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ABSTRACT In this paper, a deep-learning-based driver-drowsiness detection for brain-computer interface
(BCI) using functional near-infrared spectroscopy (fNIRS) is investigated. The passive brain signals from
drowsiness were acquired from 13 healthy subjects while driving a car simulator. The brain activities were
measured with a continuous-wave fNIRS system, in which the prefrontal and dorsolateral prefrontal cortices
were focused. Deep neural networks (DNN) were pursued to classify the drowsy and alert states. For
training and testing the models, the convolutional neural networks (CNN) were used on color map images to
determine the best suitable channels for brain activity detection in 0~1, 0~3, 0~5, and 0~10 second time
windows. The average accuracies (i.e., 82.7, 89.4, 93.7, and 97.2% in the 0~1, 0~3, 0~5, and 0~10 sec time
windows, respectively) using DNNs from the right dorsolateral prefrontal cortex were obtained. The CNN
architecture resulted in an average accuracy of 99.3%, showing the model to be capable of differentiating
the images of drowsy/non-drowsy states. The proposed approach is promising for detecting drowsiness and
in accessing the brain location for a passive BCI.

INDEX TERMS Drowsiness detection, functional near-infrared spectroscopy, deep neural network, convo-

lutional neural network, brain-computer interface.

I. INTRODUCTION

Drowsiness has been one of the leading causes of
injuries or fatalities in car accidents [1]. Previous research
indicates that 10~30% of car crashes occur owing to driver
fatigue or drowsiness [2], [3], which are caused mostly by
sleep deprivation [4], intoxication, drug abuse, heat exposure,
or/and alcohol [5]. Drowsy drivers have a higher car crash
rate than awake individuals [6]. Drowsiness is considered a
passive brain phenomenon that does not involve any intension
from the subject. In this paper, an improvement of drowsiness
detection using functional near-infrared spectroscopy and
deep learning algorithms is investigated.

In the past, multiple methods have been devised for the
detection of drowsiness. These methods include recording
behavior [7], driver physiological signal measurement [8],
and vehicle-based performance evaluation [9]. Among these
methods, the bio-signal measurement approach showed the
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highest capability of detecting driver drowsiness: As unlike
the other two methods, it depends solely on the driver’s con-
dition. Multiple forms of data exist for driver physiological
signal measurement, e.g., the detection of neural electrical
activity using electroencephalography (EEG), heart rate
detection using electrocardiography (ECG), muscle activity
utilizing electromyography (EMG), eye movement and blink
detection using electrooculography (EOG), and brain hemo-
dynamic change measurement using fNIRS [10].

A brain-computer interface (BCI) is a methodology used
for monitoring, communication, and control via signals gen-
erated through brain activities. Noninvasive BCI research
can be divided into three main categories: Active, reactive,
and passive brain tasks [11]. BCI methods measure brain
activities using two different types of brain signals; the
hemodynamic responses like functional magnetic resonance
imaging (fMRI) and fNIRS [12]-[18] or electrophysiological
signals like EEG, EMG, and EOG [19]-[21]. The former
is produced when blood releases an increased concentra-
tion of glucose to activated neurons from the surrounding
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region [12], [13]. The latter is produced when neuronal firing
occurs due to a brain task [20]. Earlier studies have mostly
used EEG [22]-[25] for drowsiness detection, but later some
studies using fNIRS were performed either alone or in con-
junction with EEG [10], [26], and a few studies using a
combination of EEG/ECG/fNIRS [27].

fNIRS in comparison to other brain imaging modalities
is relatively low cost, portable, safe, higher temporal reso-
lution (compared to fMRI), and easier to use (unlike mag-
neto encephalography (MEG)). fNIRS is not susceptible to
electrical noise as it uses optical signals to acquire brain
activities [15], [28]. However, it has some shortcomings,
as it has low spatial resolution than fMRI and low temporal
resolution compared to EEG [28], [29]. As such fNIRS has
some limitations; however, its advantages generally outweigh
its disadvantages. fNIRS-BCI have already been used in
multiple studies [30]-[32] for various applications such as
the classification of prefrontal regions, gait rehabilitation,
and motor execution. Also, fNIRS-BCI is used for helping
patients with severe congenital motor impairments [33], [34],
working memory monitoring of aircraft pilots [35], [36], and
speech recognition [37]. Considering the broad applications
of fNIRS-BCI, it makes a powerful tool for further research.

