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Exponential Stability of the PDAF with a Modified
Riccati Equation in a Cluttered Environment

Yong-5hik Kim and Keum-Shik Hong

Abstract: The probabilistic data association filter (PDAF) 15 known o provide better tracking performance than the standard Kalman
filler (KF) in a cluttered environment. 1n this paper, the stability of the PDAF ol Fortmann ef al. [7], In the presence of uncertainties
with regard (o the ongmin of measurcment, 1s investigated. The modified Riccati equalion denved by approximating two random terms
with their expectations 15 used Lo prove the stability of the PDAF. A new Lyapunov function based approach, which is different from
the quantitative evaluation ot Li and Bar-Shalom [ 17]. is pursved. With the assumption thal the system and observation noiscs arc

hounded, specific tracking ermor bounds are established.
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1. Introduction

The target tracking problem refers to the process of estimat-
my the state ot o target vsing a set of measurements associated
with the target. In a cluttered environment, 1 measurcment
may have been oniginated from any one of the following: the
targel of mierest, interfering objects, clutter, countermeasures,
or talse alarms in the detection process. The uncertainty with
regard to the origin of a measurement makes the tracking
problem much more difficult than a regular estimation prob-
lem. Accordingly. how 1o overcome. or manifest, the vague-
ness of the ongins of data. which is referred to as a data asso-
clation problem, is the crux of a tracking problem. A typical
algorithm in this category is the probabilistic dala association
tilter (PDAF) [1][2][51[7][14]117]. The frst work on the
FPDAF, which is more complex than the standard KF |8]{13],
was originally miroduced by Bar-Shalom and Tse in 1975 1],

While the PDAF has demonstrated a good tracking per-
formance in the prescnce of uncertainties, neither the stabilily
proof nor the convergence analysis of the PDAF has been
completed yet. On the other hand, the statlity and the conver-
gence analyses of the KF algorithms for nonlinear and/or time-
varying systems arc still widely investigated in the literature
(A TO]-[12][18][19][21]. For linear systems, the standard
Riccatl cquation leads to the stability of the KF, provided ap-
propriate controllability and observability conditions hold [8]
[13] and the KF's prediction covariance always converges in
the steady slate.

A PDAF algorithm was introduced by Fortmann et af. |7],
i which a deterministic Riccatt equation, as an approximale
propagation of the average covariance matrix, was derived by
replacing the random terms in the original equation with their
expecltanons over all possible validated measurements. The
stabihty of the tracking algorithm in [7] depends enucally on
the detection and false atarm probablities. [0 1s apparent trom
their work that the modified Riccati equation, which consists
of target detection probability and false alarm probability,
cottverges 1o the steady-state covariance in most cases. How-
ever, the existence of a region in which the equation diverges
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15 also apparent. Theretore, the stability issuc of the PDAF
was not answered completely. Moreover, the approach in [7}
may not be suitable for tracking in a heavily cluttered envi-
ronment.

Li and Bar-Shalom [17] introduced another PDAF. The ap-
proach of [17] 15 hybrd in the scnsc that a continuous-valued
COVArIance matrix, as a function of a discrete-valued random
variable, is vsed to characterize the performance of the algo-
rithm censidered. The covariance matnx i1s calculated off-line
recursively using the modified Riccati equation, which is de-
rived by replacing the measurement-dependent terms of the
onginal stochastic Riccati cquation with their conditional ex-
pectations evaluated only over possible lecations of measure-
ments in the validation region. The dependence of the covan-
ance matrix on the number of vahdaled measurements, a dis-
crete-valued random vanable, s retained after the cxpectation
operalion. The approach of [17] has the merit thar it yields a
guantthcanon of the wansients of tracking divergence as well
a5 substantially better accuracy than the approach of [7].
Howcever, an analytic proot of the statnhity and the bounded-
ness of the tracking error in a heavily cluttered environment
are not yel provided in [17]. This paper is basically motivated
by the lack of a stability proof of the PDAFE

The cxponential stability of the linear Kalman filter for es-
timating time-varying parameters of a hnear regression model,
in which the regressors are stochastic and nonstationary, was
investigated in [10]. The conditions and techniques used in
| 10] are different from the waditional ones in the areas of sys-
tem 1dentification and adaptive signal processing. [n this paper,
the approach of [10] 15 utilized 1n proving the stability of the
PDAF with a modified Riccat] eguration.

