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Introduction

A brain–computer interface (BCI) aims to restore the means 
of communication for people suffering severe motor dis-
abilities or persisting in a vegetative state, by bypassing the 
peripheral nervous system to provide control over external 
devices such as robotic arms or other prostheses (Wolpaw 
et  al. 2002). Methods used to acquire brain signals for 
BCI purposes can be either invasive or noninvasive. It has 
been shown that invasive BCIs are capable of reconstruct-
ing continuous limb movements to provide multidimen-
sional control of robotic and prosthetic arms to monkeys 
and to people with long-standing tetraplegia (Hochberg 
et  al. 2012; Philip et  al. 2013). However, the same utility 
has not yet been achieved for noninvasive BCIs. The pre-
sent research takes a step toward developing a noninvasive 
method for BCI by decoding subjects’ binary decisions as 
“yes” or “no,” using functional near-infrared spectroscopy 
(fNIRS). fNIRS is the use of near-infrared spectroscopy 
(NIRS) for functional imaging of brain. It is a new nonin-
vasive optical imaging modality that uses light in the near-
infrared range (typically of 650–1,000 nm wavelength) to 
measure the hemodynamic response of the cerebral cortex 
(Hoshi 2007; Wylie et  al. 2009). The main advantages of 
this technique are its relatively low cost, safety, portability, 
wearability and overall ease of use. The principle of NIRS 
measurement, first reported by Jobsis (1977), has been 
applied typically to investigations into cerebral hemody-
namics, but only in the last few years has it been used in 
the brain imaging, brain-state decoding and BCI context 
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(Coyle et al. 2007; Naito et al. 2007; Sitaram et al. 2007; 
Luu and Chau 2009; Hu et  al. 2010, 2011, 2013; Naseer 
and Hong 2013).

Decoding binary decisions is of particular importance 
in the development of BCI, as the first signal that we want 
to give to an assistive device is “on” or “off.” Binary deci-
sion decoding, as a mean of binary communication, might 
also be very useful for anarthric people or those persisting 
in a vegetative state. Previous studies have yielded promis-
ing results for motor-imagery-based fNIRS-BCI for healthy 
subjects (Coyle et al. 2007; Sitaram et al. 2007; Naseer and 
Hong 2013); however, in the case of patients with congeni-
tal or long-standing motor impairments, it is very difficult 
to extract functional activity via motor imagery in a manner 
suitable for BCI operation (Power et al. 2009). This issue 
has been addressed in recent studies that have used fNIRS 
to detect, from the prefrontal cortex, functional activities 
related to mental singing (Naito et al. 2007), mental arith-
metic (Utsugi et  al. 2007; Bauernfeind et  al. 2008) and 
various other mental tasks (Ogata et al. 2007; Utsugi et al. 
2007). In addition, motor disabilities are strongly tied with 
neuronal activities in the motor cortex or the parietal lobe, 
which leave the prefrontal cortex less likely to be impli-
cated in cases involving motor problems. Signal attenua-
tion and motion artifacts due to scalp hair are less severe 
when acquiring signals from the prefrontal cortex than 
when obtaining from the motor cortex. Various studies have 
shown that decision-making causes cognitive loads in the 
prefrontal cortex (Tranel et al. 2002; Volz et al. 2006; Yang 
and Raine 2009).

This paper proposes an fNIRS-based online binary 
decision decoding framework. Linear discriminant analy-
sis (LDA) and support vector machine (SVM) are the two 
widely used classification methods for fNIRS- and EEG-
based BCI (Sitaram et al. 2007; Luu and Chau 2009; Sal-
varis and Sepulveda 2009; Hu et al. 2012). To investigate 
and compare the performance of LDA and SVM, for binary 
decision decoding, both LDA and SVM are used for clas-
sification. The contributions of this study are as follows: 
(1) It is the first work on fNIRS-based online binary deci-
sion decoding using the prefrontal cortex. (2) The classi-
fier trained by SVM offers significantly better classification 
accuracy than does that trained by LDA.