Multiple algorithms have been used to classify features
between drowsy/non-drowsy states. Most of these algorithms
have used machine learning techniques to decipher between
the two states [10], [22], [24]-[27], which consist of classi-
fiers such as linear discriminant analysis (LDA), independent
component analysis (ICA), k-nearest neighbors (KNN), and
most commonly support vector machine (SVM). Two essen-
tial steps required when using machine learning algorithms
to classify different states is feature selection and feature
extraction [38]. Most studies have used a variety of features
for this purpose, including frontal beta band relative power
level (RPL), HbO changes [10], mean AHbO, signal peak,
sum of peaks [26], and beat-to-beat (RR-peak) for ECG
recording as RR-peaks measure the time for normal and
unstable heartbeats [27]. However, these algorithms require
manual feature extraction, leaving it up to each study to
ensure that the features are appropriate for the classification
task. However, deep learning does not require this manual
work.

Deep learning approach has been consistently increasing in
popularity due to its ability to automate the feature selection
and extraction processes; otherwise, they are done manu-
ally [39]-[42]. Also, the models employed in deep learning
not only extract features but are also able to learn from the
features with distinguishable qualities allowing for differ-
ent purposes (i.e., classification, detection, and segmenta-
tion.). Two examples of architectures used in deep learning
are convolutional neural networks (CNN) and deep neural
networks (DNN). CNNs are commonly trained for classi-
fication between images [43]-[46] and consist of convolu-
tional layers for feature extraction from images, with fully
connected layers at the end; as such, these models can be
used for extracting distinguishing features between labeled
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images. DNNs consist of multiple neurons, with each neuron
attached to every neuron in the layer before and after it and
a “weight” value determining the use of the neuron to the
architecture [47], [48]. These weights are updated during the
training phase of the model to enable DNNSs to extract useful
features.

In this study, we investigate the possibility of detecting a
drowsiness state for a passive BCI using the hemodynamic
response caused by drowsiness. Signals are measured from
the prefrontal and dorsolateral prefrontal cortex brain regions.
For this, fNIRS is used to classify between drowsy/non-
drowsy states using four windows. The deep learning archi-
tectures, DNN, and CNN, are used for feature extraction and
evaluation. To our knowledge, this is the first fNIRS investi-
gation that has used the right dorsolateral prefrontal cortex
to classify between the passive drowsiness and alert states
of a driver by using deep learning architectures, providing
very high real-time accuracies. In [49], an extensive review
was done over multiple algorithms for BCI. The article has
mentioned deep learning algorithms such as recurrent neural
networks (RNNs) or long short term memory (LSTM) can be
more effecitive for BCI. Deep learning is suitable for brain
activity detection (e.g., drowsiness detection, fatigue, etc.).
However, given the complexity of these algorithms, it is chal-
lenging to implement the algorithm for real-time scenarios.
From this view, less complicated methodologies, DNN, and
CNN, are applied due to its low computation.

The remainder of this paper is arranged as follows.
Section II discusses the methodology used for the extraction
of data from subjects and the architectures used for detecting
drowsiness, Section III discusses the results obtained during
this study, Section IV shows a discussion and comparison
with other studies, and Section V concludes the paper.

Il. MATERIALS AND METHODS

This section addresses the methodology used to extract
data from the subjects, the sensor placement, the signal
processing, and the model architecture used in this study.
Fig. 1 shows the steps to accomplish these goals.

