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ABSTRACT

In this paper a new model and an optimal pole-placement
control for the Macpherson suspension system are inves-
tigated. The focus in this new modeling is the rotational
motion of the unsprung mass. The two generalized coor-
dinates selected in this new model are the vertical dis-
placement of the sprung mass and the angular
displacement of the control arm.  The vertical accelera-
tion of the sprung mass is measured, while the angular
displacement of the control arm is estimated.  It is shown
that the conventional model is a special case of this new
model since the transfer function of this new model coin-
cides with that of the conventional one if the lower sup-
port point of the damper is located at the mass center of
the unsprung mass.  It is also shown that the resonance
frequencies of this new model agree better with the
experimental results.  Therefore, this new model is more
general in the sense that it provides an extra degree of
freedom in determining a plant model for control system
design.  An optimal pole-placement control which com-
bines the LQ control and the pole-placement technique is
investigated using this new model.  The control law
derived for an active suspension system is applied to the
system with a semi-active damper, and the performance
degradation with a semi-active actuator is evaluated.
Simulations are provided.

1. INTRODUCTION

In this paper, a new model of the suspension system of
the Macpherson type for control system design and an
optimal pole-placement control for the new model are
investigated. The roles of a suspension system are to

support the weight of the vehicle, to isolate the vibrations
from the road, and to maintain the traction between the
tire and the road. The suspension systems are classified
into passive and active systems according to the exist-
ence of a control input. The active suspension system is
again subdivided into two types: a full active and a semi-
active system based upon the generation method of the
control force. The semi-active suspension system pro-
duces the control force by changing the size of an orifice,
and therefore the control force is a damping force.  The
full active suspension system provides the control force
with a separate hydraulic power source. In addition, the
suspension systems can be divided, by their control
methods, into a variety of types: In particular, an adaptive
suspension system is the type of suspension system in
which controller parameters are continuously adjusted by
adapting the time-varying characteristics of the system.
Adaptive methods include a gain scheduling scheme, a
model reference adaptive control, a self-tuning control,
etc.

The performance of a suspension system is character-
ized by the ride quality, the drive stability, the size of the
rattle space, and the dynamic tire force.  The prime pur-
pose of adopting an active suspension system is to
improve the ride quality and the drive stability.  To
improve the ride quality, it is important to isolate the vehi-
cle body from road disturbances, and to decrease the
resonance peak at or near 1 Hz which is known to be a
sensitive frequency to the human body.

Since the sky-hook control strategy, in which the damper
is assumed to be directly connected to a stationary ceil-
ing, was introduced in the 1970's, a number of innovative
control methodologies have been proposed to realize this
strategy.  Alleyne and Hedrick[3] investigated a nonlinear
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control technique which combines the adaptive control
and the variable structure control with an experimental
electro-hydraulic suspension system. Kim and Yoon[4]
investigated a semi-active control law that reproduces the
control force of an optimally controlled active suspension
system while de-emphasizing the damping coefficient
variation.  Truscott and Wellstead[5] proposed a self-
tuning regulator that adapts the changed vehicle condi-
tions at start-up and road disturbances for active suspen-
sion systems based on the generalized minimum
variance control.  Teja and Srinivasa[6] investigated a
stochastically optimized PID controller for a linear quarter
car model.

Compared with various control algorithms in the litera-
ture, research on models of the Macpherson strut wheel
suspension are rare.  Stensson et al.[8] proposed three
nonlinear models for the Macpherson strut wheel sus-
pension for the analysis of motion, force and deformation.
Jonsson[7] conducted a finite element analysis for evalu-
ating the deformations of the suspension components.
These models would be appropriate for the analysis of
mechanics, but are not adequate for control system
design.  In this paper, a new control-oriented model is
investigated.

Fig. 1 shows a sketch of the Macpherson strut wheel sus-
pension.  Fig. 2 depicts the conventional quarter car
model of the Macpherson strut wheel suspension for con-
trol system design.  In the conventional model, only the
up-down movements of the sprung and the unsprung
masses are incorporated.  As are shown in Fig. 1 and
Fig. 3, however, the sprung mass, which includes the
axle and the wheel, is also linked to the car body by a
control arm.  Therefore, the unsprung mass can rotate
besides moving up and down.  Considering that better
control performance is being demanded by the automo-
tive industry, investigation of a new model that includes
the rotational motion of the unsprung mass and allows for
the variance of suspension types is justified.

Figure 1. A sketch of the Macpherson strut wheel 
suspension

The Macpherson type suspension system has many mer-
its, such as an independent usage as a shock absorber
and the capability of maintaining the wheel in the camber
direction.  The control arm plays several important roles:
it supports the suspension system as an additional link to
the body, completes the suspension structure, and allows
the rotational motion of the unsprung mass.  However,
the function of the control arm is completely ignored in
the conventional model.