Materials and methods

Signal acquisition

fNIRS measures cortical brain activity through hemody-
namic changes, that is, the changes in the cerebral blood 
flow, or the concentration changes of oxygenated hemo-
globin (HbO) and deoxygenated hemoglobin (HbR). Light 

incident penetrating the outer tissues of the human brain 
diffuses through the tissue due to multiple scattering of 
photons. A portion of these photons is absorbed, while 
the rest continue to scatter as they make their way through 
the medium. Some of the photons exit the head after pass-
ing through the cortical areas, wherein the chromophores 
HbO and HbR are capable of absorbing near-infrared 
light. Back-reflected photons can be detected using a suit-
ably placed photon detector. The intensity of light exited 
through the head is then used to calculate the HbO and 
HbR concentration changes (�cHbR(t) and �cHbO(t)) along 
the photon path. The relative change of the concentration of 
HbX (i.e., HbO and HbR), �cHbX, is then calculated with 
reference to the dual-wavelength light intensity signals and 
the modified Beer–Lambert law as

where �A(t; �j) (j  =  1,2) is the unit-less absorbance 
(optical density) variation of the light emitter of wave-
length λj, αHbX(λj) is the extinction coefficient of HbX in 
μM−1mm−1, d is the unit-less differential pathlength factor 
(DPF), and l is the distance (in millimeters) between emit-
ter and detector. A multichannel continuous-wave imaging 
system (DYNOT: DYnamic Near-infrared Optical Tomog-
raphy; two wavelengths 760 and 830 nm) from NIRx Medi-
cal Technologies, NY, was used to acquire brain signals at a 
sampling rate of 1.81 Hz.

Subjects

Fourteen healthy male subjects (mean age 
25.64 ±  4.06 years) participated in the experiment. None 
of them had a history of any psychiatric, neurological or 
visual disorder, and they all provided verbal informed con-
sent. The experiment was conducted in accordance with the 
Declaration of Helsinki.

Optode configuration and placement

Three emitters and eight detectors were used to measure 
the signals from the prefrontal cortex. The optode config-
uration and channel distribution are shown in Fig. 1. This 
emitter–detector sequence was positioned on the forehead 
such that the bottom row of detectors was just above the 
eyebrows to detect activation in the prefrontal cortex of the 
brain. A large literature on the relationship between cere-
bral and extracerebral contribution and the emitter–detec-
tor distance is available (McCormick et  al. 1992; Okada 
et al. 1997; Gratton et al. 2006; Zhang et al. 2007; Freder-
ick et al. 2012; Gagnon et al. 2012). The emitter–detector 

(1)

[

�cHbO(t)

�cHbO(t)

]

=

[

αHbO(�1) αHbR(�1)

αHbO(�2) αHbR(�2)

]−1[

�A(t, �1)

�A(t, �2)

]

1

l × d
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distance plays an important role in fNIRS measurements, 
because as it increases, so does the imaging depth (McCor-
mick et al. 1992). To measure the hemodynamic response 
signals from superficial tissues, usually an emitter–detector 
separation of around 3  cm is applied (Zhang et  al. 2007; 
Frederick et al. 2012); with a separation of more than 5 cm, 
the signal arriving at the detector might become too weak 
to be usable (Gratton et al. 2006). Although the total num-
ber of channels in our configuration was 24, only those 
numbered in Fig.  1 were considered in the analysis as, 
owing to their appropriate emitter–detector separations, 
they contained useful information.

Experimental procedure

In preparation for the experiment, the subjects were advised 
not to drink coffee or smoke cigarettes less than 3 h before 
the experiment. The subjects were seated in a comfortable 
chair facing a computer screen, positioned 70 cm from the 
subject’s eyes, and were asked to relax and restrict their 
head movement. They were shown some simple questions 
on the computer screen and were asked to answer them, 
by mentally making a binary decision, with a “yes” or a 

“no”. Thereafter, they openly declared their “yes” or “no” 
answers, on a custom-built graphical user interface (GUI). 
For making a “yes” decision, the subjects were instructed 
to perform mental arithmetic, and for making a “no” deci-
sion, they were asked to relax. Naito et  al. (2007) and 
Sorger et  al. (2009) used similar experimental procedures 
to decode two-choice and multiple answers, respectively.

