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Abstract
Deception involves complex neural processes in the brain. Different techniques have been used
to study and understand brain mechanisms during deception. Moreover, efforts have been
made to develop schemes that can detect and differentiate deception and truth-telling. In this
paper, a functional near-infrared spectroscopy (fNIRS)-based online brain deception decoding
framework is developed. Deploying dual-wavelength fNIRS, we interrogate 16 locations in the
forehead when eight able-bodied adults perform deception and truth-telling scenarios
separately. By combining preprocessed oxy-hemoglobin and deoxy-hemoglobin signals, we
develop subject-specific classifiers using the support vector machine. Deception and
truth-telling states are classified correctly in seven out of eight subjects. A control experiment
is also conducted to verify the deception-related hemodynamic response. The average
classification accuracy is over 83.44% from these seven subjects. The obtained result suggests
that the applicability of fNIRS as a brain imaging technique for online deception detection is
very promising.

(Some figures may appear in colour only in the online journal)

1. Introduction

Deception is a cognitively demanding process requiring
intentional suppression of the truth, interactive
communication and strategic modifications of behaviors
to convince the receiver. Various techniques have been
developed to detect deceptions. One typical method is the
polygraph (Brett et al 1986, Honts et al 1994, Mohamed et al
2006). However, this method is an indirect method that can
detect arousal from the peripheral nervous system but not
the brain response. Direct methods were also developed,
which include electroencephalography (EEG) and functional
magnetic resonance imaging (fMRI). EEG has been utilized
to test special knowledge, for instance, the guilty knowledge
test (GKT) (Farwell and Donchin 1991). The GKT is a test of
prior knowledge of crime details that would be known only to
the suspect involved in the crime (Elaad and Benshakhar 1991,
1997, Furedy and Benshakhar 1991, Elaad 1997). Although

4 Author to whom any correspondence should be addressed.

EEG provides high temporal resolution for detecting neuronal
signals, it is difficult to localize the source of the potential
associated with the deception process. Compared to EEG,
the blood oxygen level-dependent fMRI offers much greater
spatial resolution (Huettel et al 2008). It can localize the
changes in regional cerebral blood flow (rCBF) that are
associated with increased neuronal activation.

Taking advantage of fMRI’s high spatial resolution, the
deception-related brain regions were investigated by multiple
research groups (Spence et al 2001, 2004, Langleben et al
2002, 2005, Lee et al 2002, Ganis et al 2003, Kozel et al 2004a,
2004b, 2005, 2009a, 2009b, Nunez et al 2005, Phan et al 2005,
Mohamed et al 2006). The prefrontal cortex was observed in a
number of studies reporting that a greater activation exists
during deception as compared to the control condition of
telling the truth. Answering truthfully was believed to be a state
requiring less cognitive control than lying according to these
studies. Specifically, recent studies using fMRI have achieved
reliable results in differentiating the deceptive response from
that of truth-telling at an individual level under laboratory
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conditions (Kozel et al 2005, 2009a, 2009b, Langleben et al
2005).

However, the non-portability and the high cost of
fMRI scanners limit the use of fMRI technologies in many
cases. Moreover, fMRI is known to be extremely sensitive
to motion artifacts. Therefore, some researchers started to
look for an alternative brain imaging technique, functional
near-infrared spectroscopy (fNIRS). fNIRS measures the
hemodynamic changes that effectively reflect the brain
activities occurring while people perform a wide range of
mental tasks (Koizumi et al 2003, Obrig and Villringer 2003,
Boas et al 2004, Wolf et al 2007, Perrey 2008). It can provide
both topographic (Koizumi et al 2003, Toronov et al 2007,
Wolf et al 2007, Hu et al 2011) and tomographic (Barbour
et al 2001, Boas et al 2004) brain images. Specifically, fNIRS
monitors the rCBF variation by measuring, through the skull,
the absorption changes of near-infrared light at wavelengths
between 650 and 950 nm (Obrig and Villringer 2003).
These changes are caused by the concentration variations of
oxy-hemoglobin (HbO) and deoxy-hemoglobin (HbR), two
primary absorbing chromophores in brain capillary blood.

