vibrations of axially moving
strings, the effect of axial deformation on the potential en-
ergy of translating strings has been investigated [75–77],
and the equation of motion is given as follows [76]:

ρA(wtt +2vwxt + v2wxx)−P0wxx −
3
2

EAwxxw2
x = 0,

(3)

where E is Young’s modulus. Pakdemirli et al. [78] and
Pakdemirli and Ulsoy [79] established a mathematical
model for moving strings with varying axial velocity as
follows:

ρA(wtt + v̇(t)wx +2v(t)wxt + v(t)2wxx)−P0wxx = 0.
(4)

Concerning an axially moving string with time-varying
length, Fung et al. [80] analyzed the vibration behavior
of a string using a set of ordinary differential equations
(ODEs) developed based on Hamilton’s principle and the
variable-domain finite-element method. In Zhu and Ni
[81], the lateral vibration of a string with varying length
was investigated via the governing equation described by
a PDE. The dynamic model of a translating string with
varying length is described as follows [81]:

ρAwtt +ρAl̈(t)wx +2ρAl̇(t)wxt +ρAl̇(t)2wxx

− (P(x, t)wx)x = 0, (5)

P(x, t) = [m+ρA(l(t)− x)](g− l̈(t)). (6)
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Considering the influence of material damping on the
dynamics of an axially moving string, the vibration of
a viscoelastic string was also investigated based on vis-
coelastic strain-stress constitutive relations such as the
Kelvin-Voigt model [82–87], standard linear-solid model
[77, 88], Burgers model [88], or Boltzmann’s superposi-
tion principle [89]. In the aforementioned strain-stress re-
lations, the Kelvin-Voigt model is the simplest model that
expresses the relationship between the stress σ and the
Lagrangian strain ε , namely,

σ(x, t) = Eε(x, t)+µε(x, t), (7)

where µ represents the dynamic viscosity of the dashpot
of the Kelvin-Voigt model. According to this model, the
equation of motion of a viscoelastic axially moving string
is given as follows [84]:

ρAwtt +2ρAvwxt +ρAv2wxx −P0wxx −
3
2

EAwxxw2
x

−µA
(
w2

xwxxt +2wxwxxwxt
)

−µAv
(
w2

xwxxx +2wxw2
xx

)
= 0. (8)

Apart from the free oscillation of a translating string,
the vibration behavior of axially moving strings undergo-
ing diverse constraints (e.g., elastic distributed foundation
[90, 91], partial nonlinear foundation [82, 92], intermedi-
ate spring support [93], multi supports [94–96], mechan-
ical guides [97, 98], etc.) has also received considerable
attention.

2.1.2 Beam model (1 PDE)
An axially moving material should be modeled in a

beam model if the material’s bending stiffness is consider-
able and cannot be ignored. In such situations, according
to Euler-Bernoulli, Timoshenko, or Rayleigh beam theo-
ries, investigations of axially moving beams can be per-
formed.

As one of the earliest studies on axially moving beams,
Mote [99] utilized the Euler–Bernoulli theory to develop
the dynamic model for an axially moving system. This
theory is the simplest and most common theory used to
describe a flexible beam. Subsequently, a series of studies
on axially moving Euler–Bernoulli beam were performed
[100–108]. According to the Euler–Bernoulli theory, the
governing equation for a translating beam is given as fol-
lows [107].

ρAwtt +2vρAwxt + v2ρAwxx −P0wxx +EIwxxxx = 0,
(9)

where EI is the flexural rigidity of the beam. For a sim-
ply supported Euler-Bernoulli beam model, the following
boundary conditions are considered.

w(0, t) = w(l, t) = 0,

wxx(0, t) = wxx(l, t) = 0. (10)

Also, the dynamic model of an axially moving Euler–
Bernoulli beam described by an integro-partial different
equation was introduced by Wickert [13]. In this work,
the author considered both longitudinal and lateral dis-
placements of the beam: However, he assumed that the
lateral motion could be decoupled from the longitudinal
motion because the lateral waves propagate significantly
slower than the longitudinal waves (i.e., it is called the
quasi-static stretch assumption). Under this assumption,
the mathematical model is given as the following integro-
partial different equation [13].

ρAwtt +ρAv̇wx +2vρAwxt + v2ρAwxx −P0wxx

+EIwxxxx −
1
2

EA
l

wxx

l∫
0

w2
xdx = 0. (11)

The dynamic behavior of the Euler–Bernoulli beam de-
scribed by intergro-differential equations of motion was
also analyzed in [109–116].

Vibration analysis of axially moving beams based on
the Timoshenko beam theory was presented in [117–120].
In the Timoshenko beam theory, the influences of shear
deformation and rotational inertia are considered. Con-
sequently, the dynamic model of an axially moving Tim-
oshenko beam is expressed in the following pair of par-
tial differential equations consisting of the lateral vibra-
tion w(x, t) and the angle of rotation due to bending θ (x,
t) as follows [117]:

ρA
(
wtt +2vwxt + v2wxx

)
−P0wxx −κGA(wxx −θx)

= 0, (12)

ρI
(
θtt +2vθxt + v2θxx

)
−EIθxx −κGA(wx −θ) = 0,

(13)

where κ and G represent the shear coefficient and the
shear modulus, respectively.

The Rayleigh beam theory has also been used to model
axially moving beams in [121–123]. This theory considers
the influence of the rotary-inertia and ignores the shear
deformation of the material. In this theory, the equation
of motion of an axially moving viscoelastic beam can be
expressed as follows [121]:

ρA
(
wtt + v̇wx +2vwxt + v2wxx

)
−P0wxx +EIwxxxx

−3
2

EAwxxw2
x−ρI(wxxtt+2vwxxxt+v̇wxxx+v2wxxxx)

+µIwxxxxt −µA(wxxtw2
x +2wxtwxxwx) = 0. (14)

2.1.3 Coupled model (2 PDEs)
The equations of motion of axially moving systems de-

scribed by the coupled model consist of the dynamics of
both lateral and longitudinal vibrations. Hence, the cou-
pled model is suitable for the cases wherein the distance
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between the two support points is considerable. Thurman
and Mote [18] are recognized as pioneers in the develop-
ment of a comprehensive dynamic model for a translating
strip. In their paper, the following equations of motion
describing an axially moving system were established.

ρA
(
wtt +2vwxt + v2wxx

)
−EAwxx +EIwxxxx

+(EA−P0)
(1+ux)

2wxx − (1+ux)wxuxx

[(1+ux)2 +w2
x ]

3/2 = 0,

(15)

ρA(utt +2vuxt + v2uxx)−EAuxx

− (EA−P0)
(1+ux)wxwxx −w2

xuxx

[(1+ux)2 +w2
x ]

3/2 = 0. (16)

The boundary conditions for a simply supported coupled
model are given as follows.

u(0, t) = u(l, t) = 0,

w(0, t) = w(l, t) = 0,

wxx(0, t) = wxx(l, t) = 0. (17)

In their work, the total strain is the synthesis of the elas-
tic strain energy due to the axial force stored in the strip
εT =P0/EA and the disturbance strain εd(x, t) given by the
nonlinear geometric relation:

εd (x, t) =
√

w2
x +(1+u2

x)−1. (18)

To facilitate the dynamical analysis, Wang and Mote
[124], Riedel and Tan [125], Sze et al. [126], Ding and
Chen [15], Ghayesh et al. [127, 128] and Ghayesh [129],
Yang and Zhang [130], and Suweken and Van Horssen
[131] subsequently developed simpler models using the
approximated disturbed strain. The coupled equations in-
troduced in [129], wherein the disturbed strain is ignored,
are represented as follows:

ρA(wtt + v̇wx +2vwxt + v2wxx)−P0wxx

−EA
[

wx

(
ux +

1
2

w2
x

)]
x
+EIwxxxx = 0, (19)

ρA(utt+v̇(1+ux)+2vuxt+v2uxx)−EA
(

ux+
1
2

w2
x

)
x

= 0. (20)

Furthermore, another coupled equations utilizing the Tim-
oshenko beam theory that describes the longitudinal, lat-
eral, and rotational motions of a flexible body were
also developed by Ghayesh and Amabili [132, 133] and
Farokhi et al. [134] namely:

ρA(utt +2vuxt + v2uxx)−EA
(

ux +
1
2

w2
x

)
x
= 0,

(21)

ρA(wtt +2vwxt + v2wxx)−P0wxx

Fig. 6. Axially moving plate [214].