BCI module

Model training Deep neural
network
Signal Feature
acquisition extraction H
Prefrontal H
brain Classification [€7~"="""77""""~
signals l : Audio feedback (k-NN, SVM) |- cmmmmmmmmcmans H

(warning)

Display of car movement
: Car navigation software

. Virtual driving device
Input to car

Visual feedback

FIGURE 1. Experimental flowchart for drowsiness detection.
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A. EXPERIMENTAL PROCEDURE

We used the data set from the work of Khan and Hong [26].
In the experiment, each subject was asked to drive a car driv-
ing simulator while sleep deprived. A biomarker was placed
in the data when the subject’s facial expression changed
due to fatigue and sleep loss. The data were recorded for
13 subjects (all male, mean age: 28.5 & 4.8), among which
two were left-handed.

B. SENSOR CONFIGURATION

The optode configuration (Fig. 2) shows how the fNIRS sig-
nals are acquired using seven sources and 16 detectors result-
ing in a combinational pair of 28 channels that are placed on
the PFC and dorsolateral prefrontal cortex (DPFC) accord-
ing to the international 10-20 system [50], [51]. Channels
1~8 were collected from the right DPFC, labeled as Region
A. Channels 9~20 were collected from the prefrontal cortex,
labeled as Region B, and channels 21-28 were obtained from
the left dorsolateral prefrontal cortex, labeled as Region C.
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FIGURE 2. Optodes placement over the prefrontal and dorsolateral
prefrontal cortices [26].

C. SIGNAL ACQUISITION AND PROCESSING

A continuous wave-imaging system (DYNOT, NIRx, Med-
ical Technologies, USA) was used to record brain signals
at 760 and 830 nm wavelengths. Data were collected at a
sampling rate of 1.81 Hz. Gaussian filters were applied to
remove heartbeat, respiratory, and other motion noise from
the data [52]-[56]. Raw intensity values were converted
to oxygenated and deoxygenated hemoglobin concentration
changes (i.e., AHbO and AHbR) using the modified Beer-
Lambert law [57] given as

Iin ()‘*)
Lou (£5 1)
[ Acppolt )]

Acppr(t)
_ [Otﬂbo(?»l) OthR(M)}] [AA (t; )»1):| 1
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Here A defines the absorbance of light (optical density), fj,
is the incident intensity, and I,y is the detected intensity of

light. Additionally, « is the specific extinction coefficient
in uM~lem™!, ¢ is the absorber concentration in uM, [ is
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FIGURE 3. DNN model used for classification purposes. The dotted line
around layer k = 200 shows layers extracted later for feature extraction;
(b) CNN model used for channel drowsiness activity through image
classification.

the distance between the source and detector in cm, d is the
differential path-length factor, and 7 is the loss of light due to
scattering.

D. MODEL ARCHITECTURE

Deep learning architectures have proven to be a powerful
tool regarding classification purposes. In this study, two deep
learning architectures were used [58]-[60]: One was used for
classifying between drowsy/alert states, i.e., DNN, and the
other was used for detecting the strength of each channel
for detecting tired case, i.e., CNN. One important parameter
to consider is the size of data in time. In this study, four
different window sizes were used (i.e., 0~1, 0~3, 0~5, and
0~10 seconds). Time-domain signals were used only for
the classification task; to detect the strength of a channel
in identifying the drowsy state, the data of a time window
depicting all the channels were converted to a color map.
Thus, each subject will have 28 different color maps for each
time window.

For DNN, the input size shown as parameter ‘“‘n”
(Fig. 3(a)) was decided based on the window size. The hidden
layers section consists of dense layers; the starting layer had
50 neurons, and the ending layer had 200 neurons. A 30%
dropout was introduced before the output layer to prevent
overfitting. The model was trained based on the labeled input
passed through the neural network, and the final hidden layer
before dropout was used to extract features for each time
window, which were fed into the KNN classifier to train and
test the data using 10-fold cross-validation.