fNIRS, compared with other prevalent brain imaging
techniques such as EEG and fMRI, offers a good trade-off
between spatial and temporal resolutions. The usability and
drawbacks of fNIRS, in comparison with other neuroimaging
methods, were discussed and analyzed by Perrey (2008).
Another comprehensive review (Irani et al 2007) comparing
respective features of fNIRS and fMRI concluded that
fNIRS has great potentials for neurological and psychiatric
applications due to its simplicity, portability and insensitivity
to motion artifacts compared with fMRI. Meanwhile, the EEG
technique is limited, due to its poor spatial resolution and low
signal-to-noise ratio in many applications (Turnip et al 2011).
From these aspects, fNIRS can provide comparatively better
quality (Gratton and Fabiani 2001a). An increasing number of
researchers are focusing on using fNIRS to decode mental
states and to develop a brain–computer interface (BCI): a
detailed review of BCI was provided in Sitaram et al (2009).

fNIRS is capable of detecting brain signals in the cortical
layer, whereas several fMRI studies indicated that some neural
pathways in the prefrontal cortex become critical during
deception. A recent study has explored the utilization of
fNIRS for deception detection, and supported that fNIRS has
great potential in this area: Tian et al (2009) reported an
interesting result of deception detection with a mock theft
scenario. They analyzed both HbO and HbR signals during a
deception state, and compared them with those during a truth-
telling state (control condition). They also conducted an offline
classification study for identifying different objects that the
subject took. Their study indicated that there were significant
responses at the prefrontal cortex during the deception period
demonstrating the development of an fNIRS-based framework
for deception decoding.

In this paper, an online fNIRS-based framework for
decoding intentional deceptions is developed. For deception
decoding, both preprocessed HbO and HbR signals with their
recent histories are further analyzed. It is demonstrated that
a classifier trained by the support vector machine (SVM)

Figure 1. Source/detector locations and channel distribution: two
reference points (FP1 and FP2) confirm the International 10-20
System.

algorithm can identify a deception state approximately 3.12 s
after the beginning of the state. A mock theft scenario similar
to that designed in the fMRI study (Kozel et al 2005) for
deception detection is used in this study. The contributions of
this paper are: (i) this paper presents the first work on an online
deception classification algorithm based upon fNIRS. (ii) With
the developed fNIRS technique, a collaborative performance
between left and right prefrontal cortices during deception
period could be demonstrated. (iii) The signal history was
included into the feature space to reduce the classification
time.

2. Materials and methods

2.1. Experimental paradigm

Eight right-handed healthy volunteers (all males, aged 24
to 34 years) participated in the experiment. None of the
participants had a history of any neurological disorder. All
of the participants provided written informed consent. The
experiment was conducted in accordance with the latest
Declaration of Helsinki. The data were acquired with a
continuous-wave NIRS imaging system (DYNOT: dynamic
near-infrared optical tomography) developed by NIRx Medical
Technologies, Brooklyn, NY, at a sampling rate of 1.81 Hz.
The system emits laser light of two wavelengths (760 and 830
nm) from each source. Figure 1 shows the channel distribution
and measurement location.

The paradigm uses a mock theft scenario similar to that
given by Kozel et al (2005). The participant is instructed to
‘steal’ a watch or a ring from a drawer (in this study, four
persons took a watch and the other four took a ring). The
selected item is kept unknown to the investigator, and placed
in an envelope on a table. Then the participant put the fNIRS
probe on his forehead with the assistance of the investigator.
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Figure 2. The used experimental paradigm: one session consists of
two question blocks (‘watch’ and ‘ring’ blocks). In each block, four
questions are presented followed by a rest period of 20 s. Each
question takes 4 s, and its answering time is 2 s. The entire
experiment is composed of five sessions (two training sessions and
three testing sessions).