−EA
[

wx

(
ux +

1
2

w2
x

)]
x
+κGA(wx +θ)x = 0,

(22)

ρI(θtt +2vθxt + v2θxx)−EIθxx −κGA(wx +θ) = 0.
(23)

2.1.4 Plate model (3 PDEs)
When the width of the moving strip is sufficiently large,

the system should be modeled using a two-dimensional
plate equation, and its vibrations should be considered
along both i- and k-axis (Fig. 6). Equivalently, the dis-
placements are functions of the spatial coordinates x and
z, and time t.

The earliest study from this aspect by Ulsoy and Mote
[135] established the dynamic model for a blade of a band
saw and proposed approximate solutions based on both
the classical Ritz and finite-element-Ritz methods. In an-
other work on an axially moving plate, Marynowski and
Kolakowski [27] introduced a mathematical model for a
translating orthotropic plate with width b and thickness
h. In their study, both in-plane displacements (i.e., lon-
gitudinal and lateral displacements) and out-of-plane dis-
placement (i.e., transverse displacement) were considered.
First, the following strain–displacement relations were es-
tablished.

εX = ux +0.5w2
x , κX =−wxx,

εZ = ηz +0.5w2
z , κZ =−wzz,

εXZ = 0.5(uz +ηx +wxwz), κXZ =−wxz, (24)

where εX, εZ, and εXZ represent the strain-tensor compo-
nents of the middle plate in the x and z coordinates, and
κX, κZ, and κXZ are the curvature modification and torsion
of the middle surface of the plate. Now, the stress func-
tions σX, σZ, and σXZ and bending moments MX, MZ, and
MXZ are given as follows:

σX =
EXh

1−χυ2 (εX +χυεZ) ,

σZ =
EZhχ

1−χυ2 (εZ +χεX) ,

σXZ = 2GhεXZ, (25)
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MX =− EXh
12(1−χυ2)

(wxx +χυwzz) ,

MZ =− χEZh
12(1−χυ2)

(wzz +υwxx) ,

MXZ =−Gh3

6
wxz, (26)

where G denotes the shear modulus of the plate; EX and
EZ are Young’s moduli of the plate along the i- and k-
axis, respectively; the ratio χ = EX/EZ represents the or-
thotropic factor of the plate, and υ is the Poisson’s ratio.
By Hamilton’s principle, the following governing equa-
tions describing the vibration of an axially moving plate
are obtained as follows [27]:

ρh(wtt +2vwxt + v2wxx)−MXxx −2MXZxz −MZzz

−(σXwx)x−(σZwz)z−(σXZwx)z−(σXZwz)x=F,
(27)

ρh(utt +2vuxt + v2uxx)−σXx −σZz = 0, (28)

ρh(ηtt +2vηxt + v2ηxx)−σXx −σZz = 0, (29)

where F is the lateral loading. In the case that the plate
does not experience any deflection and torque at the
boundaries, the following boundary conditions are given.

w(0,z, t) = w(l,z, t) = 0,

MZ(0,z, t) = MZ(l,z, t) = 0. (30)

2.2. Approximated model (ODEs)
To facilitate the use of certain techniques used to solve

discrete problems to the analysis and control of the vibra-
tion of axially moving systems, the approximate model
described by a finite set of ODEs is usually established by
discretizing the PDE model. In Wickert and Mote [136],
an approximate model for a moving string was developed
using the classical Galerkin method, wherein the authors
assumed that the lateral displacement of the string takes
the following form,

w(x, t) =
n

∑
i=1

qi(t)φi(x), (31)

where qi(t) represents the set of generalized displace-
ments of the string, and φi(x) represents the set of basis
functions given as follows:

φi (x) = sin
(

iπx
l

)
. (32)

Subsequently, the set of n coupled ordinary differential
equations was expressed in the following general form:

Mq̈+Cq̇+Kq = 0, (33)

where M, C, and K are global matrices corresponding to
the mass, damping coefficient, and string stiffness, respec-
tively, and q̈, q̇, and q indicate the string acceleration, ve-
locity, and deflection vectors, respectively. Approximate
models for the moving beam can also be expressed in
a similar form based on the Galerkin method [17, 102,
115,137–139]. Furthermore, the Galerkin method was ex-
tended to the two-dimensional model, that is, axially mov-
ing plates [27, 140–142]. The lateral displacement of an
axially moving plate can be assumed to take the following
form:

w(x,y, t) =
ni

∑
i=1

nk

∑
j=1

qi j(t)φi(x)ψ j(z), (34)

where qi j(t) are unknown functions of time; φi(x) and
ψ j(z) are basis functions; and ni and nk represent the to-
tal number of basis functions corresponding to the lateral
displacements along the i and k directions, respectively. In
the extended Galerkin method, basis functions are only re-
quired to satisfy the displacement conditions at the bound-
aries (i.e., the essential boundary condition), and it is not
necessary to meet the force and stress conditions at the
boundaries (i.e., the natural boundary condition). The ba-
sis function φi(x) can be chosen similarly to the case of a
simply supported beam, whereas ψ j(z) has the same form
as the case of a free-free beam. According to the extended
Galerkin method and (34), the approximate model for ax-
ially moving plates that are described by a set of ni × nk

coupled ODEs can be expressed in the matrix form.

3. CONTROL BASED ON ODE MODEL

In early studies on vibration suppression of axially
moving systems, the PDEs describing the system vibra-
tion were often converted to a low-dimensional system of
ODEs to facilitate the use of the available classical control
methods. The design of the control law and its stability
analysis were performed based on the ODE model.

3.1. Model-based feedback control
One of the earliest studies devoted to the vibration con-

trol of an axially moving system based on the reduced-
order model was performed by Ulsoy [42]. In this paper,
a pointwise controller for suppressing the lateral vibration
of a moving string was presented. The approximate model
described by a matrix form (i.e., similar to (33)) was ex-
pressed in the state space form as follows [42]:

Ẋ = AX+Bf, (35)

where f is the control input vector,

X =

[
q
q̇

]
, A =

[
0 I

−M−1K −M−1C

]
,

B =

[
0

M−1

]
. (36)



Control of Axially Moving Systems: A Review 2989

Fig. 7. Vibration control scheme for axially moving sys-
tem [42].

Using the observer-based state feedback control method,
the author introduced a control scheme, as shown in Fig. 7.
Furthermore, the following equation of the closed-loop
system was obtained.

Ẋ = (A−BT1GT2)X, (37)

where T1 and T2 are the matrices that correspond to the
locations of the actuators and sensors, respectively, and G
is the control gain matrix that depends on the axial ve-
locity. The closed-loop system with the designed con-
troller, however, can lead to a spillover phenomenon be-
cause the reduced-order model ignores the high-frequency
modes although the sensors are affected by these modes
(i.e., observation spillover) that are excited by the actua-
tors (i.e., control spillover) [143]. The spillovers due to
the use of a reduced-order control in axially moving sys-
tems can cause instability. In their study, the authors also
discussed the effects of observation and control spillovers
and the enhancement of control performance via the use
of a comb filter to eliminate the observation spillover.

3.2. Sliding mode control
The variable structure control (VSC) and its particular

type—sliding mode control (SMC)—is recognized as a
powerful tool in the design of a robust controller. Contrary
to the conventional feedback control system that only has
a fixed control structure throughout the control process,
the VSC system is a synthesis of subsystems with separate
control structures wherein each subsystem corresponds to
a specified region of system behavior [144]. As an ex-
ample of a typical VSC, the sliding mode control is char-
acterized by a switching function and a feedback control
law. The switching function is chosen so that the sliding
motion satisfies the required specifications. The control
law, in which the control gains switch during the control
process, is designed to move the systems’ state towards
the vicinity of the switching function. A remarkable trait
of the sliding mode control is its robustness. The response
of the closed-loop system is insensitive to parameter vari-
ations: Therefore, the sliding mode control is regarded as
a useful robust control technique.