The CNN architecture was used for the classification of
the color map images created from each time window for
all channels. Fig. 3(b) shows the model architecture starting
with the input; all input images were the same size (78 x 60)
and were passed through the neural network for training.
The hidden layers consisted of two convolution filters with
a size of (3 x 3) applied on the input images, followed by a
max-pooling layer with a size of (2 x 2). This was done to
reduce the input feature size and retain only robustt features.
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FIGURE 4. Comparison between average signal at each region
(A, B and C), showing drowsy and alert state (Subject 5) [26].

The features were then converted to a fully connected layer
and passed through a dense layer with 128 neurons, and a 50%
dropout was introduced before the output layer to prevent
overfitting of the model.

The ReLu activation function was used in the hidden layers
as follows.

R (z) = max(0, 7). 3)

R(z) shows the output ReLu function, while z shows the
weighted sum of the input parameters to each neuron. The
function returns zero if the weighted sum is less than zero,
and z is returned if the weighed sum is greater than or equal
to zero. A sigmoid activation function was used for the output
layers as follows.

1
14e¢
In this equation, o (z) shows the sigmoid output function, and
z shows the weighted sum of input parameters. Activation
function plots can be seen within each layer (see Fig. 3).
Binary cross-entropy is used as a loss measure and is min-
imized during training.

“

o(z) =

N
1

BCE = —= 3 yixlog({) + (1 =y log(1 —3{)  (5)

i=0
where N shows the total number of training examples, and y;
shows the labeled output (i.e., 0 and 1 in the case of binary
classification), while y? shows the output generated by the
model during training.
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FIGURE 5. (a) Average classification accuracy (%) on overall 13 subjects
in each time window. (b) Average subject classification accuracy at each
time window.

FIGURE 6. Color maps for 28 channels at different time windows (0~1,
0~3, 0~5, and 0~10 seconds). Numbers in the color maps indicate
individual channels (Subject 6).

Ill. RESULTS

The data for each subject were divided into three separate
regions (Fig. 4), and for each subject, the respective chan-
nels in these regions were averaged to create a single signal
for each region (i.e., A, B and C). Region A shows the
strongest drowsiness activity compared to Regions B and C.
Fig. 4 shows hemodynamic changes in the three regions.

The signals were then segmented into smaller time win-
dows; for example, a 30 min signal, if segmented into a
0~1 sec time window, will result in a total of 1,800 values
(30 x 60). Similarly, there will be 600, 360, and 180 total
values for 0~3 sec, 0~5 sec, and 0~10 sec windows. After
these segments were acquired, they were passed through the
DNN with the model trained to classify between drowsy and
non-drowsy states.

The model was trained for 200 epochs, after which the final
hidden layer before the dropout was used to extract features
from each segment, resulting in 200 features per segment.
Table 1 shows the classification accuracies of the individual
subjects at each time window.

Fig. 5(a) shows the individual regional performances for
the different time windows, showing that Region A has the
highest overall performance, especially in the smaller time
windows. The average subject performance in each region
was also evaluated; for each subject, the performance in each
region for the 4-time windows was averaged and is plotted
in Fig. 5(b).
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TABLE 1. Classification accuracies (%) in three different brain regions.