The main contnibutions of this paper are: The stability of the
PDAF algorithm with a modified Riccati equation for estimal-
Ing the state of stochastic dynamic model, in the presence of
uncertainties of the measurement ongin, 15 investigated, [t s
shown that if the observation sequence belongs to a gate & -
algebra (defined n Section TED, the information reduction
factor 1s chosen adequately between 0 and 1, and the system
and observaticn noises are bounded, then the stability of the
modified PDAF is puaranteed. A new approach based on a
Lyapunov function, which s different from the quantitative
evaluation in | 17], 1s proposed. Finally, specific tracking error



230 ICASE: The Institute of Control, Automation and Systems Engineers, KOREA Vol. 2, No. 4, December, 2000

hounds tor given bounds of the system and observation noises
are established.

This paper 1s orgamized as follows:

In Section 11 the standard Kalman filter algonihm and the
modified PDAF algotithm are compared. The problem formu-
fatiom 15 provided 1n Secuon [ The main stability analysis is
camed oul in Section TV, In Section ¥V, conclusions are stated.

I1. KF vs PDAF with a modified Riccati equation

To enhance understanding ol the issues of this paper, the
standard KF and the PDAF with a moditied Riccati cquation
are compared 1 this section. Consider the following state-
space representation of the target motion and observation:

R :fjf.r;. '|"[-U'k . k=>{) . {21]
v =Hpa, +v,., kzl, (2.2)

where 1, e RY and vy, e B arc the statc and observation
vectors, respectively, @, and v, arc mutually vncorrelated
white Gavssian noise vectors with zere mean and covariances
¢ and K. respectively, and f; and Ay ure assumed 10
be known tme-varying system and observation matrices, Ini-
tial state  x; 15 assumed o be Gaussian and uncorrclated with
the system and observation noises @y, and v, . [tis assumed
that system (2-1) and (2-2) 18 uniformly completely observable,
sce [13.0 p.232] or [41[18][19] for the definition of the uniform
complete observability.

The two algorithms are now summanzed as [ollows:
1. KF algorithm [13, p.200]

The statc estimate equation for (2.1)-(2.2) 15

k-1 T f’k;--l-f;:_1|k_11 (2.3)
j?k|;.: . -E;L-|k-| Ky (g — Hﬁm-_]} « (Z.4)

where }H ¢y 18 the state eslimale at ume & cnndiEiuned (1

measurement  data wp w0 time k-1 ; K, :H-M-]H;
[R+H,F), H,]"' is the KF gain malrix al time & . The
associated covariance equation is

e = P — Ky 5 Ky (2.6

where ﬁ_lk_l 15 the covariance matrix of the state crror
.I.j. "~
il -1 =% _-*’k|.i:—u: S 18 the covanance matix ol the in-

novation term 7y, =y, - Hkikp;—] .
2. PDAF Falgeonthm with a modified Riccati equation
[2, p.213]

The state estimate equation 13
Xk 1= PR o1 X k-1 (2.7)
el ™ ke + K B (v — H;.--T;c|;-_| ), (2.8}

where K, lakes the same torm as the KEF gain matrix in
(2.4); B, ; 15 the a posterior probability for v, ; to be tar-
act-originated, where y,; 15 the i-th validaled measure-

ment at time & . The modilied Riccatt equation, which corre-
sponds Loy Lhe covarnance equation of the KFE, 1s

PA—|£:—| =F 1k I[& |F.£:_| + (7, {2.9)
Fee = T — 92K 154 Ky (2.10)

where 5} inﬂ(ﬁ.lﬂ) 15 the covanance matnix of the mnova—

Lon term 1, :Z;;:*I B ilyei— Hkiﬁ:lk—lj' . Gy Is the number
ol vahidated measurcments at time ¢+ 18 the information
reduction lactor to be defined in Scction III next, see [2, 7].

Remark 1: (2.9)-(2.10) are deterministically approximated
prediction and update equations of the covanance malrnx,
which utilize the averaged covariance matrix obtained by re-
placing random lerms of the PDAF with their cxpectations
over dall possible validated measurcments.