Before the formal deception test, the participant performs
a practice task, which consists of an instruction slide and
questions with a clear ‘Yes’ or ‘No’ answer. The questions
are presented on a computer screen, and the participants are
asked to respond to the question by pressing ‘Key 1’ or ‘Key 2’
on the keyboard (‘Yes’ or ‘No’ answer) using their left hand.
This practice process enables the subjects to get familiar with
the question presentation as well as the keyboard response
with fingers. During the experiment, the participant is required
to answer two categories of questions (see the appendix)
presented on the computer screen: ‘ring’ questions regarding
whether he took the ring; ‘watch’ questions regarding whether
he took the watch. The answers to questions regarding ring and
watch would be either lies or truths depending on the object
the participant selected.

Each question slide is presented for 4 s on the screen,
followed by a prompt slide asking the subject to answer ‘Yes
or No’ via key stroke. The prompt slide stays on the screen
for 2 s. Each category contains 20 questions, and thus 40
questions are presented. In this work, a blocked design was
adopted during the question presentation. Twenty questions
in the same category were split into five blocks, with an
interval of 20 s between each block. The timing sequence
of one session in the experimental paradigm is shown in
figure 2. A session is defined as the combination of a block
involving a ‘watch’ question block followed by a rest period
for 20 s, followed by a ‘ring’ question block and followed
by another rest period. The whole experiment includes five
sessions. For comparison purpose, another experiment was
conducted using the same experimental paradigm. The same
questions were presented to the second group of subjects
(eight subjects) without taking any object from the drawer.
The relevant hemodynamic response was recorded and further
analyzed.

2.2. Signal analysis

2.2.1. Measurement model for fNIRS. In fNIRS
measurement, the optical density variation (�OD) can be
modeled as a linear combination of hemoglobin concentration
changes (�cHbO and �cHbR) multiplied by proper coefficients.
Their relationship is described by the modified Beer–Lambert
law (MBLL), a law relating the reduction in luminous intensity

of light passing through a material to the length of the light’s
path through the material, as

�ODi(λ) = (aHbO(λ)�cHbO + aHbR(λ)�cHbR)LiDPF(λ),

(1)

where λ is the wavelength of the laser source, the superscript
i indicates the index of channels, aHbO (μM−1 mm−1) and
aHbR (μM−1 mm−1) are the extinction coefficients of the HbO
and HbR, Li is the distance between the source and the detector
of the ith channel and DPF is the differential path length factor.
In this paper, the optical density data are first converted to the
hemoglobin concentration change data via MBLL. The data
series detected from all the channels are then preprocessed
using a band-pass filter (elliptic filter) with 0.01 and 0.2 Hz
cutoff frequencies.

2.2.2. Features. fNIRS is unique, among neuroimaging
technologies, because it can provide both HbO and HbR
concentration levels simultaneously at each location. In this
study, we include both HbO and HbR signals into the feature
space for detecting deception (it is found that the HbO level
increases and the HbR level decreases during deception, while
both levels are normal during truth-telling or rest). Moreover,
short histories (previous data) of the HbO and HbR signals are
also considered together with the event-related data: 1, 3 and
5 s history of the data prior to the current time. We then
compare the classification performances to investigate a proper
size of data history for deception decoding.

In this study, we adopt the contrast-to-noise ratio (CNR)
to quantify the signal-to-noise ratio (Cui et al 2010), and
select efficient channels for further classification based on the
training data set. We use the first two sessions for training
the model, and the rest three sessions are used as a testing
set. Basically, the CNR calculates the amplitude difference
between the averaged signals during active periods, divided
by the pooled standard deviation. A larger CNR indicates that
the ratio of deception-related signal to noise is larger.