In the early works on vibration suppression of an ax-
ially moving system based on a sliding mode control,
Fung and Liao [48] attenuated the lateral vibrations of a

translating string with a periodically varying tension and
viscous damping based on the sliding mode technique
and the independent model space control (IMSC). First,
they adopted the Galerkin method to obtain ODEs for the
string. The ODE model expressed in a matrix form was
then transformed into the state space form. Based on this
model, the reaching law method was used to design the
sliding regime to satisfy the reaching condition. To re-
duce the numbers of sensors and actuators, they designed
a controller to deal with a limited set of modes that only
contained the modeled modes. The controller included
two components: (i) A state estimator in which the in-
puts are sensor measurements, and the output is an esti-
mated state. A modal filter [145] was employed to de-
termine the modal displacements and velocities based on
the displacement and velocity measured by the sensors;
(ii) a linear state variable feedback control based on SMC
and the estimated state to produce the control forces. Fur-
thermore, the IMSC method (i.e., each mode is indepen-
dently controlled) was combined with the SMC method
to design a controller. Based on the numerical results,
the authors concluded that the created control force could
quickly reduce the lateral vibration of the string. More-
over, the closed-loop response of the system was insensi-
tive to parametric uncertainty and external disturbances.

Later, Fung et al. [146] improved the controller based
on the usual VSC using integral and proportional com-
pensation: Consequently, two novel control methods were
introduced—integral variable structure control (IVSC)
and proportional variable structure control (PVSC). In ac-
cordance with the former, an integral compensator was
utilized along with the VSC controller to deal with time-
history errors, whereas the PVSC controller is a synthe-
sizer of the VSC controller with a proportional gain. The
authors then combined these two controllers in turn with
the conventional VSC controller and two new controllers
were referred to as the modified IVSC controller and the
modified PVSC controller, respectively. The concept as-
sociated with the use of the modified IVSC and PVSC
controllers is to switch the controllers at a suitable time to
exploit their advantages, to enhance control performance.
The modified IVSC controller employed the IVSC con-
troller to improve its transient response as well as the VSC
controller to minimize overshoot. The main traits of the
modified PVSC controller include the reduction of the ris-
ing time of the PVSC controller and the stabilization of the
steady-state responses by the VSC controller. The authors
also demonstrated the effectiveness of these controllers in
the alleviation of the influence of the lateral vibration of
both linear and nonlinear moving strings.

In addition to the axially moving string with constant
length, the sliding mode control was also used for vibra-
tion suppression of strings with varying length in Fung et
al. [39]. This study will be introduced in detail in Section
6.
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Fig. 8. H∞ control scheme [49].

3.3. H∞ control
Another robust control method called the H∞ method

has also been employed for vibration control in an axially
moving system in the presence of disturbances by Wang
et al. [49]. In this study, the lateral vibration of a mov-
ing cantilever beam with tip mass was suppressed via a
noncontact magnet vibration exciter. The authors used the
Galerkin method to convert the PDE model that describes
the system into an ODE model, and the state-space equa-
tions were then obtained by transforming the ODE model.
The state-space equations describe a control scheme based
on an H∞ close-loop system (Fig. 8) given as follows [49]:

Ẋ = AX+B1d+B2u,
Z = C1X+D1u,
Y = C2X+D2d. (38)

In this case, X =
[
q̇ q

]T , d is exogenous input including
the reference signal and disturbances, u is the control in-
put, Z denotes the error signal, Y is the sensed output, and
A, B1, B2, C1, C2, D1, and D2 are the state-space matri-
ces. The concept of this method is to design controller H
to minimize the H∞ norm of the closed-loop transfer func-
tion of the system. An experimental system was employed
to prove the effectiveness of the designed controller, and
the results indicated that the response of the system under
the proposed controller was excellent.

4. CONTROL BASED ON PDE MODEL

As previously indicated, control strategies based on the
ODE model can lead to the spillover phenomenon. To
address this problem, researchers have investigated the use
of the PDE model in the design of a controller for axially
moving systems. In this section, control methods using
the PDE model directly will be introduced.

4.1. Frequency domain analysis
4.1.1 Transfer function method

According to the distributed transfer function method
originated by Butkovskiy [147], the dynamic behavior of
a closed-loop system can be predicted based on the infor-
mation included in the transfer function. Accordingly, by
analyzing the transfer function, the control law of axially
moving systems can be designed in the frequency domain
[148–152].

In the pioneering studies on the development of a sta-
ble feedback controller for vibration suppression of axi-
ally moving strings, Yang and Mote [150,152] established
a transfer function containing the dynamics of the string,
sensors, actuators, and control law. In their studies, the
following control force was formulated in the frequency
domain [150]:

f (x,s) = δ (x− xa)Ga(s)Gc(s)Gs(s)w(xs,s), (39)

where s is the Laplace variable, Ga(s) and Gs(s) are the
transfer functions of the actuator located at xa and the sen-
sor at xs, respectively, and Gc(s) is the transfer function of
the designed controller. Stability analysis was performed
in the frequency domain by investigating the root loci of
the closed-loop system. Consequently, the two stability
criteria were established. Based on these stability criteria,
the feedback controllers were designed for two cases; col-
located and non-collocated positions of the sensors and
actuators. In the latter, the time delay technique can be
employed to handle the influence of the phase lag effect on
the on-line vibration control. Besides, it was shown that
the problem of spillover instability could be solved and
all the modes of vibration can be stabilized. In Yang and
Mote [150], the practicability of the proposed controller
was experimentally validated. At the approximately same
time, Yang and Mote [151] introduced a feedback control
for a translating string based on both the stability criteria
determined via the root loci method and the generalized
Nyquist stability criteria. Later, Yang [150] used an exact
form method to analyze transfer functions of constrained
axially moving beams.

4.1.2 Wave cancellation method
The concept of the wave cancellation method is to atten-

uate the vibration energy of axially moving systems by ab-
sorbing traveling waves. In this method, the system can be
stabilized by eliminating all reflected waves and prevent-
ing the accumulation of vibration energy. This method
was used to decay vibrations via the pointwise technique
[50, 51, 63] and the boundary control technique [37].

With regard to the implementation of the wave cancel-
lation method, Chung and Tan [37] established bound-
ary feedback control laws to suppress the oscillations of a
moving string subject to external forces in two cases: un-
constrained and constrained forces. In their investigation,
the exact closed-form that describes the transfer function
of the closed-loop system that contains the dynamics of
the string, sensors, actuators, and a feedback boundary
control law was derived and analyzed. According to the
wave cancellation method, the boundary control force is
expressed in the frequency domain as follows [37]:

f (x,s) =−λ1

(
1−

(
v

ρ
P

)2
)

se−sλ1(1−xs)w(xs,s),

(40)
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where λ1 is the proportional gain and xs is the location of
the sensor. Subsequently, based on transfer function anal-
ysis, the authors showed that the controller could elim-
inate all reflected waves at the right boundary and the
system had no pole in the right half-plane under the pro-
posed control law: Hence, the controlled system was sta-
ble with no resonance. Based on numerical simulations,
they demonstrated the effectiveness of the wave cancella-
tion method in vibration suppression of an axially moving
string. Ying and Tan [51] presented a controller based on
the pointwise control technique for reducing the oscilla-
tion in a region near the boundary (i.e., the downstream
part of a string) of an axially moving string with excita-
tions. In their paper, the following pointwise control force
was designed:

f (x,s) =
−2s[w(x1,s)−w(x2,s)e−λ1(x2−x1)]eλ2(a−x1)

1− e(λ2−λ1)(x2−x1)

−C(s)
2sw(x3,s)

1− e(λ2−λ1)(1−x3)
. (41)

Control force (41) was determined via the synthesis of two
controllers; a feed-forward controller (i.e., the first term)
and a feedback controller (i.e., the second term). The feed-
forward controller consisting of a velocity sensor and time
delay functions was employed to eliminate the vibrations
of the string, whereas the feedback controller, which acts
as a low-pass filter was designed to suppress the oscilla-
tions due to undesired disturbances in the downstream re-
gion. The numerical results showed that the controllers
worked effectively under both sinusoidal and random ex-
citations.

In all the works above, the moving string was investi-
gated only for the case of fixed boundaries, and the stabil-
ity of the feed-forward control was not considered. Con-
cerning a moving system with unfixed boundary condi-
tions, Tan and Ying [50] discussed wave cancellation con-
trol for an axially moving string in which the general
boundary conditions were considered. A pointwise feed-
forward controller using two control forces was designed
to suppress the vibration of the string in both the upstream
and downstream regions. Furthermore, to enhance the sta-
bility and robustness of the controlled system, they supple-
mented control forces with a stabilization coefficient with-
out changing the controller structure. The effectiveness
of the proposed controller was experimentally validated
on both the moving belt drive and the automotive engine
chain drive systems. In another study on wave cancella-
tion control, Zhang and Chen [63] designed a feedback
control law for a serpentine belt system. In their paper,
the serpentine belt-driven system was modeled as a mov-
ing string, and a tensioner arm was used to suppress the
lateral vibration of the string. The equations of motion
that contain the dynamics of the string and tensioner were
transformed using the Laplace transform, and the resulting
equations were used to design the controller.