Figure 2 illustrates the experimental sequence: (1) The 
first 20 s is a resting period to set up a baseline condition. 
(2) For the next 10  s, a single question is shown on the 
computer screen. (3) In the next 20 s, the subjects have to 
mentally make a binary decision, in answering the ques-
tion with a “yes” or a “no.” (4) The last 20 s is another rest 
period, which allows the signals to settle to the baseline 
values. The above sequence was repeated for all ten ques-
tions for a total experimental duration of 700  s for each 
subject. After the sequence was completed for all ten ques-
tions, a GUI appeared on the screen, on which the subjects 
openly declared their ten answers within 50  s, 5  s having 
been allotted for each answer. During this 50-s period, 
fNIRS signals were not recorded.

Ten questions presented in sequence are listed in 
Table  1. They queried the subjects about simple matters 

Fig. 1   Optode placement and channel location in the experiment: 
Each red-filled square represents an emitter containing two wave-
lengths (760 and 830 nm), each circle represents a detector, and Fp1 
and Fp2 represent two reference points from the international 10–20 
system (color figure online)

Fig. 2   Schematic illustration 
of the experimental paradigm 
used: The light blue blocks 
represent the 20-s rest periods at 
the beginning and at the end, the 
second green block represents 
the 10-s question presentation 
period, while the third red block 
represents the 20-s decision-
making period (color figure 
online)

Table 1   Questions asked during the question presentation period

Number Question

1. Did you have breakfast today?

2. Do you like eating mangoes?

3. Do you have a pet in your house?

4. Are you feeling hungry?

5. Did you come to the lab by bus?

6. Is it hot today?

7. Do you like watching soccer?

8. Do you like pop music?

9. Do you want coffee?

10. Are you married?
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of daily life that could be answered easily with a “yes” or 
a “no.” A practice session was conducted for each subject 
before the actual experiments to allow them to become 
familiar with the experiment and the interface. During a 
mental arithmetic task, the participants performed a series 
of mental arithmetic calculation that appeared in a pseudor-
andom order. These calculations consisted of subtraction of 
a two-digit number (between 10 and 20) from a three-digit 
number throughout the task period with successive subtrac-
tion of a two-digit number from the result of the previous 
subtraction (e.g., 244–14, 240–11 and 229–16).

Signal processing

From the brain–computer interface point of view, one can 
either classify optical density variation directly or first 
convert the optical density signals to �cHbX, using Eq. 
(1), prior to classification. Both methods have appeared in 
the literature. Naito et al. (2007) and Power et al. (2009) 
classified the optical density variations directly, whereas 
Coyle et  al. (2007) and Sitaram et  al. (2007) classified 
the �cHbX signals. None of the methods has been shown 
to perform better than the other in terms of classification 
accuracy. In this research, the change in optical density 
�A(t) was calculated using the raw measurements of 
the two intensities (760 and 830  nm). �cHbX was then 
found using (1), since �A(t), αHbX and l for both 760 
and 830 nm intensity wavelength lights were known. For 
d, 5.9 was used in accordance with the literature (Delpy 
et  al. 1988; van der Zee et  al. 1992). The �cHbX signals 
contain high- and low-frequency physiological noises, 
especially due to heartbeat, respiration and Mayer waves 
(Santosa et  al. 2013). To remove these, the fourth-order 
Butterworth filter was first applied to low-pass- and high-
pass-filter the raw intensity signals with the cutoff fre-
quencies of 0.6 and 0.01 Hz, respectively. For normaliza-
tion, the signal was then divided by the mean amplitude 
of the baseline signal. It should be noted that it is neither 
possible to find out the absolute values of the concentra-
tion changes of HbX [due to the incremental form in (1)] 
nor possible to quantify even the relative values using the 
DPF, since the optical pathlength may vary on channels 
with the same emitter–detector distance. However, in this 
paper, for the purpose of getting close to the true values of 
concentration changes and for a possible extension to an 
adaptive DPF algorithm, the modified Beer–Lambert law 
has been used.