II1. Problem formulation

In many tracking problems, uncertainties in the targel mo-
tion and in the measured values are usually modeled as addi-
tive random noises. The covariance matrices of the process
and measurement noises specify the uncertainties in target
motion and measured values, respectively. [n pracuce, when
tracking a target in clutter, however, more than one measure-
ment are possibly available at any time step, and therefore the
optimal estimate does not hold anymore unless a correct and
complete targel-observation assignment is accomplished at
each time step. In this situation, the tracking performance
depends not only upon the noise covariance but also upon the
amount of uncertainty in measurement ongin. This depend-
cnce is characterized in terms of the probabilities of detection
and false alarm. The dependence of crror covariance upon the
detection and false alarm probabilitics is explicitly character-
1ized by a scalar parameter g5 in the modified Riccat equa-
tron.

Consider the PDAF with a moditied Riccati equation (2.7)-
(2.10) for estimaung the state of (2.1)-(2.2) in the following
[orm;

. - 5 1 -
K =P X ARl Bt +R) 21** B Gry ~HenFr )
. , 4 -
=k +R B H B B e +K Oy ~H0 B3,
(3.1)
Py = Fy By —a F P H g [R+ Hy Py U H P 4O
(3.2)

¢ - .
where vp 1 =3 0N B ives » B 1S a symmetric posi-

tive definite matnx, and R and @ arc positive definite
matrices. K and @ may be regarded as a priori estimates
tor the variances of v and , , respectively.

The following notation and terminology are mtroduced: For
a matrix X ., A (X) und A ., (X) denote thc maximum
and mynimum eigenvalues of X and the induced norm is
X I =J Amax (XX ), where 7 denotes the transposition.

Regarding the PDAF algorithm with a modified Riceat
cquation, let ¥, denote the cumulatuve observation sequence
set consisting of all measurements up to time & such that
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¥ :{Zfilyﬁf}i:] . First, assume that the truc measurement
at time & +1, conditioned upon Y&, is normally distributed,
1.e.,

k Y -
Plygs VYT 1= Nlyve i Frxp . Se a1

A region in the measurement space, where the mcasurement
will have some (high) probability, is defined as follows:

Ak =03%1° Dhn —HinFix IS,y —HL FS ] < 1)
:{.H-H : H;HSI;]-ITIIE—I. EIL

where ¥ 15 a threshold parameter to be selected beforehand
and 1 1s the innovation term [2}. The region defined above
is called the validation region or the gate. It is an ellipse of
rinimum volume. Related to a validation region, the follow-
iy definition is intraoduced.

Definition 1: A « -algebra on an abstract set ® is a
collection of subsets of ©@ which contains the null set ¢
and is closed under countable set operations. If the sel @
assumes values 1o a certain vahdation region or a gate, il is
particularly called a gate o -algebra.

In the PDAF, 1l 1s assumed that the correct measurcment is
detected with probability £, and that all other measure-
ments are Poisson-distributed with parameter C'_f-b’g ., where
V., 1s the volume of the validation gate and Cy s the ex-
pected number of false meuasurements per unit volume [2, 7,
17]. Also, the information reduction factor ¢, depends vpon
the probabihities of detection and false alarm, and alse upon
the velurne of the data association gate as follows:

g2 =q2(Fp, C4Vy) .

The following assumptions arc now made.
Al Assume that there cxists a constant & >0 and an in-
teger i >0 soch that

-&'{2”“‘”’“‘ EHHF,

=k HIH P

k+l

|$HJ_I}25I, aimost  surely, Wim=()

which 3,,_; is the gate ¢ -ulgcbra generated by
{}!{_‘.I! " Frh—1 }.
A2: {v,,m;} is random or deterministic process salisfying

g, =sup E{lv I" +llay "1 F, {} <o, forsomer >4,
k

it I

+ ey |7} < oo, almost surely.

: ] 1
fy =limsup— Y 7~ {llv,
n

H—a
A3: The observation sequence y, belongs to a gate o -

algebra and the information reduction factor g, is chosen
adequately assumes a value between 0 and 1.

Remark 2: Assumption Al assurcs the observabilily of the
system considered. Assumption A2 characterizes Lhe system
and observation noises. Assumptions Al and A2 arc adopted
from [10], see also [22] or [9, p. 372-374]. Note that assump-
anon Al is weaker than the uniform complete observability
condinon [20][22] because an upper bound is notl required.
Fmally, assumption A3 characterizes the uncertainty of meas-
urcment origin.