Region A Region B Region C
Subjects  0~1 (s) 0~3 (s) 0~5(s) 0~10(s) | O~1(s) 0~3 (s) 0~5(s) 0~10(s) | O~1(s) 0~3 (s) 0~5(s) 0~10(s)

1 66.5 84.8 92.4 100.0 65.5 83.7 88.8 99.4 58.3 72.6 87.5 98.2
2 67.7 85.2 95.9 100.0 583 64.3 81.8 99.0 84.5 87.7 90.0 88.8
3 87.6 88.1 91.6 93.8 89.9 90.4 92.0 98.5 58.5 71.2 83.3 98.6
4 82.5 94.6 99.4 100.0 68.1 78.2 834 92.6 59.5 64.3 76.5 93.0
5 80.4 89.8 97.3 100.0 92.0 94.9 97.5 98.2 83.5 89.6 96.2 98.0
6 86.5 88.8 97.2 92.6 59.4 76.8 90.5 100 79.1 84.8 91.4 98.2
7 88.3 90.2 91.1 92.9 79.3 84.3 89.9 93.7 71.2 75.0 87.2 94.7
8 89.4 93.4 95.7 96.2 84.8 92.6 94.6 98.8 86.5 89.2 93.4 98.3
9 90.1 90.2 91.5 98.9 84.6 85.6 89.1 88.5 86.7 87.5 90.4 95.8
10 85.5 87.4 88.9 96.2 71.2 84.4 96.2 100.0 72.8 88.2 96.7 94.6
11 80.1 89.7 94.9 99.0 84.4 87.3 94.4 100.0 85.0 90.1 95.9 98.5
12 80.7 84.9 86.2 953 83.3 87.4 91.9 99.4 77.3 87.3 96.5 98.9
13 90.1 95.2 95.7 99.3 77.9 79.9 88.1 914 65.6 86.1 92.6 97.0

Mean 82.7 89.4 93.7 97.2 76.8 83.8 90.6 96.8 74.5 82.5 90.5 96.3
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FIGURE 7. 2-class feature spaces for DNN and CNN at each time window (Subject 5).

The color maps generated for two separate time windows
(Fig. 6) distinctly show each channel, with the channel num-
bers given in the center of each color map. To generate color
maps, the signals were segmented into shorter time windows,
and then, for each time window, a color map was generated
for the entire channels. For example, the segmentation of a
30 min signal with 0~10 sec time windows result in 180 seg-
ments. This results in 5,040 (180 x 28) color maps for all sig-
nals. To distinguish between drowsy and non-drowsy states,
the mean values were generated for all channels, followed by
averaging across all 28 means. This new average was used
to label segments from each channel; if a segment value was
above the mean, it was labeled as drowsy, while signals below
the mean were considered non-drowsy.

After generating the labeled color map data, a 50-40-10
(Train-Test-Validation) ratio was used to train and test the
model in Fig. 3(b) for ten epochs across each subject, result-
ing in an average test accuracy of 99.3%. This result shows
that the model is very susceptible to drowsy/non-drowsy
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detection. To better understand the skills of the two models,
Fig. 7 illustrates a 2D feature space using combinations of
two features (Subject 5). Given the large number of features
available for each model, feature selection was used to extract
the top 5 features for each model, at each time window.
As seen from Fig. 7, DNN performs better in a full time
window in comparison to a small time window for drowsiness
detection. The increase of accuracy by increasing the win-
dow size using DNN is shown in Table 1. In comparison to
DNN, CNN uses (brain) images for classification. Therefore,
it can distinguish the two states (i.e., tired and non-drowsy)
at a lower time window. Both models had relatively small
computation time (see Table 2) at each time window, using
a20% test dataset. For DNN, the computation time was mea-
sured in the absence of KNN. A sigmoid activation function
is used at the output layer. Also, the CNN model took a
considerably longer to compute than the DNN model at each
time window, possibly due to more data available for CNN
models (since all 28 channels were used together), different
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TABLE 2. Computation time taken by each model.