CNR

=
∣∣∑ meanHBX(active)

∣∣ − ∣∣∑ meanHBX(rest/inactive)
∣∣

√∑
varHBX(active) + ∑

varHBX(rest/inactive)
,

(2)

where ‘active’ refers to the period of deception, and
‘rest/inactive’ means the rest period and truth-telling period,
we then compare the classification performance using only
selected channels with the one using all the channels to
investigate an optimal channel combination.

2.2.3. Support vector machine. The classification task is
based on the training data and the testing data involving several
sessions of data. The data at each time point in the training
set contain one target value, that is, the class type and its
attributes. The objective of the SVM is to produce a model
according to the training set, and this model is used to predict
the target values in the testing set when only the attributes
are given. At each time instance k, the classification problem
is to determine a scalar yk (target value) from a measurement
vector Xk (attributes). In the classification of the fNIRS data
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from multiple channels at both hemispheres, Xk represents the
concentration values of HbO and HbR measured from different
channels with their recent histories. In this study, yk is 1 when
the subject is doing the deception task and 0 when he is telling
the truth or having a rest. This work is restricted to the binary
classification.

In the formulation of the SVM, with a nonlinear kernel,
the input vector Xk is mapped to a high dimensional feature
space, Zk, through a nonlinear transformation function g(·),
so that Zk = g(Xk). The SVM algorithm attempts to find a
decision boundary or a separating hyper-plane in the feature
space, given by the decision function D(·):

D(Zk) = 〈W, Zk〉 + ω, (3)

where ω represents the intercept, and the parameter W can be
obtained by solving the equation

yk(〈W, Zk〉 + ω) > 1 − ξ . (4)

Under the constraint, the solution becomes optimal when
1
2W TW +C· f (ξ ) is minimized, where ξ represents the training
error, and the parameter C is the regularization constant,
chosen by the user. A large value of C corresponds to higher
penalty for classification errors.

In this study, we implemented the SVM classifier using
the LibSVM package (Chang and Lin 2011). The LibSVM
package is a C++ implementation, providing various features
for SVM classification. The implementation was carried out
in the following steps.

(a) fNIRS data were transformed into the format of LibSVM
software. The training sets and testing sets were created
as vectors of real numbers of HbO and HbR concentration
changes at a specific time point with their recent
history from 16 channels, while the subjects were doing
deception, rest, or truth-telling. In order to compare the
classification performance, we considered three different
data history lengths (1, 3, 5 s); thus the dimensions of
the feature vectors were 32 (16 channels × 2 levels),
204 (3 s × 1.8 Hz × 16 channels × 2 levels + 32) and
320 (5 s × 1.8 Hz × 16 channels × 2 levels + 32).

(b) Each attribute was scaled to a value in the range of [−1, 1].
The main reason for scaling is to avoid attributes having
large numerical values.

(c) The kernel for the SVM algorithm was selected: radial
basis function (RBF) kernel and linear kernel were both
considered, and their performances were compared.

(d) The best penalty parameter C and kernel parameter using
the LibSVM software for each subject were found. We
performed a five-fold cross-validation to determine the
classification accuracy. The cross-validation procedure is
also known to prevent the over-fitting problem.

(e) The above parameters were used to train a SVM model
for a specific subject.

(f) After training the model, the SVM model was used to
predict the class label based on the attributes in the testing
set.

2.2.4. The delay calculation and the classification accuracy.
In this study, we report two kinds of delay, the onset delay
and the offset delay. The onset delay is defined as the time
between the onset of the subject deception and the first
instance classified as ‘active’, while the offset delay is defined
as the time from the offset of the subject deception to the
status classified as ‘inactive’. We also analyze both the inter-
subject accuracy and intra-subject accuracy. The inter-subject
accuracy is defined as the ratio of the correct classifications
to the total classifications on the objects that a subject takes,
while the intra-subject accuracy is defined as the ratio of the
correct classifications to the total classifications on the state
(deception versus truth-telling or rest) at each time point for
each subject.