Remark 3: It is known that if the noises {e@, v, } s white

Gaussian and assumption A3 holds, then x; generated by
(3.1 and (3.2) 15 the best cstimate for X with estimation

error covariance B, |2]]10),ie., let X, =x; — ¥, , then

"Ek = El_.l"ﬂ_.|gk_1|, Pk lb[fﬁ,fé

il (3.3)

povided E[@y |3, 1= Ev, 13, ,]1=0. 0 =FElahw, } 3, ],
R=Evvi 131  X=Elx] and Py=E[%%] , in
which 3, , is the gate o -algebra generated by
{¥gos M}

The main theorem of this paper is now stated. In Section 1V,
it will be shown that the above conditions arc the best possibie.

Theorem 1: Let assumptions A1-A3 hold. Then, for {%,}
given by (3.13-{3.2),

1) limsupEllx, —x, 1< Cjﬂg[ﬁr]%; , and

K —pexy

| _ - iy d
2) limsup— 7N 5 —x IS Calg ) 1pg 10,
1

H—¥oa

almost surely , where o,y and r are defined in assump-
tion A2, and ¢, is an information reduction factor intro-
duced m A3, ; and ¢, are deterministic constants.

Hemark 4: Theorem 1 asserts that the stability of the PDAF
with & modified Riccati equation is guaranieed if the system is
uniformly completely observable, the process and observation
noises are hounded, and al! the measurements in a cluttered
environment belong to a validation region established in the
detector. It is known that the PDAF, in a cluttered environment,
shows better tracking performance than the standard Kalman
filter. This 1s becanse the uncertainty of the measurement oni-
gin can be adjusted by introducing ¢, .

IV. Main results: Stability proof
Before proving Theorem | above, the following lemmas are
stated:
Lemma 1: Let G =FREF—qFRH (H AH., +RY
H, BF .Let ¥, be the transition matrix associated with
(Fp )} [15, 16] such that

Yoi=bYopi==F K ¥, =1, vk-12i20.

i

Let assumpuon A3 hold. Then, for any integers m=>0,
h>0G, and ke[mh, (m+1)k}, where A is an arbitrary but
{ixed integer which breaks the time axis into blocks of length
#1, the following inequality holds:

QD < tn(T1h ) = tr{gaToy FiHy (R+ HiDpnH i) HinFr)

+OUATT;, . )3+ ()
.
where L, =" nnst i pmi e L, a0

a
k=mh+h+] ’
rm.h =[l mi T Zk =mhi+l Tﬁ:—l,mfaQqu —1.mh -

Proof: First of all. note that @, is positive semi-definite
[orall k20, ie.,

. , * ’ . | r
U =B B F Py R H G (RYH (P H VT H B
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=|(F.PFY ' +(H, F.'Y{g.'-WH,_PH_
{fEIH} (HHH'E'.{ W =gt
{d.1)

where the matrix mversion formula has been used 10 drive the
sceond cquality, The covariance cquation of the PIDAF with a
maodified Riccati equation of (3.2) at time & 18
B = BBl — ol B H R H P H B+ ()
< Feafifio +0
S P2 B o Py o P+ P QF L +Q

< P Fymn - PR RO R FLo Pl + O+ By OF [+
MRSy SSSI Y N2 VTSR SUY SO
Now, o simplify the above expression, the state transition

matrix @, ; defined in the statement of Lemma 1 is utilized
as follows:

P W oy We o + W QW + W O+t W 0O

A
s j[ *
=Wy 0P o+ 2 Ve 05
And thercfore

Ll
R Y pRWro+ 2 y o Ve O

In particular, for any k& € [mf, (m + 1 )A]

! s
FJ: Pk F.i: ‘F .fr-th.FHh ) th+| thp th Fm!t+1 o f'mh+h IF 1h+h

&=1mh+i+]
E=mbf+] LPF! —1.mk Q"P.ﬂ:—l et

A
k=mit+i+| -
=y + Fr—pratr 41 qjk —I.th‘Fk—l.mh

A
—d b

(4.2)