Classification

After the data preprocessing described in the previous sec-
tion, classification was performed on the �cHbX(t) signals. 
The aim of classification is to decode binary decisions 

based on the features extracted from fNIRS data. The 
selected features in this paper are the means of ΔHbO 
and ΔHbR signals during the decision-making period 
(i.e., the task period between 30 and 50  s, see Fig.  2), 
which results in a two-dimensional feature space. Let 
xn =

[

�cHbO(t) �cHbR(t)
]T

n
 be the data point from the 

n-th sample (response to question) in the two-dimensional 
feature space, where the bar notation and superscript T 
denote mean and transpose, respectively. In our case, we 
classified the data into two classes: “yes” and “no.” Among 
the existing classification algorithms, the linear classifi-
ers such as LDA and SVM are the two most accepted and 
commonly used classifiers for BCI applications. Both LDA 
and SVM use discriminant hyperplanes to separate the data 
representing two or more classes. Because of their simplic-
ity and low computational requirements, these two classi-
fiers are highly suitable for online BCI systems (Lotte et al. 
2007).

LDA

In LDA, the separating hyperplane is obtained by seeking 
the projection that maximizes the distance between the two 
classes’ means and minimizes the interclass variances. LDA 
assumes normal distribution of the data, with equal covari-
ance matrix for both classes (Lotte et al. 2007). The goal of 
LDA is to seek a vector v in the feature space such that two 
projected clusters of yes-decision (Y) and no-decision (N) 
on the v-direction can be well separated from each other 
while maintaining a small variance for each cluster. This 
can be done by maximizing the Fisher’s criterion given by

where Sb and Sw are the between-class and within-class 
scatter matrices defined as follows:

where mY and mN represent the group mean of classes Y and 
N, respectively. It can be seen that a vector v that satisfies 
(2) can be reformulated as a generalized eigenvalue prob-
lem as:

The optimal v is then the eigenvector corresponding to the 
largest eigenvalue of S−1

w Sb or is directly obtained as

provided that Sw is nonsingular.

(2)J(v) =
vTSbv

vTSwv

(3)Sb = (mY − mN )(mY − mN )T
,

(4)

Sw =
∑

xn∈Y

(xn − mY )(xn − mN )T
+

∑

xn∈N

(xn − mY )(xn − mN )T

(5)S−1
w Sbv = �v.

(6)v = S−1
w (mY − mN )
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SVM

On the other hand, the SVM classifier is designed to maxi-
mize the distance between the separating hyperplane and 
the nearest training point(s) (i.e., support vectors) (see 
Fig.  4). Recall that the objective of the separating hyper-
plane is to conclude yes- or no-decision from the means 
of �cHbO(t) and �cHbR(t) after the tasks. The separating 
hyperplane in the 2D feature space is given by the follow-
ing equation.

where r, x ∈ R2 and b ∈ R1 (see Fig. 4). The optimal solu-
tion r* that maximizes the distance between the hyperplane 
and the nearest training point(s) can be obtained by mini-
mizing the following cost function.

while satisfying the following constraints

where r2 = rTr, C is the positive regularization param-
eter chosen by the user (a large value of C corresponds to 
higher penalty for classification errors), ξn is the measure of 
training error, z is the number of misclassified samples, and 
yn is the class label (+1 or −1 in the case of binary classifi-
cation) for the n-th sample.

f (x) = r.x + b,

(7)J(r, ξ) =
1

2
r2

+ C.

z
∑

n=1

ξn

(8)