4.2. Time-domain analysis
4.2.1 Lyapunov method

The Lyapunov method has received considerable atten-
tion in the development of controllers for axially moving
systems in either linear or nonlinear formulation [153].
According to the Lyapunov method, the stability of a sys-
tem can be analyzed based on the concept of energy atten-
uation; namely, the system is stable when its total energy
is continuously decaying. The main point of the design of
a controller is to establish an appropriate Lyapunov func-
tion candidate associated with the system energy. More-
over, the control law is designed in such a way that the
candidate function becomes a Lyapunov function for the
system (i.e., the time derivative of the candidate is nega-
tive semi-definite or negative definite). As such, the stabil-
ity of the system under the designed controller is naturally
archived.

Based on the Lyapunov direct method, Lee and Mote
[41] investigated the implementation of right/left bound-
ary control laws to suppress the vibration energy of an ax-
ially moving string. In their paper, the total mechanical
energy of the system was used as a Lyapunov functional
candidate as follows:

V (t) =
1
2

ρ
∫ l

0
(wt(x, t)+ vwx(x, t))2dx

+
1
2

P0

∫ l

0
wx(x, t)2dx. (42)

Based on the Lyapunov method, boundary control forces
were proposed to stabilize the vibration of the string via
passive control using a viscous damper or velocity feed-
back active control. For example, the right force control
law with the local velocity feedback was expressed as fol-
lows [41]:

f (t) =−k f wt(l, t), 0 < k f < 1/v, (43)

where wt(l, t) is the lateral velocity at the right boundary
of the string. Also, the right force control law with the
material velocity feedback was given as follows [41]:

f (t) =−kd(vwx(l, t)+wt(l, t)), kd > 0, (44)

where wt(l, t) is the slope at the right boundary of the
string. Furthermore, they also obtained the time-optimal
control gain for the maximum dissipation of vibration en-
ergy by minimizing the reflected energy at the boundaries.
The maximum time to decay the vibration energy of the
system to zero was also archived. The proofs of asymp-
totic and exponential stabilities of the closed-loop system
were then pursued based on the invariance principle and
the semigroup theory. The authors showed the effective-
ness and optimality of the designed boundary control via
numerical results using a finite differential scheme.

Vibration suppression of axially moving Kirchhoff
strings with varying tension was presented in [154–
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158]. In these studies, the lateral vibration of translating
Kirchhoff strings with differential non-constant tensions
was suppressed by implementing linear boundary control
forces. Linear control inputs, which were the negative
feedback of the lateral velocity at the string boundary,
were given as follows [154]:

f (t) =−kwt(l, t), k > 0. (45)

The stability of the system controlled by (45) was then
verified based on the Lyapunov method. Subsequently, Li
et al. [159] expanded the results of the previous works by
using the exact strain to describe the geometric nonlin-
earity due to the finite lateral deformation. The authors
implemented the control law (45) on a string boundary to
reduce the lateral vibrations of the system, and they also
showed that these lateral vibrations exponentially tend to
zero as time tends to infinity. An extension of the adap-
tive boundary control based on the negative velocity feed-
back control law to dissipate the vibration of the Kirchhoff
string was also investigated by Kim et al. [160].

In another study on the implementation of the Lyapunov
method, Fung et al. [161] proposed a linear boundary
feedback control law to suppress the linear vibration of a
damped moving string with a mass-damper-spring (MDS)
mechanism located at the right boundary. According to the
Lyapunov method and the semigroup theory, they proved
that the total mechanical energy of the controlled system is
exponentially attenuated. Concurrently a study on nonlin-
ear vibration suppression of a damped moving string with
MDS was performed by Fung et al. [162]. In this work,
they considered the influence of axial deformation on the
potential energy of the string. Under this consideration,
the lateral vibration of the string became nonlinear, and
the vibration suppression was performed by applying the
boundary control force f (t) on the MDS system as follows
[162]:

f (t) =


− kwt(l, t)−δAwx(l, t)4/wt(l, t),

wt(l, t) ̸= 0,

− kwt(l, t), wt(l, t) = 0,

(46)

where δA is the linear/nonlinear coefficient of the feed-
back control law. The stability of the system under the
controller above was verified based on the following Lya-
punov function candidate [162].

V (t) =
1
2

∫ l

0

[
ρ(wt(x, t)+ vwx(x, t))2 +P0wx(x, t)2

+
1
4

EAwx(x, t)4
]

dx+
1
2
[mwt(x, t)2 + kew(x, t)2],

(47)

where m and ke are the mass and stiffness of the MDS.
Based on the investigated results, the authors concluded
that the system using the linear control law (i.e., δA = 0)

was asymptotically stable: However, they could not prove
that this system is exponentially stable due to the presence
of nonlinear terms. To address this problem, the nonlinear
feedback control law that dominates the nonlinear terms
was used to decay the vibration. Under the nonlinear con-
trol law, both the asymptotic and exponential stabilities of
the closed-loop system were proven.

These studies focused on the suppression of only the
lateral vibration of a system without examining the longi-
tudinal vibration. The use of the Lyapunov method to de-
sign a controller to suppress the longitudinal vibration of
axially moving systems was investigated in several stud-
ies [163–165]. Furthermore, Nguyen and Hong [166]
controlled both lateral and longitudinal vibrations and the
translating velocity of an axially moving string system by
regulating the control torques of two rollers of the system
and applying an external control force via a hydraulic ac-
tuator at the right boundary. The authors established a cou-
pled PDE-ODE model containing longitudinal and lateral
oscillations, axial velocity, and the motion of the actua-
tors. Based on this model, they observed that vibration
suppression and velocity control are coupled because the
control torques of the two rollers affected the axial ve-
locity and the longitudinal dynamics as well as the ten-
sion. Also, the lateral dynamics of the string was affected
by the longitudinal displacement. A control scheme us-
ing the following control torques and control force was
designed to suppress both longitudinal and lateral oscilla-
tions as well as to control the axial velocity to track the
desired profile [166].

f (t) =− k1k2lP0

2(k1v+2k2l)2 wt(l, t)−
k2lP0

2(k1v+2k2l)
wx(l, t)

−ρv2wx(l, t)+(ca −ρv)wt(l, t)

− (v+2k2l/k1)mwxt(l, t), (48)

τ1(t) =
EAR
k1v

{
k1v(Tb1 −T0)

EA
+ k2lEAux(l, t)wx(l, t)2

− k2EA
2l

(
1− 1

2kτ1

)
u(l, t)2− EA

2lk1
u(l, t)ut(l, t)

− k1(v+ut + vux)(ux +w2
x/2)

∣∣∣x=l

x=0

+
Jk1

R2

[(
k1v
EA

−ut(0, t)
)

utt(0, t)−ut(l, t)utt(l, t)
]}

− k2EAlux(l, t)2 + k1vux(0, t))

+ k1mwx(l, t)wxt(l, t + k2ρl(wt(l, t)

+ vwx(l, t))2 − ut(0, t)2 +ut(l, t)2

kτ1

− k2ρl(v+ut(l, t)+ vux(l, t)), (49)

τ2(t) = (ρlR+2J/R)v̇d − kτ2(v− vd)− τ1(t)

+(Tb1 −Tb2)R, (50)

where k1 and k2 are the positive constants, kτ1 and kτ2
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are the control gains, J and R are the inertia moment
and the radius of the two rollers, respectively, Tb1 and
Tb2 are constants that are related to the material tensions
in the respective adjacent spans, ca is the damping coef-
ficient of the actuator, and vd denotes the desired axial
velocity. The asymptotical stability of the system under
the designed control law was proven using the Lyapunov
method, wherein the Lyapunov function candidate was de-
fined based on the modified total mechanical energy of the
string as follows [166]:

V (t) =k1

{
1
2

∫ l

0

[
ρ (v+ut + vux)

2 +ρ (wt + vwx)
2

+EAu2
x +P0w2

x +
1
4

EAw4
x

]
dx+

1
2
(v− vd)

2

+
EA
4l

u(l, t)2+
m
2

(
wt(l, t)+

(
v+

2k2l
k1

)
wx(l, t)

)2

+
mwx(l, t)2

2
+

J
2R2

(
ut (0, t)

2 +ut(l, t)2
)

+
1
2

l∫
0

EAuxw2
xdx


+2k2ρ

∫ l

0
x[ux(v+ut+vux)+wx(wt+vwx)]dx.