Neow, for matrices L and X such that 0<L <X , the
following inequalities holds:

gl <oIx 1< x ),
Hence, by (4.2), (3.1) and {3.2) we have

tr[ O 1=tr [{{F B O™ +(H o P (g5
+qy RY (Hen F Y1
Sor{{ Ty + (H o FOV (g7 ~DH 0 B H oy + a7 RY
(H e OO
= tr[{ Ty +(H 0y Y (g7 = DH P Hpy +45 RY
(H e POV Dy +(H B (g7 =D
Hy (P Hy o+ '?E_IR}_IEHH:FE' WP

—D)H 1 P H

tr{ Cghy + (H g F {0y =DH P +47'RY
AH PO Y T = 42 Fi T H
(Hy Oy + B H e T PP
Sor{{ Ty + (H e UV gy —DH PG +a5 ' RY
(H g FOY Ty

— ] r.lnh (Tt = 2P D T G T + R
Ho T Fi b
St Ty ) = 0rlga Doy Py Uy H i U U H L+ R
HpnUan i b
(4.3)
Now, the following inequality 1s claimed:

3 r .r - s
{2 ot Fx Tt H i (H o Do B + R Hy T )

—tr{ey Vo Fi H ) (H g Tpdi gy + R T 120,
(4.4)

(4.4} can be easily shown by using Lemma 1.7 and Lemma
1.10 of [6]. The first term of {4.4) can be rewntien as follows:

32, ’ ’ r¥2
qatr{ Ty By D H g (Hy Do H oy + R H T TS
= ':lr IF{ r;lfr;.':} Ir{ F rm.ﬁ M&Fk, ] ”'{ H;—]{Hﬁ:a—]rthﬁa—] +R} ]Hé‘+|}
= gLt lﬂ;) tri FF F’ 1 H;H (HmrmﬁH;H +R)'1HH]}
Sgar( U Yl TE Vv er( EF Y er{ H, (H, T H, +RY'H_ }
Similarly, the second term of (4.4} can be rewriitten as follows:

=552 e L — 52
drtr{ U FLH o (H g T H o + RY T H g F T )
5 2SI -
L T T i B F ytr{ Hi (H o T Hpn + R 1Hk+1

S qatr( Do Y rCEy FUO e Hp (Hy g D + BV H ).
Smce the Holder inequality such that
X XAt XY, b2 1

holds tor any & -dimensional nonnegative definite matrix X ,

tr{T ok WF( ;Ih)‘f-rr( m_;!:l by taking =1, Hencc (4.4} is

obtained. Therefore, by substituting (4.4) inte (4.3), the fol-

fowing incquality 1s derived.

1 O] S 1T =ty Lo i Hye sy Hy il 1 R Hy 1B
(4.3)

Now, by applying the Holder's ineguality, the first term in
the right hand side of (4.5) can be written as [10]

(T )y =er([12 )+ O(er(TT ) + O(1). (4.6)
Consequently, by substituting (4.6) into (4.3}, the assertion of
[.emma 1 is obtained. u

The result of Lemma 1 will be used in proving Lemma 2
next. To guarantee the swability of a stochastic system, the
stability of moments as well as a sample should be assured.
Now let’s prove the boundedness of fourth-order moment of
Lhe state error covanance,

Lemma 2: Under assumptions Al and A3,

supE N P, 117 < oo,
k
. 3 -l
Proot: First, define that 7, =3 .7 .. tr (P . for

m=1. Then, by {3.2), Lemma 1, and Holder's inequality we
have

(-1 (rre1 Y1
Tm+] = 2 IF(P;;[} = g tr[Qk -+ Q}4
k=nth k=nth
{m+11A—1 4 3
< z {tr{ Q)+ O (O 3+ O }
k=mhr
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S O+ Our L, =+ O

bee— | M ] _ |
T - r
- Z 'rr{*'f;} rrarfrfk’lfk+][H+H£Illr.rrJ'i'HfL+|J

k =it

H o F

=h (13, )+ 00r([17, 1)+ 001

. {m+134r-1 |
- £ r - r, -_
—gatr{ly - 2, FiHi(R+H, U nHiL)

£E=mh

Hy o F)

< Har( Ty )+ OUr(TEL D+ (1)

gt [ gt FeHpnHaFy
HatP z .