DNN CNN
(Computation time (sec)) (Computation time (sec))

Subjects 0~1 0~3 0~5 0~10 0~1 0~3 0~5 0~10
1 0.032 0.025 0.024 0.023 1.7 0.68 0.42 0.17

2 0.034 0.028 0.025 0.023 1.9 0.69 0.38 0.20

3 0.034 0.028 0.025 0.024 2.0 0.82 0.41 0.19

4 0.032 0.027 0.024 0.025 1.6 0.66 0.36 0.15

5 0.033 0.028 0.024 0.025 1.6 0.63 0.35 0.16

6 0.034 0.030 0.024 0.024 2.0 0.77 0.38 0.19

7 0.034 0.026 0.026 0.024 22 0.85 0.43 0.23

8 0.033 0.028 0.025 0.023 1.9 0.73 0.38 0.16

9 0.033 0.027 0.024 0.024 1.7 0.64 0.34 0.16
10 0.032 0.029 0.025 0.023 1.7 0.69 0.38 0.13
11 0.034 0.028 0.026 0.025 2.1 0.89 0.41 0.19
12 0.032 0.027 0.024 0.025 1.9 0.77 0.42 0.19
13 0.032 0.025 0.025 0.024 2.1 0.82 0.43 0.22
Mean 0.033 0.027 0.025 0.024 1.8 0.74 0.39 0.18

Note: Nvidia 1060 Gtx was used for the models. Given different
GPUs the computation time could change.
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FIGURE 8. Channel wise occurrence of drowsy state through all subjects.
The orange line indicates mean frequency value.

batch sizes used for each model and the difference in hidden
layers among the models. It is worth mentioning that individ-
ual machine specifications can alter the testing/computation
time taken by each model.

Using the model, the frequency of drowsiness was mea-
sured across all channels at each time window (refer to
Fig. 8); the mean frequency at each time window was used
to detect the channels showing the most substantial presence
of the drowsy state. Channels with frequencies above the
mean across all time windows were considered the most
reliable candidates (i.e., channels 2, 3, 4, 5, 7, 8, 9, 15,
17, 20, 23, 25 and 27). To test whether these channels
show a better performance than the other channels, a new
region was created (i.e., Region X) consisting of the most
active candidate channels. An average signal was generated
using these 13 channels and passed through the model in
Fig. 3(a). Table 3 shows the classification accuracy for this
region across all subjects, as well as a comparison between
the used KNN and SVM classifiers. Performance was com-
pared for two measures (i.e., accuracy (%) and computation
time (sec)).
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It can be seen that a higher average performance was
achieved in the new region than in Region A, indicating that
the selected channels are indeed a better choice than the other
channels for drowsy/non-drowsy classification. Additionally,
a higher performance was observed for SVM than for KNN;
however, the difference in the performance was minimal
compared to the high computation time of SVM. This proves
that, given real-time scenarios, KNN would be better for
drowsiness detection than SVM due to its substantially lower
computation time.

IV. DISCUSSION

In the previous literature concerning vigilance [26], [61],
a significant peak occurred in the event-related hemodynamic
response between 5~8 and 0~5 sec time windows. However,
the present work enables us to detect vigilance in a 0~1 sec
time window, thereby reducing the time taken to alert the
driver of his or her current status.

The previous works on fNIRS have used manual feature
extraction methods for their machine learning algorithms
[26], [27], [62], [63], e.g., the mean of AHbO/AHDbR, signal
peaks and signal slopes. However, deep learning architectures
remove the need for manual feature extraction and automate
the process; learning from examples, a deep learning archi-
tecture extracts its own set of features. In doing so, high
amounts of time and effort are saved that would otherwise
be spent on determining the feature requirements to improve
the classification result.

This study shows that among three regions (i.e., right
DPFC, PFC, and left DPFC), the right DPFC shows the
highest classification accuracy between the drowsy/non-
drowsy states, with accuracies varying from 97.2 to 74.5%
from right to left in the PFC region within 0~10 to 0~1 sec
time windows. Besides, the new Region X shows higher
classification accuracy than Region A. The significance of the
obtained accuracies for real-time computation was computed
using the z-test. The accuracy obtained in Region A was
compared with the accuracies obtained in Regions B and C
for small time windows (i.e., 0~1 and 0~3 sec). The p-values
obtained for Region A vs. Region B were 0.04 and 0.02, while
those for Region A vs. Region C were 0.03 and 0.01. This
shows that the results obtained are very significant and that
Region A proves to be the most suitable region for real-time
detection of drowsy state.