(51)

Apart from the studies on vibration reduction for trans-
lating elastic materials, control and stability analyses for
axially moving viscoelastic materials were also investi-
gated in [167–174]. In these studies, the integral consti-
tutive law — Boltzmann’s principle — was employed to
describe the viscoelastic material properties. Therefore,
axially moving systems were described using integro-
partial differential equations. Kelleche et al. [173, 174]
demonstrated that the stabilization of a viscoelastic string
could be guaranteed due to the extra damping produced by
the string’s movement. Subsequently, Kelleche and Tatar
[172] proposed a boundary control of a moving viscoelas-
tic Kirchhoff string using a hydraulic actuator at the right
boundary as follows:

f (t) = (ηa − v)wt(l, t)−mvwxt(l, t), (52)

where m and ηa are the mass and damping coefficient
of the hydraulic actuator. The uniform stability of the
controlled system was proven via stability analysis and
the multiplier method. Subsequently, Kelleche and Tatar
[171] introduced a boundary controller for a translating
beam and showed that the system controlled by the pro-
posed controller was exponentially stable. In another
study, an exponentially stable adaptive boundary control,
in which an adaptive technique was employed to han-
dle the boundary disturbance, was designed by Kelleche
[167]. After that, Kelleche and Saedpanah [169] expanded
the work in [167] to the string under a spatiotemporally

varying tension. In their work, stability analysis and the
multiplier method were also employed to evaluate the ex-
ponential stability of the system under the designed adap-
tive boundary control law.

4.2.2 Adaptive control

In many practical systems, difficulties may be encoun-
tered in the control system design due to the presence of
system uncertainties. Their presence can negatively in-
fluence control performance as well as causing instabil-
ity. One of the widely discussed techniques to address
this problem is adaptive control [175–180]. The central
concept of adaptive control is to estimate the unknown pa-
rameters online using the signals available in the system,
followed by the design of an adaptive controller based
on the estimated parameters. Two ways to develop adap-
tive controllers are via the model-reference and self-tuning
adaptive control. In accordance with the model reference
adaptive control, a reference model is first established,
and a controller is then designed using an adaptation law,
wherein this law adjusts controller parameters such that
the error between the response of the controlled real model
and the reference model converges to zero. Contrary to the
model-reference adaptive control, the self-tuning adaptive
control estimates the unknown parameters in the plant us-
ing the input/output data online (i.e., tune the system pa-
rameters first), and then use the estimated parameters in
an established control method.

1) Model reference adaptive control
De Queiroz et al. [175] pioneered the implementation

of an adaptive technique for vibration control of axially
moving systems with unknown parameters. In this study,
the authors investigated a hybrid system including an axi-
ally moving string and a mechanical guide located within
the string span, in which several system parameters (e.g.,
guide mass and inertial and string tension) were unmea-
sured. To attenuate the lateral vibration of the string, a
control force and a control torque or equivalently, two con-
trol input forces f1(t) and f2(t) were applied to the string
via the mechanical guide. The Lyapunov method was first
used to design an exponentially stable control law based
on exact knowledge of the system parameters (i.e., guide
mass m, guide inertial J, string density mass ρ , and string
tension P0), namely,

F =−A(t)ΘΘΘ−Ks

[
wt(l1, t)+wx(l1, t)
wt(l2, t)+wx(l2, t)

]
. (53)

In this case, we have:

A(t) =
[

A11 A12 A13 A14

A21 A22 A23 A24

]
, (54)
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where

A11 =
wxt (l1, t)−wxt (l2, t)

4
,

A12 =
wxt (l1, t)+wxt (l2, t)

(l2 − l1)
2 ,

A13 = wt (l1, t)−wt (l2, t) ,

A14 =−w(l1, t)−w(l2, t)
l2 − l1

−wx (l1, t) ,

A21 =
wxt (l1, t)−wxt (l2, t)

4
,

A22 =−wxt (l1, t)+wxt (l2, t)

(l2 − l1)
2 ,

A23 = wt (l1, t)−wt (l2, t) ,

A24 =
w(l1, t)−w(l2, t)

l2 − l1
−wx (l2, t) .

(55)

Ks ∈ R2×2 is a positive-definite diagonal matrix that con-
tains the control gains, and Θ denotes the vector of un-
known parameters, namely,

ΘΘΘ =
[

m+ρ(l2 − l1) J+ ρ(l2−l1)3

12 ρv P0

]
. (56)

The control law was redesigned using the model-reference
adaptive control scheme to compensate for the uncertain-
ties associated with these system parameters. The re-
designed control law is given as follows:

F =−A(t)Θ̂ΘΘ−Ks

[
wt(l1, t)+wx(l1, t)
wt(l2, t)+wx(l2, t)

]
, (57)

where Θ̂ΘΘ is the vector of the estimated parameters that
were determined online based on the following adaptive
law:

˙̂ΘΘΘ = KaAT(t)
[

wt(l1, t)+wx(l1, t)
wt(l2, t)+wx(l2, t )

]
, (58)

where Ka is the adaptive gain matrix. They also demon-
strated the asymptotic stability of the system under the
new controller and validated the control law for its sta-
bility. Li and Rahn [176] used an adaptive control scheme
to control the lateral vibration of a translating beam. In
their paper, the beam was divided into two spans — a
controlled span and an uncontrolled span subjected to a
distributed bounded disturbance — using a pivoting roller
actuator located within the beam. Based on the Lyapunov
method and the model reference adaptive control, they
presented an asymptotically stable adaptive controller to
isolate the controlled span from disturbances in the un-
controlled span; namely, to dissipate the undesired lat-
eral vibration in the controlled span. They also performed
experiments to verify the effectiveness of the proposed
controller for vibration suppression. In their subsequent
study, Li et al. [177] extended the adaptive control method

in [176] to isolate the controlled span from both dis-
tributed disturbance and boundary disturbance in the un-
controlled span. The experimental results demonstrated
the efficiency of the designed adaptive controller. Chen
and Zhang [55] investigated vibration suppression in a
similar model, wherein a tensioner arm was used instead
of a mechanical guide. The tensioner arm, which was a
part of a serpentine belt drive system, included a tensioner
spring with unknown stiffness, a rotation arm with uncer-
tain inertia, and a roller. A control law was established
based on the Lyapunov method and adaptive control tech-
nique, and the asymptotical stability of the controlled sys-
tem was also subsequently proven.

2) Self-tuning adaptive control
Fung et al. [40] investigated the control scheme for a

translating string with a mass-spring-damper mechanism
at the boundary using the self-tuning approach. In this
paper, the authors succeeded in extending the adaptive
computed-torque control algorithm used in the lumped pa-
rameter system to handle the distributed parameter sys-
tem; namely, the axially moving string system. Based
on these algorithms, they developed an adaptive boundary
controller for vibration suppression and then proved that
the designed controller asymptotically decayed the lateral
oscillation of the system. The control law based on the
adaptive computed-torque controller is given as follows
[40]:

f (t) =− m̂(k1wt(l, t)+ k2w(l, t))+(ĉe − ρ̂v)wt(l, t)

+ k̂ew(l, t)+(P̂0 − ρ̂v2)wx(l, t), (59)

and adaptive laws can be stated as follows:

˙̂m =
ka1

4m̂
Ψ(t)wtt(l, t),

˙̂ce =
ka2

4m̂
Ψ(t)wt(l, t),

˙̂ρ =− ka3

4m̂
Ψ(t)

[
vwt(l, t)+ v2wx(l, t)

]
,

˙̂P0 =
ka4

4m̂
Ψ(t)wx(l, t),

˙̂k =
ka5

4m̂
Ψ(t)w(l, t),

˙̂c = 0,

(60)

where

Ψ(t) = wd(t)−w(l, t)+2(wdt(t)−wt(l, t)) . (61)

m, ce, and ke are the mass, damping, and stiffness of the
mass-damper-spring system, respectively, c is the damp-
ing coefficient of the string, and wd(t) denotes the desired
trajectory. Considering (59)-(61), they concluded that the
obtained boundary control could be conveniently applied
in practice because the control input and the adaptive laws
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only require the displacement, velocity, and slope of the
string at the boundary.

