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Abstract: An adaptive sliding mode control scheme for container cranes is investigated in this study. A sliding surface
is designed in such a way that the sway motion of the payload is incorporated into the trolley dynamics. Included in the
proposed control law is a varying control gain, obtained by an adaptation law, which transitions the system into the sliding
mode. The control law guarantees the asymptotic stability of the closed-loop system. To demonstrate the efficiency of the
proposed algorithm, experimental results are provided.
1 Introduction

Container cranes (or quay cranes) are used for vessel-
to-truck and truck-to-vessel loading and unloading of
containers at container terminals. Container cranes consist
of a supporting structure called the gantry that can traverse
the length of a quay or yard, a trolley and a moving
gripper called a spreader. The trolley runs along rails, which
are located on the top or sides of the boom, transferring
containers to or from the ship. The spreader can be lowered
on top of a container, and locks on to the container’s four
locking points by means of twist-lock mechanisms. The
container is then lifted and transferred onto a truck, which
takes the container to a storage yard. The crane also unloads
containers from the truck and transfers them to the ship.
Cranes normally transport single containers; however, some
new cranes are capable of loading/unloading up to four 20 ft
containers at once.

Since the movement of the trolley sways the container
during transport, the main issue in container crane control
is quick suppression of the vibrations caused by trolley
motions at the trolley’s goal position. Additionally, a
residual sway, because of crane dynamics and disturbances
such as winds, occurs at the end of the trolley’s movement.
Thus, researchers working in the area of container crane
control always have been obliged to deal with sway
suppression.

Container oscillation and the obligation to suppress it,
in fact, constitute a transportation bottleneck headache for
container terminal officials. Although the ‘container’ crane
is a special case of many types of cranes, early crane
control results are still relevant to the present concern.
When the rope length is constant, it is known that the
input (or command) shaping control is very effective [1–10].
In their studies, the reference signal was modified and
implemented in real time, where modification depends on
the natural frequency of the system. If the considered
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system has an uncertain parameter, control design based
on the input shaping technique may not fulfil the goal.
Besides, the input shaping cannot be used for disturbance
rejection, and it should be used in conjunction with a
feedback control to reject disturbances. Time optimal control
is another frequently used control method suitable for crane
control [11, 12]. Time optimal control, similarly to input
shaping control, requires exact system information. Both
optimal control and input shaping techniques are limited
by the fact that they are extremely sensitive to variations
in nominal parameters, changes in initial conditions and
external disturbances. In short, these methods require highly
accurate system parameter values to achieve satisfactory
system responses.

Linear control methods and algorithms have been applied
to crane systems [13–18]. However, these algorithms cannot
be implemented to real systems without tuning their control
gains. Under modelling uncertainties and measurement
errors, gain tuning is not an easy task. Additionally,
varying rope length and friction can present challenges
to gain tuning. Since friction and disturbance cannot be
precisely represented in models, they can have strongly
adverse effects on those systems. Many approaches to tackle
the uncertainties in crane systems have been proposed,
among which are sliding mode control (SMC) [19–29],
fuzzy control [30] and adaptive control [31–34]. Also, by
considering a crane system as an axially moving string
system, researchers have designed boundary control laws
to suppress transverse vibrations [35–38]. Moreover, some
conditions for asymptotical tracking must be satisfied if
the crane system is considered as an under-actuated control
system [39, 40].

In the present study, an adaptive SMC algorithm [41]
based on a non-linear container crane model [42] is
designed. According to the control scheme, the trolley
position and the sway angle are incorporated into a sliding
surface. A varying control gain, as obtained by an adaptation
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law, is the key feature in the proposed control law,
transitioning the system into the sliding mode. The control
gain increases to high gains until the sliding surface reaches
the sliding mode, at which time the gain is switched to a
low value to avoid chattering. The stability of the proposed
method is also answered.