3. Results

Figure 3 shows the normalized, block-averaged hemodynamic
responses (HbO and HbR data) of seven subjects in the
main experiment and eight subjects in the control experiment,
respectively, during deception, truth-telling and rest periods.
The classification accuracies of all the subjects in the main
experiment are shown in table 1. Subject 1 achieved the highest
classification accuracy with both RBF kernel and linear kernel.
The average intra-subject classification accuracy over all the
subjects is 83.44% with the RBF kernel, and 81.14% with
the linear kernel, as shown in table 1, while the inter-subject
classification accuracy is 87.5% (seven out of eight subjects).
Furthermore, we found that the classification accuracy is
higher when using the data from all the channels, and the
inclusion of 3 s data history is optimal. The comparison results
are shown in figure 4.

4. Discussion

4.1. Differentiating between deception and truth-telling

In this paper, we attempted to classify a deception state
from a truth-telling state online using the signals measured
from the prefrontal cortex. The encouraging classification
accuracies using the preprocessed HbO and HbR signals and
the pre-trained SVM model warrant further investigation on
a fNIRS-based online deception detection framework. We
used the amplitudes of HbO and HbR with their recent
temporal amplitude history as features for classification. The
whole study was conducted under laboratory conditions. Block
design is also used in this study. The purpose of using block
design is to increase the signal-to-noise ratio of fNIRS.

A number of previous studies have reported that the
prefrontal cortex is an important location where brain activities
happen when the subject tells a lie. In this paper, we found that
a significant deception-related brain activity exists at the left
border of the left prefrontal cortex (channel 1) and the right
anterior prefrontal cortex (channels 11, 13, and 14), as shown
in figure 3. Clear hemodynamic responses regarding deception
can be viewed in the upper panels compared with the lower
panels in the data of the control experiment. This leads to
the conclusion that collaboration between the left and right
prefrontal cortices exists for a deception task.
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Figure 3. Comparison of six averaged hemodynamic responses (i.e. HbO-lie, HbO-rest, HbO-truth, HbR-lie, HbR-rest, and HbR-truth
concentration changes) for 16 channels. The upper part shows the averages of 35 signals (five sessions in the main experiment, seven
subjects) and the lower part depicts the averages of 40 signals (five sessions in the control experiment, eight subjects).

Figure 4. Comparison of classification accuracies: the two bar charts on the left-hand side show that the classification accuracy obtained by
using all 16 channels is significantly higher than the one obtained by using only 6–10 selected channels from the CNR criteria. The three bar
charts on the right-hand side indicate that the classification accuracy using 3 s data history is higher than those using 1 or 5 s data histories
(t-test of ∗∗, p < 0.005; t-test of ∗, p < 0.01).

Table 1. The classification accuracy and delays for all the subjects (the asterisk indicates that the data are derived with the linear kernel).

Intra-subject classification Intra-subject classification
Subject Onset Offset accuracy with the accuracy with the
number Object delay (S) delay (S) RBF kernel (%) linear kernel (%)

1 Watch 2.58∗ 1.10∗ 90.78 95.60
2 Watch 9.95 −7.18 75.42 73.17
3 Watch 1.12 1.66 86.30 62.38
4 Ring 3.25 2.38 75.31 62.89
5 Ring 2.76∗ 4.05∗ 82.07 87.79
6 Ring 1.05∗ 3.31∗ 84.26 93.37
7 Ring 1.12∗ 3.13∗ 82.16 92.59
Average 3.12 1.21 83.44 81.14
8 Watch – – 44.64 47.95
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In this study, we train the subject-specific models
for predicting their state at single time point. Our model
can predict different brain states including active state
(deception state) and inactive state (rest/truth-telling state),
thus provide information for discriminating the different
objects that a subject took. While 9 out 11 subjects were
successfully classified in Tian et al (2009), 7 out of 8 subjects
were successfully classified in our study. The inter-subject
classification accuracy is at the same level compared with Tian
et al (2009). The signals measured from the subject yielding
an incorrect classification result showed no difference between
the ‘watch’-related question blocks and the ‘ring’ question
blocks. The same subject reported loss of concentration while
the experiment was running. Furthermore, our results achieved
a similar inter-subject classification accuracy when compared
with the conventional polygraph, but it was slightly lower than
the level (90–93%) in a previous fMRI study (Kozel et al 2005).
The reason might be that in the latter case, the total subjects’
population was 61 (about eight times larger than ours). We
therefore expect that the classification accuracy gets higher if
the sample size gets larger.