(xn.r + b) ≥ 1 − ξn for yn = +1

(xn.r + b) ≥ −1 + ξn for yn = −1

ξn ≥ 0 ∀n

The linear decision boundaries for both LDA and 
SVM were obtained during an off-line training session 
prior to the test session. After that, the online classifica-
tion into “yes” or “no” classes was performed by pro-
jecting the test samples, acquired after each experimen-
tal trial, on the decision boundaries. It should be noted 
that the signal processing and classification started after 
sequential incorporation of data acquired over one trial. 
The mean values of �cHbO(t) and �cHbR(t), for each 
response, averaged over the 20-s task period, and the 
selected 12 channels (numbered in Fig.  1) were used 
as the features for both LDA and SVM classification.  
The feature vector, hence, consisted of ten two-dimen-
sional data points for each subject over one experimental 
trial.

The Matlab was utilized to perform the LDA classi-
fication, while the SVM classifier was implemented on 
Matlab using LibSVM (Chang and Lin 2011). For LDA 
implementation, the features were loaded into the “classi-
fication” module of the Matlab statistics toolbox and LDA 
was selected to classify the data. SVM classification imple-
mentation was carried out in the following steps: (1) The 
fNIRS data were transformed into the LibSVM format. (2) 
Each feature was scaled to a value within [−1, 1] range. 
Scaling was performed in order to avoid attributes within 
greater numeric ranges from dominating those within 
smaller numeric ranges. (3) The linear kernel of the SVM 
algorithm was selected. The default value of 1 was used 
as the regularization parameter. (4) The SVM model was 
trained for a specific subject. (5) The SVM model was then 
used to predict the class label, based on the features in the 
testing set.

Table 2   Comparison of 
LDA and SVM: classification 
results and the “yes” response 
percentage for each subject

Subject number Average classification  
accuracy with LDA (%)

Average classification  
accuracy with SVM (%)

“Yes” 
response (%)

1 70 80 40

2 80 90 50

3 60 90 50

4 80 80 40

5 70 80 30

6 70 80 50

7 80 70 70

8 70 90 30

9 90 80 50

10 70 80 60

11 80 80 40

12 70 90 60

13 80 80 50

14 70 80 40

Average 74.28 ± 7.55 82.14 ± 5.78 47.14 ± 11.38
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Fig. 3   Average signals: a Aver-
age ΔcHbX(t) signals of Subjects 
1, 2, 3, 4 and 7 for “yes” and 
“no” responses. b The grand 
average with standard deviation 
of ΔcHbO(t) signals, across all 
14 subjects, for “yes” and “no” 
responses
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Cross-validation, a standard procedure in pattern recog-
nition and task discrimination in BCI, was used to calculate 
the classification accuracies. The tenfold cross-validation 
that mixes the data randomly into ten segments of which 
nine segments are used for training and the tenth is used 
for testing, with the error averaged over all training/testing 
combinations, was used to determine the average classifica-
tion accuracies.

Online classification, in our case, means that the data 
were sequentially incorporated after each trial and the clas-
sification results were obtained as soon as one experimental 
trial was over. The system would have been real-time if the 
training was performed online and the classification results 
were obtained simultaneously.

Results

The average classification accuracy for each subject is pre-
sented in Table  2. The classification accuracy of the LDA 
classifier averaged over the entire subjects was 74.28  %, 
whereas that for SVM was 82.14  %. The percentages of 
“yes” responses made by the subjects are listed in Table 2. 
The t test was conducted to determine whether the differ-
ence between the mean of classification accuracies using 
LDA and SVM, respectively, was statistically significant or 
not. With the null hypothesis being “the difference in the 
mean of classification accuracies measured using SVM and 
LDA is not significant,” the p value was found to be 0.00238, 
which, based on the 5 % significance level, rejected the null 
hypothesis; that is to say, the difference between the LDA 
and SVM classification accuracies is statistically significant, 
and accordingly, it was determined that SVM performs bet-
ter than LDA in terms of the classification accuracies.