3) Robust adaptive control
Adaptive control is a powerful technique for coping

with uncertainties for constant or slowly varying param-
eters. However, in the presence of unknown disturbance,
noise, and unmodeled dynamics, a controller based on
adaptive control can lead to instabilities due to the lack of
robustness of the adaptive controller [181]. In these situ-
ations, robust control that can deal with such disturbance,
noise, and unmodeled dynamics should be employed in
conjunction with adaptive control. In the studies of an ax-
ially moving system with unknown bounded disturbances,
robust adaptive control is often used to design the con-
troller. In these instances, robust control addresses the dis-
turbance rejection while the adaptive control is employed
to estimate the unknown parameter as well as the bound
of the disturbance.

In [44], an axially moving string with varying tension
was separated into two spans by a lateral force actuator
located within the string span. To decay lateral vibrations
in the controlled span of the string, the authors developed
a boundary control law based on the Lyapunov method.
Given that the oscillation in the uncontrolled span caused
disturbances in the actuator, a robust control strategy was
proposed to deal with these unknown disturbances: Con-
sequently, the following control law was designed [44].

f (t) =(ca − ρ̂v)wt(l, t)− ρ̂v2wx(l, t)+ k3wx(l, t)

− m
k1
(k1v+2k2l)wxt(l, t)− k4wt(l, t)− fd(t),

(62)

where the last term is determined using a robust control
strategy, namely:

fd(t) =
µ̂d(t)2 [k1wt(l, t)+(k1v+2k2l)wx(l, t)]

ε + µ̂d(t) |k1wt(l, t)+(k1v+2k2l)wx(l, t)|
,

(63)

with ε > 0, and the adaptive laws used to estimate the
bound of the disturbance and mass destiny of the string
are given by

˙̂µd(t) = ka2|k1wt(l, t)+(k1v+2k2l)wx(l, t)|
− ka1µ̂d(t), (64)

˙̂ρ = ka3v[wt(l, t)+ vwx(l, t)]

× [k1wt(l, t)+(k1v+2k2l)wx(l, t)]. (65)

Subsequently, based on the semigroup theory, the authors
showed that the system associated with the controller (62)-
(65) is asymptotically stable. Nguyen and Hong [182]
suppressed the vibration of a moving string with spa-
tiotemporal tension using a system that included a hy-
draulic actuator and a damper at the boundary. Based on

the Lyapunov redesign method, a robust adaptive bound-
ary controller in which adaptation laws were used to es-
timate the uncertain parameters (i.e., the density of the
string, actuator mass, and damping coefficient of the
damper) and the bound in the boundary disturbance was
presented. The authors proved that the controlled span
was asymptotically stable and demonstrated the effective-
ness of the controller via numerical results.

4.2.3 Optimal control
Besides the aforementioned control methods, optimal

control methods have also been successfully implemented
in axially moving systems. In [38], an optimal bound-
ary controller for a translating string with a mass-damper-
spring at the boundary was developed based on the output
feedback method and the maximum principle theory. The
control input design based on the output feedback control
law requires the values of the lateral displacement and ve-
locity at the boundary. By employing the maximum prin-
ciple theory that represents the controller in terms of an
adjoint variable, the designed control input only included
the adjoint variable at the boundary, the mass of the MDS
mechanism, the mass density, and the string length.

5. HYBRID CONTROL METHODS

Hybrid control methods have been developed based on
the synthesis of different control methods, in which the
advantages of each control method are exploited to en-
hance the control performance of the system. Concern-
ing the vibration suppression of axially moving systems,
several hybrid control approaches have been proposed
[59, 60, 183–186].

In [183], the authors applied a hybrid control approach
— fuzzy sliding mode control — for a flexible cable,
which was modeled as a string with varying length. In this
paper, the PDE model of the system was established and
converted to a multi-dimension dynamic system using the
third-order truncated Galerkin method. An active control
technique based on the combination of sliding mode con-
trol and fuzzy logic theory was then developed to suppress
the significant amplitude vibrations of the string. The ef-
fectiveness of this control strategy was illustrated with nu-
merical results of the string during extrusion. Chao and
Lai [59] and Huang et al. [60] combined the sliding mode
control with intelligent control techniques that were de-
veloped based on the emulation of the characteristics of
human intelligence; namely, fuzzy control and neural net-
works. Fuzzy control is a powerful tool for the develop-
ment of controllers when the system information is un-
certain, imprecise, or ambiguous, using logical rules and
fuzzy set theory. In the neural-networks method, artifi-
cial neural networks inspired by the human neural system
have been established. These artificial neural networks
are mathematical models with learning capacity that can
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be employed to determine the input-output relationship
of a system. In Huang et al. [60], a sliding-mode con-
trol law was first developed to control the lateral vibra-
tions of an axially moving string via the variation of the
string’s tension. They also utilized two intelligent control
approaches—fuzzy sliding-mode control and fuzzy neu-
ral network to handle the discontinuity and non-analyticity
of the control input when the vibration is small. In these
fuzzy logic-based approaches, the switching function and
its derivative were used as inputs while a tension variation
was considered as the output. Chao and Lai [59] also de-
signed a boundary controller based on these approaches
for vibration control of a translating string with a mass-
damper-spring at the boundary. In another work, Ma et al.
[185] used a fuzzy PD controller to suppress the vibrations
of a translating cantilever beam. Subsequently, Ma et al.
[186] extended this approach to a non-uniform cantilever
beam.

Apart from the aforementioned studies, the combina-
tion of adaptive control with other methods to handle
parametric uncertainties has also been received consider-
able attention. For example, Fung et al. [40] developed
an adaptive computed torque control, whereas Yang et al.
[44] designed a robust adaptive control based on the Lya-
punov method. These works were introduced in detail in
the previous section.

6. CONTROL APPLICATIONS

6.1. Lifting systems
Axially moving systems with varying length were in-

vestigated due to their wide applications in various sys-
tems such as elevator cables [39, 64, 182, 187], mining ca-
ble elevators [188, 189], container cranes [190, 191], and
drilling risers [192–194].

In one of the first studies on vibration control for axi-
ally moving systems with varying length, Fung et al. [39]
developed an active control strategy based on the sliding
mode control to suppress the lateral vibrations of a mov-
ing elevator cable using a permanent magnet (PM) syn-
chronous servo motor. A set of nonlinear partial differ-
ential equations including the dynamic model of a string
with varying length and the rotor of the motor were dis-
cretized using the Galerkin method with time-dependent
basis functions. The lateral vibration of the string was re-
duced by controlling the current of the PM synchronous
servo motor because the motion of the string and the rotor
was coupled. A sliding mode control algorithm in which
the sliding mode was designed by using the reaching law
method was used to control the current of the motor. As
a result, lateral vibrations could be suppressed. Based on
numerical analyses, the authors demonstrated the effec-
tiveness of the proposed controller. The lateral vibration
was suppressed, and the total energy of the elevator cable
was reduced during both extrusion and retraction, and the

system was also stabilized.
In another study in this aspect, Zhu and Ni [64] de-

signed a general control law for pointwise controllers to
decay the lateral vibrations of axially moving systems
with varying length and an attached mass-spring at the
boundary (i.e., both beam and string model). The expo-
nential stability of the system under the pointwise con-
troller was analyzed via the Lyapunov method. Further-
more, they also determined the optimal control gains for
the controller that led to the fastest rates of reduction of
the energy associated with the vibration of the controlled
system. Later, Zhu and Chen [187] presented a novel ex-
perimental method to verify the theoretical prediction for
the vibration behavior of the uncontrolled and controlled
elevator cables based on a scaled elevator.

In [190], the model of the translating string with vary-
ing length was utilized to analyze the vibration response of
a hosting cable used to host up and lower loads in a con-
tainer crane system. In this paper, a coupled PDE-ODE
model that described the dynamics of the hybrid system
including a trolley (gantry), a hosting cable, and a load
(i.e., container and spreader) was developed. Based on this
model, the authors designed a Lyapunov-based boundary
controller, wherein a control force was applied to the trol-
ley to move the load to the desired position and suppress
the lateral vibrations of the load when the trolley attained
the desired position. An experimental evaluation was per-
formed using the InTeCo 3D Crane system to validate
the feasibility and effectiveness of the proposed controller
and to compare the control performances of this controller
with the one proposed by Rahn et al. [195] in the lift-up
process. Subsequently, Ngo and Hong [191] investigated
a similar container crane system in which an unknown dis-
turbance force affected the trolley. Based on the synthesis
of the Lyapunov method and the adaptive control tech-
nique, an adaptive boundary control was designed to con-
trol the system in which an adaptive technique was em-
ployed to estimate the amplitude of the unmeasured dis-
turbance. The efficiency of the system with the designed
controller was also experimentally examined.