We compared the performance of the RBF kernel with
the one using the linear kernel. The average classification
accuracies of two different kernels are similar according to
the data in table 1. For four subjects, the performance using
the linear kernel is better than the one using the RBF kernel
while, for the other three, the performance using the RBF
kernel is better than the one using the linear kernel. This result
suggests that the feature dimension is not high enough to be
linearly separable for some subjects, and thus the performance
using the linear kernel is less stable than that using the RBF
kernel.

4.2. Subjective memory suppression

We asked the subject to describe their mental image when
telling a lie, after they finished their experiment. Interestingly,
different subjects reported different mental images for
conducting the deception task. Some subjects reported
remembering the truth but choosing an opposite answer. A
subject reported that he tried to avoid imaging the object (watch
or ring) that he put in the envelope. Another subject reported
imaging that the ‘stolen’ object still stays in the drawer.
Because the underlying neurophysiological correlation of
deception or truth-telling is beyond the scope of this study, such
differences across subjects are acceptable and expected. As a
result of inter-subject variability in hemodynamic response
patterns, individualized model training has been recognized
as necessary in the fNIRS decoding of cognitive states at the
current stage.

4.3. The classification rate with different channel numbers
and data history

We used the CNR to select the channels with a high response
to the deception state for further classification. We compared
the classification performance using the data from all the
channels with the one using only selected channels. The
results show that using all the channels is the best choice.

This result can be interpreted as that the data measured from
every channel include their own information that contributes
to the signal classification. Meanwhile, the SVM is a classifier
that can deal with a large data dimension. Therefore, the
classification accuracy increases if the information reflected by
the hemodynamic responses from all the channels are included
in the feature space. The comparison results are shown in the
left panel of figure 4.

We included the recent temporal data history into the
feature space for classification. As discussed in Cui et al
(2010), the temporal data history is very useful for increasing
the intra-subject classification accuracy. We compared the
results with different data history lengths, that is, 1, 3 and 5 s
data length. The results show that the 3 s data history length is
the optimal choice. The comparison among three histories is
shown in the right panel, figure 4. It is remarked that the data
history cannot be too short or too long for the online deception
classification.

4.4. Onset and offset delay in deception identification

The response delay due to the hemodynamic response is a
major limitation for fNIRS decoding cognitive states (for BCI).
Many efforts have been put into how to shorten the response
delays (Coyle et al 2007, Cui et al 2010). In this work, we are
able to get the shortest onset delay of 1.12 s and the offset delay
of 1.10 s, using the features of HbO and HbR with their recent
history, 16 channels and a sampling rate at 1.81 Hz. These
features make the classification time shorter, compared with
other fNIRS decoding cognitive state studies (Coyle et al 2007,
Sitaram et al 2007). In future work, we will test a different
feature combination, increase the number of channels and
increase the data sampling frequency to investigate whether the
classification delays can be further shortened. Moreover, recent
studies (Gratton and Fabiani 2001b, Hu et al 2011) suggest
that such a time period might be shortened by employing fast
optical responses.