<hir(N o, v o)

B 4> TS, _“”HE”’_' FrHenHy, 1
nift )
Il & +":Lmux { rmh i k=emh {1"— I H.i: H ”EJ
(4.7}

Thus, by taking conditional expectations and using Holder
inequality,

EI?::'E"'| rSrrm—J J S h ”'( l_'[:uh J"‘G{f:"( ]_[:r.-.l'.- ” +G{]}
_ da
IR+A_ (T )l
Foi—L1ji—l Ff ryf -
F'H H, F
AT L F i g k-|qk|3
J[ ‘"‘" [ &;h A, Ik ]}
<hirt TLe, )+ Or(TL, 1)+ O(1) - 12 (T3, )
IR+A . (T "

kil 3
4> ad m}:) I."( l—;lrh

<he(TT5, ) +OUr TTo, )+ O(l) - "
dHIR+A (T, )

d RO .
< hir( Ty, )+ OGr(IT, N+O0(0)—— ORI 1M
dT(IRI+ANGNY
20 1O
=|1- 7 720 1¢ Ir(l’[dmhj+(}{a?r{ﬂ?nh n+ (1),
d7{IRI+A1Q I
(4.8}
In addition, it is evident from (3.2) and Holder inequality that
1 mhi—1 1
‘I”r(nmh): E ”[Hmh }
kK={m=1Vh
mif—] 4
S 2Py + ¥ mhoioiok i1y @ 2t —misy) )
k={m—1)¥
mh—I
ST, +0 Y (P |+00)
k={rr—11k
< T, +OUT, )"y + 0
174 rth—| 4 i
since (7, )" =¢ 3 #(F.)p . Substituting this into
k=im—{1h

(4.8}, it follows that

F?

|

" Ifi{i G810l F
il 1= o M

dH RN+
+OUT. Yy 061y

Hi

And applying the [oHowing clementary inequality

3

3

et | Yem0, We 0
e

tor small £ to the above equation, we rel

g8 I1Q1
25RO

EII;H+I|Smh—] IE[I— ]/m‘i"'”“] (49}

Consequently, by the smaothing property of expectation,
ELE (T[S iy 1= FTypy]

~— %211 7, 1+01).
22 RI+HIQN)

(4. 103}

=

]

From this, it is not difficult (o obtain the following result:

SupFlT,,, ] < . H

M

Now. from the boundedness ol towrth-order moment, we
can prove that second-order moment of the stale error covari-
ance is also bounded.

Lemma 3: Under assumptions A2 and A3,

] ol 5
limsup— Y Il £, 1°< oo,
meaee I p_p

almost surely.

Proof: It follows, using the similar argument as in Lemma 1,
that for any Lemh, (m+Dh], m=20

r(QF ) S tr(T12, Y+ 00t T1,, )} +O(1)
~tr{gy Doy Hyg (R+ Hy Tl V7 Hi i

Consequently, we have the result similar to the proof of (4.10)
in Lemma 2 as follows:

. I3l
ETM 1|3 e 15| 1= —5 5 10 -+ O,
27 CNRIT+ANEN)
Ym20, (4.11)
where
wrhi—I1 5
Mmz Z IF(F{HJ&
k=(r1—11h
Let us denote
el =M i _Ele+||3mh_|:J, oz id4.12)

then, {g,.93,,_.m=20} is martingale difference sequence,
and satisties

SUPE] R ,,]° < o0

L ]|

by Lemma 2. Now by {4.11) and (4.12) it follows that
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Mm+1 = ‘EI-MmH |3mh—] ]+ & e+l

E[l_ 2 &;2 "Q " }‘n: +G[1)+gm+1_
2d [N RN+AHONE]

Summing up from0to r-1.

el n—I rr—1
MmEMU_ 2 &;2 Q sz+G(”}+ Egnﬁl*
28 [N RI+ANE] -0 =0
and so
a—l 2 oy on-l
IR I+ M
2 I g20 1 noon,.y H

Thus, by the martingale convergence theorem and the
Kronecker Lemumna [3]

. 1 r—]
hmsup— sz < eo, almost surely.
n—ee Mo
From this, it is casy to obtan the result of Lemma 3. B

Third, we will deal with the exponential boundedness which
15 inevitable 10 Theorem 1.

Lemma 4 |10]: Let {«;} be an adapted sequence of the
gate ¢ -algebra 3, , a, =1 ¥kz0. If for some integer
>0, and constants Q< <!, [<ea,

E[ukiﬁk_I]Emk_1+f, Y21, Ob<a<]l, O<i<e,

then there exist constants Y€ ((3,1) and A << such that

H
E[ Il {'I —L]] <My Nnom, Ym0

k=m .