Discussion

In this study, we demonstrated the feasibility of fNIRS-
based online binary “yes” or “no” decision decoding. 
With the SVM, an average classification accuracy as high 
as 82.14  % was achieved. Due to individual differences 
(Yarkoni and Braver 2010), the peak values of the aver-
age �cHbX(t) also differed individually, though the aver-
age classification accuracy, using either LDA or SVM, 
did not fall below 60  % for any subject. The hemody-
namic responses, however, remained similar throughout 
all subjects (see Fig.  3a). In Fig.  3b, the grand averages 
of �cHbO(t) across the entire subjects with one stand-
ard deviation are shown. To verify that the difference was 
caused by “yes” and “no” only (i.e., not by random groups 
of trials), t test was conducted for the first five questions 
versus the last five questions and also for odd versus even 
questions. The p values were found to be 0.254 and 0.432, 

Fig. 3   continued

Fig. 4   The two-dimensional feature space for SVM classification
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respectively, which shows that there is no significant differ-
ence for random groups.

fNIRS is an indirect optical measurement technique; 
that is, it does not detect neural activity directly, but rather 
detects the hemodynamic changes due to neural activa-
tion. Accordingly, there is always a time delay between 
an activity and the detected response. For BCI and other 
real-time applications, it might be possible to compromise 
classification accuracy versus temporal delay. However, 
for decoding applications, the higher classification accu-
racy would be desirable. With advanced filtering tech-
niques (Khoa and Nakagawa 2008; Biallas et  al. 2012; 
Kamran and Hong 2013), different features from fNIRS 
signals and different classification techniques [e.g., the 
hidden Markov model or neural networks (Khoa and 
Nakagawa 2008)], the classification accuracy can be 
increased. It has also been shown recently that using a 
hybrid NIRS–EEG brain–computer interface, the clas-
sification accuracies can be further increased (Fazli et al. 
2012).

In this study, the effect of habituation (Szabo and Gauvin 
1992) and differences between high- and low-skilled arith-
metic problem solvers (Nunez-Pena and Suarez-Pellicioni 
2012) were not considered. A continuing exposure to men-
tal arithmetic might result in lower hemodynamic response 
due to habituation. Further study needs to be devised 
to investigate the effects of habituation and differences 
between high- and low-skilled problem solvers in mental 
arithmetic-induced hemodynamic response and thereby 
classification accuracies.

This paper presents the first work on fNIRS-based 
online binary decision decoding from the prefrontal cor-
tex using linear discriminant analysis (LDA) and support 
vector machine (SVM), two widely used classification 

methods for fNIRS- and EEG-based BCI (Sitaram et al. 
2007; Luu and Chau 2009; Salvaris and Sepulveda 
2010; Hu et  al. 2012; Li and Zhang 2012). The classi-
fier trained by SVM offered significantly better classifi-
cation than classification obtained from LDA. This result 
is similar to recent studies done by Hu et al. (2012) that 
successfully increased intra-subject classification accu-
racy using SVM. The results from this study also dem-
onstrate the potential use of SVM to discriminate binary 
signals of neuronal activity within the prefrontal cortex, 
demonstrating the feasibility of fNIRS as applied to BCI 
(Figs. 4, 5).

Conclusions

This paper presented an fNIRS-based online binary deci-
sion decoding framework based on the signals acquired 
from the prefrontal cortex. The LDA and SVM classifi-
ers were used to decode the binary decisions as “yes” or 
“no.” Using the mean values of �cHbO(t) and �cHbR(t) as 
features to the classifiers, the average SVM classification 
accuracy was 82.14 %, whereas the average LDA accuracy 
was 74.28 %. The results of this research demonstrate the 
feasibility of fNIRS as applied to binary decision decoding 
and the potential use of SVM to discriminate signals from 
the prefrontal cortex.
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Fig. 5   Classification accura-
cies, using LDA and SVM, for 
one complete trial averaged 
over all subjects
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