4.5. Limitation of the proposed scheme

Many researchers used fMRI for brain-signal-based deception
research by taking advantage of fMRI’s high spatial resolution.
However, fNIRS was used in this study to decode deception as
it has higher temporal resolution compared with fMRI. The
higher temporal resolution allows us to develop an online
framework. The proposed framework considers the recent
signal history as a classification feature. This feature makes
the classification time shorter, compared with other fNIRS
decoding cognitive state studies (Coyle et al 2007, Sitaram
et al 2007).

However, there are several limitations in this study.
Sitaram et al (2009) proposed two important questions for
fNIRS decoding cognitive state studies in general: (i) is it
possible to perform brain state classification automatically
based on the subjects’ brain activity? (ii) Is it possible to do
this online, or in real-time as against after several minutes or
days of offline processing? In this study, only a simulated
online environment was used. The data were incorporated
sequentially for classification. To modify the framework online

6
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in reality, first, an online data acquiring interface needs to
be added to the framework. Many previous works reported
a successful online data acquiring interface (Abdelnour and
Huppert 2009, Coyle et al 2007). Second, online data filtering
methods need to be applied. Cui and co-workers (2010) applied
exponential moving average to the fNIRS data, whereas our
previous work (Hu et al 2010) applied Kalman filtering to the
fNIRS data.

Another limitation of this framework is the subject-
specific SVM models. In order to apply this framework in
reality, a short calibration procedure for the model needs to
be derived. In this study, a long calibration procedure of the
SVM model was of 176 s. Under the background to deception
detection in criminal or other cases, a model with a short
calibration procedure is required. Future research will focus
on how to shorten the calibration procedure.

Finally, the proposed framework needs to be further
validated. Our purpose is to develop a generalized framework
for online deception detection for criminal or other cases. In
this paper, only male subjects from age 24 to 34 were tested.
In future work, female subjects, old people and children need
to be investigated to confirm the generalized feasibility of the
proposed framework.

5. Conclusion

A fNIRS-based online deception decoding framework was
proposed in this paper. The HbO and HbR signals measured by
fNIRS with their recent temporal history were included in the
feature space for further classification. The SVM was used as a
classification scheme. The intra-subject classification accuracy
was around 83.44% with the RBF kernel and 81.14% with the
linear kernel, while the inter-subject classification accuracy
was 87.5%. The results indicated a great potential of fNIRS to
become a new technology for online deception detection.
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Appendix. Questions used in the experimental
protocol

‘Watch’ questions.

(1) Did you take the watch from the drawer?
(2) Is the watch in your envelope?
(3) Did you take the watch?
(4) Did you steal the watch?
(5) Was the watch stolen?
(6) Did you hide the watch?
(7) Do you know who took the watch?
(8) Is the watch with your possessions?
(9) Did you take a watch that is not yours?

(10) Is there a stolen watch in your envelope?

(11) Did you put the watch in your envelope?
(12) Did you hide the watch in your envelope?
(13) Did you remove a watch from the drawer?
(14) Did you steal a watch from the drawer?
(15) Did you place the watch in your envelope?
(16) Did you keep the watch in the drawer?
(17) Did you leave the watch in the drawer?
(18) Did the watch stay in the drawer?
(19) Was the watch moved from the drawer?
(20) Is the watch in the drawer?

‘Ring’ questions.

(1) Did you take the ring from the drawer?
(2) Is the ring in your envelope?
(3) Did you take the ring?
(4) Did you steal the ring?
(5) Was the ring stolen?
(6) Did you hide the ring?
(7) Is the ring with your possessions?
(8) Is there a stolen ring in your locker?
(9) Is there a stolen ring in your envelope?

(10) Did you take a ring that is not yours?
(11) Did you put the ring in your envelope?
(12) Did you hide the ring in your envelope?
(13) Did you remove a ring from the drawer?
(14) Did you steal a ring from the drawer?
(15) Did you place the ring in your envelope?
(16) Did you keep the ring in the drawer?
(17) Did you leave the ring in the drawer?
(18) Did the ring stay in the drawer?
(19) Was the ring moved from the drawer?
(20) Is the ring in the drawer?
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