Proof: See [10].

Now, we prove the most critical lemma in this paper,

Lemma 5: Let us now denote T, = x, — &, , and consider
the following stochastic Lyapunov funchion V :

V, =55 %, (4.13)
then for any &k = (0 and by A3,
-1
32 Vi

d+etrigy F P F)
+O( 1 g Fy P Fy H{Ilv oy 1 + e, 2} )

Viel =40

lvk _

where e =21 Q‘l Il.
Proof. Subtracting the second equation of (3.1) from (2.1}
vields the error equation a the following form:

Xt =Jp X + 24l (4.14)
where
Ji = Fy =Ky Hpn by,
Kio1 = B P H g (R H  PoH ) T
2t = —KppVipy + 00
And rewrite (3.2} using K., defined above as
Piv1 = (1=g2) F B F{ + g0y PTG+ qa Ky RK 4y + 0.

(4.15)

Then, from (4.13). V,,; with (4.14} and (4.15) becomes

Vior = (FxEy + 2pa Pt (e e + 240
= S I BN T+ 20 PO R+ G P
{4.16)
By (4.15) and the matrix inversion formula, we know that
TP = - @) RBF + diPdi+ Ky R +OF T,
=[ @B, +J 0~ @R RF + Ko R + QYT T
= P g7 1= () + @B T (- a2 Fi P F
+ @Ky RK o + O ok B Fk_]’:‘z
S(gaP ) 1=l gy Pt [(1-g2)
F P +qa Ky RK o +0T DT )
< (g Py H1-[1+1 (g F P FL + )0 1T )

1

<(qeP) 7 -
24007 M g, F P

(g:P) .

{4.17)

To derive the third equality in (4.17) the matrix inversion for-
mula has been used. To derive the second inequality,

gl  PJy S@F P F, +Q

and

(- gy ) FL P F{ + oK yRK G, + QY <07

have been used.
Substituting (4.17) into (4.16) we get

1
2411 g, 0 F B F

—

(g2 F ]_] X

s |
Vi x5 {g2 ) —

! -1 — _’ -1
+2Z B i Xt 2k 1 P Ze1

] ~1
—1 — V.i:
24007 g Fr B F |l

1
gy V-

A
2B X+ L2
(4.18)

2

Now, if using the elementary inequality 2|xy|£x1 + <, the

second term of (4.18) yields:

P P12 A2,

€27, Pz (24N OV Ik g F B FL )
P —]_ —
X I B X

2024007 M gy Fe P L D).

_I_

<27, Pz (2+0 Q7 I gy F P FL I

|
q2 Yy
20 2+1 Q7 Mg, F AN,

_|_

(4.19)

In deriving the last term in (4.19), the following relation from
(4.13) and {4.17) has been used;
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il L Tl -~ -1
Xy B 1 X 243V
By using z,,) =—K, Vi toy itfollows that

¢ -1 * —1
(i) P o zes)

T ~] - 12 2
= Ze 1P 1 T 1 B TR Ve T )

S ZertPer 2t (Kl B Ky ) IV 17 8] o 12 |
SOUK G, P K Ve, IR )+ ey, 17)
<O, 1%+l 17,

(4.20)

Consequently, substituting (4.19)~{4.20) into (4.18) we get

i
442007 Mgy /P F I
g, F PF

i

1 -1
—1 .42 Vﬁ:
4"‘2"{2 |Iff(qEFkPka}
+O{ (e, 17 +1lvy ;P )l gy FL P FL ).
(4.21)
|
Remark 5: Similarly to the proof of (4.10) or {4.11) it can
be shown that

-
g2 vy

-]
Vi =gV —

. g
+ 2B [5 +

<q;'Vy -

SN
s 3 <li-—% S+, ¥m>0,
FlS S ( 2d{!|RI|+hHQ1I)]”+ b, Tm=0
refr—|
where §, = Y ur(F).
k=(m—1)

Remark 6: It is noted that {@,} in Lemma 4 is the form
of ap=d+e trigyFfi PLE,). where e=21107"1l . Therefore,
it Xnk) is defined as

' —
Qi+ Lk) =( g5 - 92 &),
( ) [Q’z d+etrigs F, P, F,:} }7{” }

Lk . k)=1, ¥azkz20

{4.22)
then

EQn+ L) s My™ Wn2k20, 0<y<l, M <o,

(4.23)

Finally, with these lemmas we are able to prove the main re-
sult of this paper.