The paper is organised as follows. In Section 2, the system
dynamics of a container crane are derived. In Section 3,
the SMC law and the adaptation law for control gains are
proposed, and the system stability is analysed. In Section 4,
simulation and experiment results of the closed-loop system
are discussed. Finally, in Section 5, conclusions are drawn.

2 Dynamic model of container crane

Consider the container crane illustrated in Fig. 1. The
container (payload) is picked up by the spreader, both being
suspended from the trolley by a rope of length l. The masses
of the trolley and the payload are mt and mp, respectively.
A control force fx is applied to the trolley. In an actual
crane, four ropes are used to hoist the spreader (including the
payload). However, for simplicity, only one rope is assumed
in the present paper. It is also assumed that the motions of
both the spreader and the rope occur in the vertical plane,
that is, the X –Y -plane (see Fig. 1). Let x be the trolley
position along the X -axis, θ be the sway angle and g be
the gravitational acceleration.

Considering the motions of the trolley and the payload in
the two-dimensional (2D) plane, the kinetic energy T and
potential energy U of the entire system are given by

T = 1

2
mtẋ

2 + 1

2
mp[(l̇ cos θ − lθ̇ sin θ)2

+ (ẋ + l̇ sin θ + lθ̇ cos θ)2]
= 1

2
(mt + mp)ẋ

2 + 1

2
mp l̇2 + 1

2
mp l̇2θ̇ 2

+ mp l̇ẋ sin θ + mplẋθ̇ cos θ

(1)

U = mpgl(1 − cos θ) (2)

Taking q = (x, θ) as the generalised coordinates
corresponding to the generalised forces f = (fx, 0), and using
Lagrange’s equation

d

dt

(
∂T

∂ q̇i

)
− ∂T

∂qi
+ ∂U

∂qi
= fi, i = 1, 2 (3)

O X
mtfx

l
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Y

Fig. 1 Container crane model
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the equations of motion can be obtained as

(mt + mp)ẍ + mp l̈ sin θ + mplθ̈ cos θ + 2mp l̇θ̇ cos θ

− mplθ̇ 2 sin θ = fx (4)

mplẍ cos θ + mpl2θ̈ + 2mpll̇θ̇ + mpgl sin θ = 0 (5)

The container crane equations of (4) and (5) are rewritten as

ẍ = h1(θ̇ , θ) + g1(θ)fx (6)

θ̈ = h2(θ̇ , θ) + g2(θ)fx (7)

where

h1(θ̇ , θ) = mpg sin θ cos θ − mp l̈ sin θ + mplθ̇ 2 sin θ

mt + mp sin2 θ

h2(θ̇ , θ) =
−(mp + mt)g sin θ + mp l̈ sin θ cos θ

− mplθ̇ 2 sin θ cos θ

mtl + mpl sin2 θ
− 2l̇θ̇

l

g1(θ) = 1

mt + mp sin2 θ

g2(θ) = − cos θ

mtl + mpl sin2 θ

3 Adaptive SMC

3.1 Control law design

In this section, a sliding mode anti-sway control scheme is
designed. First, an error vector e = [ex eθ ]T consisting of the
trolley position error and the sway angle error is defined as

e = [ex eθ ]T = [x − xd θ − θd]T (8)

where xd and θd are the trolley goal position and the desired
sway angle (θd is assumed to be zero), respectively. Without
loss of generality, it can be assumed that the first and second
time derivatives of the trolley goal position are bounded.
Additionally, it can be assumed that θ is not close to π/2,
and, to avoid zero rope length, l is not equal to zero. Next,
the sliding surface s is defined as

s = ėx + k1ex − k2θ (9)

where k1 and k2 are positive control gains. Note that both
the trolley and sway dynamics are incorporated into the
sliding surface. Finally, the following adaptive SMC law is
proposed

fx = −h1(θ̇ , θ) − r̈ + k̂(t)sat(s)

g1(θ)
(10)

where r̈ = ẍd − k1ėx + k2θ̇ , and the gain k̂(t) is defined as
follows:

• If |s| > ε > 0 (where ε is a small positive constant), k̂(t)
is tuned as

˙̂k(t) = γ |s| (11)

where γ > 0, and k̂(0) > 0.
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• If |s| ≤ ε, k̂(t) is given by

k̂(t) = λ|η| (12)

where λ > 0 and η is the average of sgn(s) obtained through
a low-pass filter [41] as follows

σ η̇ + η = sgn(s), σ > 0 (13)

The saturation function sat(s) is also defined as follows [43]

sat(s) =
{

s/ε, if |s| ≤ ε

sgn(s), if |s| > ε
(14)

Remark: The objective of SMC is to bring the sliding
surface s to zero. However, the adaptive SMC here is to
design a control law for practical implementation. Hence,
it is impossible to reach s = 0, because of sampled data
and noisy measurement. Therefore the control law (10)
only guarantees that the sliding surface reaches a zero
region, which is bounded by a small positive constant ε.
Without loss of generality (as far as the stability analysis is
concerned), the sliding surface is assumed to be zero when
s reaches the zero region.

3.2 Stability analysis

Theorem: Consider the crane systems (6) and (7) with
control laws (10)–(14). Then, (i) the control gain k̂(t)
in (11)–(14) is upper bound, that is, there exists a
positive constant K such that k̂(t) ≤ K , ∀t > 0; (ii) s and
ṡ asymptotically converge to zero as t → ∞. As a result,
the position error ex and the sway angle θ also converge
asymptotically to zero as t → ∞.

Proof: First, the boundedness of k̂(t) is proved. The
differentiation of the sliding surface (9) yields

ṡ = ẍ − ẍd + k1ėx − k2θ̇ (15)

The substitution of (6) and (10) into (15) yields

ṡ = −k̂(t)sat(s) (16)

Suppose that |s| > ε > 0. From (11) and (14), the gain k̂(t)
will increase. Also, if s < −ε, the derivative of s is greater
than zero, which implies that the sliding surface increases.
If s > ε, ṡ < 0, which means that s is decreasing. Therefore
(16) implies that the absolute value of the sliding surface
|s| decreases when the gain k̂(t) increases. If |s| decreases
until |s| ≤ ε, the gain k̂(t) is obtained by (12)–(13) which
is bounded because of the boundedness of η. Therefore
there always exists a positive constant K such that k̂(t) ≤ K
for all t ≥ 0 (the boundedness is graphically illustrated in
Fig. 2. Also, this behaviour will be verified in experiment;
see Figs. 9 and 10).

Second, the convergence of s and ṡ is proved.
Suppose that |s| > ε > 0. A Lyapunov function candidate
664
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Fig. 2 Relationship between the control gain k̂(t) and the sliding
surface s

a When s(0) > 0
b When s(0) < 0

is introduced as

V = 1

2
s2 + 1

2γ
(k̂ − K)2 (17)

where γ and K are positive constants. The differentiation of
(17) yields

V̇ = sṡ + 1

γ
(k̂ − K)

˙̂k (18)

The substitution of (11), (14) and (16) into (18) yields

V̇ = −K |s| ≤ 0 (19)

The first derivative is a semi-negative function. The second
derivative of the function, that is, V̈ = −K |k̂(t)sat(s)|, is
bounded, because k̂(t) is bounded. Application of Barbalat’s
lemma indicates that s → 0 as t → ∞. Owing to (14) and
(16), ṡ → 0 as s → 0.