Another approach for the application of boundary con-
trol for axially moving systems with varying length was
proposed by He et al. [193]. In their work, the authors pro-
posed a boundary controller using two hydraulic actuators
to suppress the lateral vibrations of a vertical string with
a tip mass. A static hydraulic actuator was attached at the
top boundary, and a moving one with the same axial speed
as the tip mass applied a control force to the tip mass.
According to the integral-barrier Lyapunov function, it
was demonstrated that the controlled system is exponen-
tially stable when the disturbance is ignored. In the case
in which the boundary disturbances affect the tip mass, a
disturbance observer was employed. Subsequently, based
on the aforementioned work, He et al. [194] investigated
the vibration problem of a moving flexible drilling riser
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in a drilling system. In this paper, the drilling riser was
modeled as an axially moving beam with varying length,
and the authors only used a moving hydraulic actuator at-
tached to the tip mass to suppress lateral vibration. In a
later study, Gou et al. [192] designed a boundary control
for the drilling riser when subjected to both the bound-
ary disturbance and the distributed disturbances caused by
ocean currents.

In addition to the lateral vibration, the longitudinal vi-
bration control of an axially moving cable with varying
length was also investigated in [188, 189]. Wang et al.
[188] developed the equation of motion for a mining cable
used to lift up and down a cage. Subsequently, they pro-
posed an observer-based output feedback control law for
dissipating the longitudinal vibration of the cable using the
state observer. The exponential stability of the controlled
system was validated via Lyapunov analysis. Later, Wang
et al. [189] improved the results of their study by address-
ing the problem of anti-collocated disturbance caused by
airflow in the cage. They designed a disturbance estima-
tor to dissipate the harmonic disturbances with uncertain
amplitudes and frequencies. An output feedback control
was then designed based on the estimated disturbance for
suppressing the longitudinal vibration of the mining cable
with airflow disturbance.

6.2. Steel industry
Zinc galvanizing is the process of coating a steel strip

with zinc. In this process, the oscillation of the axially
moving steel strip can affect the uniformity of the zinc
layer coated on the strip surface. Therefore, to improve the
quality of the coated zinc, the undesirable vibration of the
strip should be suppressed. Implementation of a boundary
control on the translating steel strip in the zinc galvaniz-
ing line was introduced in [43, 44, 66, 196–201]. In these
situations, the steel strip can be modeled using a string
model [44,197,198], a beam model [43,196,199,200], or
a coupled model [66], depending on the considered dis-
tance between two boundaries.

In [66], the authors used a coupled model to describe
the strip: Therefore, both the lateral and longitudinal vi-
brations of the strip were investigated. The coupled equa-
tions of lateral and longitudinal vibrations were decou-
pled using the quasi-static stretch assumption [13]. Under
this assumption, the lateral oscillation of the strip can be
controlled using a single actuator. Based on the Lyapunov
method and the quasi-static stretch assumption, a nonlin-
ear right boundary control law was derived. It was also
proved that the axially moving strip is exponentially stable
under the proposed control law. In another study [196], the
steel strip was modeled as an Euler–Bernoulli beam, and
its nonlinear oscillations were decayed via passive damp-
ing and active control. A control force was applied at the
right boundary of the strip via a hydraulic touch-roll actu-
ator. Based on the Lyapunov method, a boundary control

law was implemented, wherein both the strip and actuator
dynamics were considered. The authors determined that
the designed control law only requires the measured value
of the strip slope at the right boundary and the damping
coefficient of the actuator, which is a design parameter
of the actuator. They also validated the exponential sta-
bility of the closed-loop system using the semigroup the-
ory. Later, Yang et al. [43] extended this work [196] by
considering the axial tension of the strip as a spatiotem-
porally varying function. In practical situations, the ten-
sion is a periodic bounded function in time due to the ec-
centricity of the support rollers. Also, the gravitational
force, which depends on the spatial variable, can be con-
sidered as an additional tension on the strip. The authors
developed a boundary control law for a translating beam
with spatiotemporal tension and subsequently verified the
asymptotic and exponential stability of the system. In a
later study, Kim et al. [198] revisited the system intro-
duced in the aforementioned studies. In their paper, vi-
bration control for an axially moving string with varying
velocity and tension was investigated. Based on the Lya-
punov method, a boundary control law was derived for
suppressing nonlinear vibrations and ensuring the expo-
nential stability of the closed-loop system. Furthermore,
robust adaptive boundary control for moving strips in the
zinc galvanizing line was also studied in [44, 199]. These
studies were introduced in the previous section.

6.3. Flexible electronics
High-speed roll-to-roll systems are widely employed in

applications such as rewinding processes, material trans-
port processes, and electrical device manufacturing pro-
cesses. In these processes, the productivity of the sys-
tem is often enhanced via the vibration suppression of the
moving substrate using the boundary, pointwise, or dis-
tributed control techniques. These techniques control the
vibration of moving material via the application of ex-
ternal forces. This can damage the surface of the mate-
rial under certain circumstances, particularly in the case
of roll-to-roll systems that manufacture large-area elec-
tronics devices. To overcome this problem, Nguyen and
Hong [202] proposed a new vibration control algorithm
based on the regulation of axial velocity. Unlike boundary
and distributed control techniques, the control technique
developed in this investigation directly used the system
parameter—axial velocity—to control the lateral vibration
of the beam. In their paper, the authors utilized the mov-
ing velocity to control a large-area high-throughput roll-
to-roll system that was described as an axially moving
beam. To quickly decay the vibration energy, they regu-
lated the axial velocity to track an appropriate profile. The
technique of using the moving velocity in their proposed
algorithm is considered innovative in the literature. By ob-
serving the state-space equation of the system, the authors
identified that the linear operator in their system depended
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on the axial transport velocity. This allowed the eigenval-
ues of the linear operator as well as the lateral vibrations
to be regulated by adjusting the axial velocity. As such, a
control algorithm based on the regulation of the axial ve-
locity was designed for quickly dissipating the vibration
energy and eliminating lateral oscillation when the axial
velocity is zero. The control algorithm adjusted the axial
velocity to track a velocity profile consisting of several
slopes instead of the conventional constant-deceleration
profile. To obtain this profile, an optimal control problem,
in which an energy-like function was considered as a cost
function, and the axial velocity was used as a control in-
put, was proposed and solved using the conjugate gradient
method [203]. The effectiveness of this new control algo-
rithm was also examined via numerical analysis. Later,
Nguyen and Hong [204] extended the control algorithm
by regulating the axial velocity to the two-dimensional
model; namely, the axially moving web model with lat-
eral vibration, depending on two different spatial vari-
ables. They successfully demonstrated that the proposed
vibration control algorithm effectively addressed the con-
trol problem of the translating web.

In addition to vibration control by regulation of the ax-
ial velocity, Nguyen et al. [205] presented an active con-
trol strategy based on the adjustment of the axial tension to
dissipate the vibration energy of a translating string driven
by two rollers at the boundaries. To suppress the lateral vi-
bration and to control the axial speed, they designed two
control torques that were applied to the rollers via the Lya-
punov method. Furthermore, they also obtained the expo-
nential convergence of the lateral oscillation and the axial
speed tracking error. In another study on vibration control
of the roll-to-roll system, Nguyen et al. [206] investigated
vibration control in a rewinding process. This study con-
sidered the rewinding system as an axially moving beam
driven by fixed rollers at the left boundary and a rewind
roller at the right boundary. A control force generated by a
hydraulic actuator located near the right boundary was im-
plemented to suppress the lateral vibrations of the beam,
while a control torque at the rewind roller was used to reg-
ulate the axial speed and the radius of the rewind roller. A
hybrid PDE-ODE model that involves the dynamics of the
translating-beam, the rewind-roller, and the actuator was
initially presented. Based on this model and the Lyapunov
method, an exponentially stable controller was developed.
Besides, an adaptive technique was utilized to handle the
uncertain bearing friction coefficient in the shaft of the
rewind roller and the disturbance with an unknown bound
at the rewind roller. The feasibility and effectiveness of the
control strategy were shown based on simulated results.