Proof of Theorem 1: From {4.22) and Lemma 5 it follows
that

n-1
V. <82n 0V, +£{Zﬂ(n,k}li B FPF N, 1P+, 1P |,
k=0

50 by the Minkowski inequality we have

{E V)PP <(E[Qe,00,

174

n-l e
+ tT}'{ZQ[n,k'} g, 2 PF N Clly, 1P +F|mkll'j)]:| J

& =M

i1—1
5{:{ S E{SUn k) gy b P F
k=0
(v 17 + 1o, 17y 34 ]3*"“)
FLE{Qn0W, 2
(4.24)

Now, by the Holder inequality, Lemma 2. Assumption A2,
Assumption A3, and the fact that Q(n,£) <1, we know that
E{QUr k)N o Fy B F N vy 112 +H oy, 117 Y43
< 2 EQn, OV N goF P L 147
(v, 187 L1l 153
<OUESAn LY |V (EN goFy B Fy 1Y
AE My I+l 17 )18
< O((gy NELRm I HEve, I+l @, I7 13870
<O0((qy Do, 1 ¥ [E@(n )} ).

Hence, 1t follows from (4.23) and (4.24) that

limsup{ E{V, }¥3 /¥4

H—pca

n—]| . ; .-

n—¥aa k=I}
+H{EQ(n kW) ¥ 1P
=O(gla, 177).

Therefore, we have the result as follows:

imsup E[I1 E, I8 | < limsup £01 PY2 021 27Y2 5 1%

H—aeh H—=d

<hmsupE(l B, IIV,)

#—p o

<limsup(E | B, I1*) V4 {E(v, 43 ) ¥4

H—pee

< O(gylo,1%7).

Now, it remains to prove the second result of Theorem 1.
By Lemma 5, 1t is cvident that

nl

2 ‘?'z_]va

i dte trig, FRF)

—

n-

n-1
=Y (4;¥, -V,,) +£}[ Mllg, F, AFAN v, IF +lle, I }]
k=1

T
1l
b=

=]
=0{1)+0( SUgFERFN{ v, IF +lleo 7 }].

e

So by the Schwarz mequality, Assumption A2 and A3, and
Lemma 3,

limsup S 2/
n irr-c-pﬂ;_.-_-lj 4+e Ir{qzﬂﬂF;)
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5=

r—|
Eﬂ(limsuplzliqzﬁ_ﬂﬁll J limsup12(||vi_kii"’ﬂimillzl‘l}
\ n—a M L n—= g

¢

n--i
<0 ¢, -Iimsup-l-zli ||'r’k+]||l+”‘%”l:']
&)

H—3om
b

SO ap (1))

Consequently, by this and Lemma 3 it follows that ( f =1 +e)

nl — il 1 fk H . 112
Z".Ik || = z ST |4+f {fﬂq:FkﬂFE]}-] '
k=0 k=0 |4+ fltnig. F B R Y1

] ) 12
<0 12 = M X, 1
i g F A F Aretrig P P F))

IFd
| n=l -l "
\

= A+etng, P F)

= O g2 )V 2 (g ¥,

Therefore, we obtain the result in this paper as follows:

-1 _ .
limsup— 311 % 1< 0Cg2) 2 (g) ). n

R—yoa HEopy

V. Conclusions

The PDAF with a modified Riceati equation, which was de-
veloped for solving the uncertainty problem regarding the
origin of a measurement, is known to show better tracking
performance than the standard Kalman filter in a cluttered
environment, [n this paper, using the Lyapunov function ap-
proach, the stability of the PDAF with a modified Riccat
equation was analytically proved. It was shown that if the
measurement sequence belongs to a gate o -algebra, the in-
formation reduction factor is chosen adequatcly takes the
value between 0 and 1, and the process and observation noises
are bounded, then the state estimation error 15 exponentially
bounded and the bounds are determined by the bounds of the
process und observation noises.

It is cxpected that the analytic methods developed m this
paper can be extended to the stability and performance analy-
ses of the PDAF with the stochastic Riccall equation and the
PDAF with interacting mulliple models.
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