Finally, the stability of the load dynamics is considered.
The dynamics in the sliding mode provides that s = 0 and
ṡ = 0. Hence, the following holds

s = ėx + k1ex − k2θ = 0 (20)

and
ṡ = ẍ − ẍd + k1ėx − k2θ̇ = 0 (21)

The first-order differential (20) provides the solution as

ex = ex(0)e−k1t + k2

∫ t

0

θ(τ )ek1(τ−t) dτ (22)

Substituting (22) into (21), the acceleration of the trolley is
obtained as

ẍ = ẍd + k2
1 ex(0)e−k1t + k2

1 k2

∫ t

0

θ(τ )ek1(τ−t)dτ − k1k2θ + k2θ̇

(23)
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The load dynamics (5) with the acceleration of the trolley
in (23) and a constant goal position becomes

lθ̈ = −(k2 cos θ + 2l̇)θ̇ − k2
1 cos θex(0)e−k1t − g sin θ

− k1k2 cos θ

(
θ − k1

∫ t

0

θ(τ )ek1(τ−t) dτ

)
(24)

Equation (24) shows that k1k2 cos θ
(
θ − k1

∫t

0 θ (τ) ek1(τ−t) dτ
)

is much smaller in magnitude than g sin θ , since k1k2 � g.
Without loss of generality, this term can be omitted from
(24), which yields

lθ̈ = −(k2 cos θ + 2l̇)θ̇ − k2
1 cos θex(0) e−k1t − g sin θ (25)

For proving the stability of the load dynamics (25), the non-
negative function Vθ is introduced as

Vθ = 1

2
lθ̇ 2 + g(1 − cos θ) (26)

The time derivative of Vθ yields

V̇θ = lθ̇ θ̈ + 1

2
l̇θ̇ 2 + g sin θ θ̇

= −(k2 cos θ − 1.5l̇)θ̇ 2 − k2
1 θ̇ cos θex(0) e−k1t (27)

A positive control gain k2 can be chosen to satisfy the
condition k2 cos θ > 1.5|l̇|. Now, suppose that θ̇ does not
approach zero asymptotically as t → ∞, and that the
function V̇θ in (27) will be negative at some finite time t0,
which implies that θ , θ̇ → 0 asymptotically for all t > t0.
Since s, ṡ → 0 and θ , θ̇ → 0, (9) assures that ex, ėx → 0. �

4 Simulation and experimental verification

4.1 System robustness

The robustness of the designed control system is tested
through simulations. Equations (6) and (7) are rewritten as
follows

ẍ = h1(θ̇ , θ) + �h1(θ̇ , θ) + (g1(θ) + �g1(θ))fx (28)

θ̈ = h2(θ̇ , θ) + �h2(θ̇ , θ) + (g2(θ) + �g2(θ))fx (29)

where �h1(θ̇ , θ), �h2(θ̇ , θ), �g1(θ) and �g2(θ) represent
modelling uncertainties. In simulations, the used system
parameters are l = 0.3 m, mt = 1.67 kg and mp = 0.73 kg.
The uncertain functions �h1, �h2, �g1 and �g2 are
set to have ±20% discrepancy from the nominal values.
However, the proposed control law (10) was designed by
using the nominal parameters. The results are shown in
Fig. 3. Although there are some differences in control
performances, the proposed control law (10) assures the
stability of the system well.

4.2 Control performances with different
control gains

The selection of the control gains in (9) must satisfy the
stability condition, k1k2 � g and k2 cos θ > 1.5|l̇|. The set
of (k1, k2) is neither empty nor unique. The selection of
control gains will affect the control performances as shown
in Fig. 4. When k1 and k2 are small, the sliding surface s in
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Fig. 3 Robustness verification
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Fig. 4 Control performances with different control gains

a Trolley position
b Sway angle

(9) is also small. Therefore the increase of k̂(t) in (11) (to
the values that provide fast system responses) may not be
fast enough. However, the increase of k1 and k2 beyond the
stability condition will make the system unstable.