In the previous work [26] performed on Region A using
the same dataset, an accuracy of 83.4% for 0~10 sec window
was reported, while an accuracy of 83.1% was reported for
the smallest time window of 0~5 sec. The proposed study
achieves an accuracy of 97.2% for the 0~10 sec window and
an accuracy of 82.7% for the smallest time window, 0~1 sec.
The current work surpasses the previous work in terms of
both accuracy and real-life implementation, giving higher
accuracies at small time windows. Another study [10] used
a hybrid EEG/fNIRS system to predict driver drowsiness,
reporting an accuracy of 70.5% for EEG, 73.7% for NIRS,
and 79.2% for combined EEG/NIRS.
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TABLE 3. Performance evaluation of new region; and comparison between KNN and SVM.

KNN SVM
(accuracy (%) / computation time (sec)) (accuracy (%) / computation time (sec))
Subjects 0~1(s) 0~3 () 0~5 (s) 0~10 (s) 0~1 (s) 0~3(s) 0~5 (5) 0~10 (s)
1 68.9/0.05 86.7/0.012 96.1/0.005 99.4/0.002 72.6/0.46 88.7/0.04 95.7/0.012 100.0/0.002
2 67.8/0.06 84.5/0.015 94.7/0.006 100.0/0.002 72.7/0.54 88.1/0.05 94.1/0.009 100.0/0.002
3 88.1/0.04 88.7/0.012 92.3/0.005 96.2/0.002 88.6/0.31 90.1/0.04 92.5/0.013 96.2/0.005
4 83.5/0.06 93.2/0.012 99.4/0.005 100.0/0.002 85.1/0.25 93.8/0.03 100.0/0.007 100.0/0.003
5 79.7/0.05 90.7/0.013 98.8/0.005 100.0/0.002 81.5/0.23 89.1/0.02 97.8/0.007 99.4/0.002
6 85.2/0.04 93.9/0.011 97.8/0.004 96.3/0.002 87.2/0.18 91.2/0.02 97.5/0.006 98.0/0.003
7 88.2/0.04 88.3/0.012 92.6/0.005 91.4/0.002 89.1/0.24 89.9/0.03 91.3/0.014 92.4/0.004
8 89.8/0.03 93.2/0.012 94.4/0.005 96.8/0.002 90.7//0.20 93.3/0.02 95.9/0.008 98.3/0.003
9 90.3/0.04 90.6/0.011 94.6/0.004 98.4/0.002 91.3/0.16 91.9/0.02 93.8/0.009 97.3/0.002
10 83.8/0.03 89.4/0.009 91.1/0.004 91.8/0.002 86.5/0.25 89.7/0.04 93.0/0.011 95.7/0.003
11 84.7/0.05 90.7/0.013 93.9/0.006 99.5/0.003 87.3/0.26 89.5/0.03 93.8/0.008 100.0/0.002
12 83.1/0.03 85.1/0.009 86.1/0.004 96.0/0.002 86.7/0.18 86.8/0.03 87.0/0.012 93.1/0.003
13 90.7/0.03 95.1/0.010 97.9/0.004 97.5/0.002 91.8/0.14 95.6/0.01 97.8/0.005 99.3/0.002
Mean 83.3/0.04 89.9/0.011 94.5/0.004 97.1/0.002 85.5/0.26 90.6/0.03 94.6/0.009 97.6/0.003

TABLE 4. Performance comparison between the proposed method and
previous studies.