Surface mount technology (SMT) is a method for
mounting electronic components to the surface of a
printed circuit board. Belt systems concerning SMT were
studied in [56–58, 207–213]. In this system, the belt
not only moves at high-acceleration/deceleration but is

also subjected to unknown disturbances. In the first study
on the belt SMT system [57], the belt was modeled as
an axially moving string under bounded disturbances—
a spatiotemporally varying distributed disturbance along
the length of the string and a time-varying boundary dis-
turbance. Furthermore, the profile of axial velocity and
acceleration/deceleration of the belt was designed using
an S-curve acceleration/deceleration process. Based on
the back-stepping technique and the Lyapunov method, a
boundary controller with a disturbance observer was used
to decay the oscillations of the system, in which the distur-
bance observer was employed to handle unknown bound-
ary disturbances. The authors proved that the lateral vi-
bration of the system was bounded when time goes to in-
finity. They also discussed the design of control gain to
reduce the compact boundary size and to enhance con-
trol performance. In addition to the boundedness property
of the vibration, they showed that the closed-loop system
under the proposed controller was exponentially stable in
the free vibration case. In another paper, Liu et al. [208]
suggested that several belt system parameters such as belt
tension, actuator mass, damping coefficient, and the mass
density of the belt are uncertain. To compensate for these
unknown parameters, the authors designed an adaptive
boundary controller with a disturbance observer by syn-
thesizing the adaptive technique and the Lyapunov-based
back-stepping method. Subsequently, they proved the ex-
istence, uniqueness, and convergence of the solution of the
closed-loop system for the designed controller via Sobolev
spaces.

The input saturation that exists in the belt system of
SMT in practice due to the limitation of the actuator
or physical constraints of the system was considered in
[56, 207]. In several cases, the input saturation can ad-
versely affect the control performance and cause the sys-
tem to become unstable. To overcome this problem, the
authors used an auxiliary system to eliminate the effect
of the input saturation. Furthermore, based on this aux-
iliary system, the Lyapunov method, and the robust adap-
tive control technique, a boundary controller was designed
to suppress the lateral vibrations of the belt system. The
well-posedness and the uniform bounded stability were
also validated.

In the previous studies, the state signals such as lateral
displacement and slope angles at the boundary as well as
their first-order time derivatives were obtained using sen-
sors or through algorithms. However, in practice, the ac-
curate measurement of these terms is challenging due to
the noise from the sensor, in particular, from the first-order
time-derivative terms. In the case whereby these states are
not accurately measurable, Zhao et al. [210,212,213] used
output feedback boundary control in which the unmea-
sured terms can be estimated using high-gain observers
for vibration control of the axially moving string with
the restricted input. The effectiveness of the proposed
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controller was validated via numerical results. In [210],
the authors investigated a non-uniform belt system with
spatial-varying mass density and spatiotemporally varying
tension for the first time.

7. CONCLUSIONS AND FUTURE PROSPECTS

In this paper, a detailed review of active vibration con-
trols of axially moving systems was carried out. Mathe-
matical models of axially moving systems were presented
in Section 2. Active vibration control strategies based on
the ODE model was introduced in Section 3, whereas con-
trol methods based on the PDE model were present in Sec-
tion 4. Moreover, hybrid control methods were discussed
in Section 5. In Section 6, the applications of techniques
for suppressing vibration in engineering systems were dis-
cussed in detail. Several important studies on vibration
control of axially moving system were summarized in Ta-
ble 1. Based on this survey, the following aspects are pro-
posed for further research on vibration control of axially
moving systems.

Table 1. Important contributions in the field of vibration
control of axially moving systems.

Reference Model Contributions
Control based on ODE model

Ulsoy
(1984) String

Development a controller
based on the observer-based
state feedback control method
for lateral vibration
suppression

Fung and
Liao (1995)

String with
small
periodic
tension

Development of a control law
based on variable structure
control

Fung et al.
(1997)

String with
varying
length

Development of a control law
based on variable structure
control

Zhu and Ni
(2001)

String and
beam with
varying
length

Development of a pointwise
control law for lateral
vibration suppression

Nguyen
and Hong
(2011)

Beam

Development of a control
method based on the
regulation of axial velocity for
vibration reduction

Nguyen
and Hong
(2012b)

Plate
Usage of a regulated axial
velocity profile for vibration
suppression

Control based on PDE model
Yang and
Mote
(1991)

String
Usage of the transfer function
formulation for designing
the control law

Chung and
Tan (1995)

String
Usage of the wave
cancellation method for
reducing the lateral vibration

Lee and
Mote

String Development of a Lyapunov-
based control law for

(1996) suppressing lateral vibration
Queiroz
et al. (1999)

String with
a guide

Development of an adaptive
boundary control law

Lee and
Mote
(1999)

Beam
Usage of the Lyapunov
method for developing a
boundary control law

Fung and
Tseng
(1999)

String with a
mass-damper
spring
actuator

Development of a hybrid
boundary control law based
on the Lyapunov method and
sliding mode control

Nagakatii
et al.
(2000)

String
Usage of the Lyapunov
method for suppressing the
longitudinal vibration

Li et al.
(2002)

String with a
mechanical
guide

Investigation on an adaptive
control based on both theory
and experiment

Choi et al.
(2004)

Beam

Development of a boundary
control law for control of a
translating steel strip of zinc-
galvanizing line

Hong et al.
(2004)

Coupled
model

Development of a Lyapunov-
based controller for
suppressing the lateral
vibration

Yang et al.
(2004)

Beam with
varying
tension

Usage of the Lyapunov method
for reducing the lateral vibration

Yang et al.
(2005b)

String with
varying
tension

Development of a robust
adaptive boundary controller
based on Lyapunov method

Yang et al.
(2005c)

String with
varying
tension

Development of a robust
adaptive boundary controller
using a PR transfer function

Nguyen
and Hong
(2010)

String with
varying
tension

Usage of the Lyapunov redesign
method for developing a robust
adaptive boundary control

Nguyen
and Hong
(2012a)

String with
varying
tension

Development of a Lyapunov-
based controller for suppressing
the longitudinal and lateral
vibrations and tracking the
desired axial velocity

He et al.
(2015)

String with
varying
length and
output
constraint

Usage of the Lyapunov method
for developing a controller for a
translating string with varying
length and output constraint

Zhao et al.
(2016)

String

Development of an adaptive
boundary control law for
suppressing the vibration of a
translating string with high
acceleration/deceleration

Liu et al.
(2017)

String with
varying
length and
input
constraint

Development of the boundary
control for control of a flexible
aerial refueling hose

Kelleche
and Tatar
(2017)

Viscoelastic
string

Development of a boundary
control law for suppressing the
lateral vibration of a viscoelastic
axially moving string

Review papers
A study on active control
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Wang and
Li (2004)

methods for suppressing the
linear lateral vibration of axially
moving systems

Chen
(2005)

A survey on dynamics and
control of axially moving
strings

Timoshenko beams: The studies on vibration control
of axially moving beams hitherto have focused on Euler–
Bernoulli beams. Vibration suppression of moving Timo-
shenko beam has not been investigated to date. The Tim-
oshenko beam theory, which considers the influences of
both shear deformation and rotational inertia, is more suit-
able for predicting the behavior of thick and short beams
as well as the frequencies of the high modes of vibration.
Given these advantages, the control scheme for suppress-
ing vibration of axially moving materials based on Timo-
shenko beam theory should be developed in the future.

Two-dimensional model: Another aspect of axially
moving systems that should be addressed is vibration sup-
pression of the two-dimensional model; namely, an axi-
ally moving plate. Most studies have considered the one-
dimension modal (i.e., string, beam, and coupled models)
and there are limited investigations on vibration control in
axially moving plates due to the complexity of the associ-
ated dynamic model. Therefore, researches on this aspect
must be pursued in the future.

Laminated composite material model: The laminated
composite material is a material type that includes two or
more layers of orthotropic materials with different prop-
erties. Recently, the use of laminated composite materials
in axially moving systems has received considerable atten-
tion. The design of control algorithms for axially moving
systems with laminated composite materials is one of the
most anticipated fields.

Influence of harsh environments: Many works on the
vibration control of flexible systems under harsh environ-
ments were performed [215,216]; however, vibration sup-
pression of axially moving systems under harsh environ-
ments such as vortex-including vibrations in the ocean and
high temperature is limited. There is a need to develop
more efficient control schemes for these systems because
of their broad applications.

Development of controllers for hybrid systems: The
motion of practical hybrid systems is often a synthesis of
different motions. For example, the dynamic model of a
container crane [190, 191] consists of the axial movement
of the cable and the translational motion of the trolley, and
the motion of roll-to-roll processes is the combination of
the axial motions of the material.

Experimental studies: Lastly, apart from numerical
simulation, an advanced innovative system should be de-
veloped to verify the effectiveness of the control algo-
rithms.
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