4.3 Experimental results

A 3D crane from Inteco Company (www.inteco.com.pl) was
used in experiments. The rope length is set to l = 0.5 m and
the nominal masses were mt = 1.67 kg and mp = 0.73 kg.
The experiment was performed for trolley movement from
665
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Fig. 5 Comparison of two linear controls: with and without gain
tuning

a Trolley position
b Sway angle

0 to 1 m. The control performance of the proposed control
law is compared with that of the conventional linear anti-
sway control scheme using the conventional linear-quadratic
regulator theory. The control input was

ulinear = − 1

km
(K linearz + K gzd) (30)

where km is a DC motor gain, z = [x θ ẋ θ̇ ]T and zd =
[xd 0]T, and K linear and K g are a set of linear control
gains obtained by the Riccati equation and given by
K linear = [1.4142 −7.588 3.5825 − 4.0771] and K g =
[−1.4142 0]. Without gain tuning, the control performance
was poor: the trolley did not reach the goal position, even
though the sway angle was almost zero, because the linear
control did not take the friction into account when obtaining
the control gains using the Riccati equation. Given that the
set of control gains was applied directly to the practical
crane system, the control input did not compensate for the
friction. This incurred a steady-state error, as shown in
Fig. 5. However, the trolley, after the control gain was tuned
several times, reached the goal position with an acceptable
sway angle. Therefore when a linear control strategy is
applied, the control gains must be tuned for a real crane.

The experimental comparison of the control performances
between the adaptive SMC law and the linear control
with gain tuning are shown in Fig. 6. In both cases,
the trolley reached the goal position in 3.5 s. Neither was
there any significant difference in tracking to that position.
Significantly although, the proposed control law suppressed
the sway motion faster than did the linear control with
gain tuning. Moreover, using the adaptive SMC, the residual
sway of the load was smaller.

The comparison of the control performances between the
proposed control law and the non-linear control is shown
in Fig. 7. Here, the non-linear control law was designed by
using the feedback linearisation technique [17] and is given
666
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Fig. 6 Comparison between the proposed control and the linear
control laws with gain tuning
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Fig. 7 Comparison between the proposed control and the
non-linear control laws with the feedback linearisation technique

a Trolley position
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as follows

unon-linear = g1(θ)(v1 − h1(θ̇ , θ)) + g2(θ)(v2 − h2(θ̇ , θ))

g2
1(θ) + g2

2(θ)
(31)

where v1 = ẍd − kx1(ẋ − ẋd) − kx2(x − xd) and v2 = −2kθ θ̇−
k2

θ θ . The results were almost the same as the linear control
law case: the sway suppression of the proposed control law
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Fig. 9 Varying control gain

was superior to that of the non-linear control law. However,
the maximum sway angle of the load during the trolley
motion in the case of the proposed adaptive SMC was a
bit larger than that of the non-linear control. This will not
become a problem as long as the sway angle remains within
a specified range.

With a constant control gain k̂ , the control law (10)
guarantees the stability of the system. However, the best
control performance will not be achieved in this case. If a
low value of k̂(t) is used, the trolley takes too much time to
reach the goal position. With a large control gain, the time to
reach the goal position becomes shorter but the sway motion
gets larger. Fig. 8 compares the performance of the adaptive
SMC and those of a number of fixed gains, respectively. The
adaptive law generates a high control gain as long as the
sliding surface does not reach the sliding mode, and switches
to a low gain as soon as it achieves (s = 0 with ex = 0 and
θ = 0); see Figs. 9 and 10. The strategy of using a high gain
for fast response and a low gain for reducing chattering is a
smart plan for SMC applications. Finally, the control force,
which was applied on the trolley, is shown in Fig. 11.
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5 Conclusions

In this paper, to achieve fast travelling and minimal
chattering of the trolley, an adaptive SMC algorithm for
container cranes was developed: if the system does not reach
its sliding mode, the adaptive gain is increased. However,
once it reaches, the gain gets small to reduce chattering. The
derived control law guaranteed the asymptotic stability of
the closed-loop system. Moreover, the control performance
of the proposed control law was compared with those of a
well-tuned LQ control and a feedback linearisation control
law. Also, the key advantage of the adaptive SMC in
robustness, using a crane model involving 20% uncertainty,
was demonstrated.
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