Authors Modality Features Classifier Accu
(%)
Chuang et EEG Nonparametric Radial basis 91.6
al. [25] weighting function neural
feature network
extraction (RBFNN)
(NWFE)
Khan and fNIRS Mean of AHbO, Linear 83.1
Hong [26] signal peak, discriminant
sum of peaks analysis (LDA)
Nguyen et EEG/ Frontal beta Fisher’s linear 79.2
al. [10] fNIRS band RPL, discriminant
AHbO change analysis
(FLDA)
Ahn et al. EEG/ Relative power Fisher’s linear 75.9
[27] ECG/ level/ RR-peak discriminant
fNIRS interval/ AHbO analysis
change (FLDA)
Zhang et EEG PSD of Support vector 84.1
al. [24] frequency machines
components (SVM)
Wei et al. EEG Pre-event Support vector 87.6
[64] logarithmic machines
theta, alpha and (SVM)
beta powers
Proposed fNIRS Deep learning K nearest 83.3
method extracted neighbors
features (KNN)

Additionally, in [23], an EOG/EEG system was developed
to detect driver drowsiness using parameters such as blink
duration, and accuracies of 93% for binary and 79% for
multiclass classification were achieved; however, the higher
accuracy of this previous study compared to the current study
can be explained by the use of different modalities, which
result in a slower algorithm. In addition, Ahn et al. [27]
used EEG/ECG/fNIRS and reported the highest accuracy
of 75.9% when all signals were combined and an accuracy
of 66.8% when purely fNIRS was used. The proposed method
achieves higher accuracy than the methods of previous stud-
ies at a lower window size (0~1 sec), resulting in higher
accuracy with better real-time implementation. Another study
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using variable time windows [24] showed an average accu-
racy of 84.1% for the occipital site (O2) in the 0~1 sec
time window. Though higher in accuracy, the study suf-
fered from an average high testing time of 1.3 sec; in con-
trast, the testing time of the present study was 0.05 sec.
Research [25] showed promising results, with an accuracy
of 91.6% with a 0~1 sec window; however, its results were
obtained with only four subjects, whereas the proposed study
worked on 13 subjects, resulting in a decreased confidence in
the results due to the greater number of subjects used. Also,
Wei et al. [64] showed a higher performance compared to
the current study; however, the use of SVMs will result in
a slower algorithm, unfit for real-time application. Table 4
summarizes the comparisons made between the proposed
research and the previous studies. Previous researches have
also used Bayesian-copula discriminant classifier (BCDC)
and Bayesian nonnegative CP decomposition (BNCPD) for
drowsiness detection using EEG [65], [66]. The highest
achieved accuracy using BCDC and BNCPD was 94.3%
and 84.12%, respectively, using a 5 sec time window. The
current study has similar results in comparison to BCDC;
however, the proposed algorithm performs better than the
BNCPD algorithm. The sampling rate for both studies [65],
[66] was 100 Hz. In comparison, we have achieved the same
accuracy using 1.81 Hz sampling rate. Also, the proposed
window size by the previous algorithms is 5 sec, whereas
our method can detect drowsiness in 1-sec window. Another
study has used the hidden Markov models in combination
with Bayesian networks for fatigue detection achieving an
accuracy of 98.4% [67]: However, the use of long time win-
dows makes the study less applicable for real-time scenarios.

The results of the current study clearly show a drastic
improvement from the previous research. This work belongs
to the category of sole fNIRS-BCI to perform classification of
the alert and drowsy states using the hemodynamic response
and uses spatial filtering by segmenting the prefrontal brain
region to identify the region of interest for drowsiness
detection.
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V. CONCLUSION

This study investigated the potential of drowsiness detection
using deep learning algorithms and functional near-infrared
spectroscopy for a passive brain-computer interface. A deep
neural network was used to detect driver drowsiness using
four windows (0~1, 0~3, 0~5, and 0~10). We also used the
convolutional neural network on the functional brain maps,
giving an accuracy of 99.3%, and found thirteen distinct
channels that are most active during drowsiness, as well as a
new region consisting of the channels that showed the highest
classification accuracy.
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