In this paper, a new model which includes a sprung
mass, an unsprung mass, a coil spring, a damper, and a
control arm is introduced for the first time.  The mass of
the control arm is neglected.  For this model, the equa-
tions of motion are derived by the Lagrangian mechanics.
The open loop characteristics of the new model is com-
pared to that of the conventional one.  The frequency
responses and the natural frequencies of the two models
are analyzed under the same conditions.  Then, it is
shown that the conventional 1/4 car model is a special
case of the new model.  An optimal pole-placement con-
trol, which combines the LQ control and the pole-
placement technique, is applied to the new model.  The
closed loop performance is analyzed.  Finally, the optimal
pole-placement law, derived for the active suspension
system, is applied to the semi-active suspension system
which is equipped with a continuously variable damper
for the purpose of investigating the degradation of the
control performance.

The results in this paper are summarized as follows.  A
new model for the Macpherson type suspension system
that incorporates the rotational motion of the unsprung
mass is suggested for the first time.  If the lower support
point of the shock absorber is located at the mass center
of the unsprung mass, the transfer function, from road
disturbance to the acceleration of the sprung mass, of the
new model coincides with that of the conventional one.
Therefore, the new model is more general, from the point
of view that it can provide an extra degree of freedom in
determining a plant model for control design purpose.  In
the frequency response analysis, the natural frequencies
of the new model agree better with the experimental
results.  An optimal pole-placement control, which com-
bines the LQ control and the pole-placement technique,
is applied to the new model.  The control law, derived for
a full active suspension, is applied to the semi-active sys-
tem with a continuously variable damper.  It is shown that
a small degradation of control performance occurs with a
continuously variable damper.

2. CONVENTIONAL MODEL

Fig. 2 shows the conventional model that depicts the ver-
tical motions of the sprung and the unsprung masses.  All
coefficients in Fig. 2 are assumed to be linear.  The equa-
tions of motion are 

(1)
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The state variables are defined as: , the sus-
pension deflection; , the velocity of the sprung
mass; , the tire deflection; , the velocity
of the unsprung mass[10].  Then, the state equation is

(2)

where,

,

,

.

And, the transfer function from the road input  to the
acceleration of the sprung mass is.

(3)

where

.

Figure 2. Conventional quarter car model.

3. A NEW MODEL

The schematic diagram of the Macpherson type suspen-
sion system is shown in Fig. 3.  It is composed of a quar-
ter car body, an axle and a tire, a coil spring, a damper,

an axle, a load disturbance and a control arm.  The car
body is assumed to have only a vertical motion.  If the
joint between the control arm and the car body is
assumed to be a bushing and the mass of the control arm
is not neglected, the degrees of freedom of the whole
system is four.  The generalized coordinates in this case
are , ,  and .  However, if the mass of the control
arm is ignored and the bushing is assumed to be a pin
joint, then the degrees of freedom becomes two.

Figure 3. A schematic diagram of the Macpherson type 
suspension system.

As the mass of the control arm is much smaller than
those of the sprung mass and the unsprung mass, it can
be neglected.  Under the above assumption, a new
model of the Macpherson type suspension system is
introduced in Fig. 4.  The vertical displacement  of the
sprung mass and the rotation angle  of the control arm
are chosen as the generalized coordinates.  The
assumptions adopted in Fig. 4 are summarized as fol-
lows.

Figure 4. A new quarter car model.

1. The horizontal movement of the sprung mass is
neglected, i.e. the sprung mass has only the vertical
displacement .

2. The unsprung mass is linked to the car body in two
ways.  One is via the damper and the other is via the
control arm.   denotes the angular displacement of
the control arm.
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3. The values of  and  will be measured from their
static equilibrium points.

4. The sprung and the unsprung masses are assumed
to be particles.

5. The mass and the stiffness of the control arm are
ignored.

6. The coil spring deflection, the tire deflection and the
damping forces are in the linear regions of their oper-
ating ranges.

Let ( ), ( ) and ( ) denote the coordinates
of point A, B and C, respectively, when the suspension
system is at an equilibrium point.  Let the sprung mass
be translated by  upward, and the unsprung mass be
rotated by  in the counter-clockwise direction.  Then,
the following equations hold.

(4a)

(4b)

(4c)

(4d)

(4e)

(4f)

where  is the initial angular displacement of the control
arm at an equilibrium point.   Let .  Then, the
following relations are obtained from the triangle OAB.

where  is the initial distance from A to B at an equilib-
rium state, and  is the changed distance from A to B
with the rotation of the control arm by .  Therefore, the
deflection of the spring, the relative velocity of the
damper and the deflection of the tire are, respectively

(5a)

(5b)

(5c)

where, , .

3.1 EQUATIONS OF MOTION – The equations of
motion of the new model are now derived by the
Lagrangian mechanics.  Let ,  and  denote the
kinetic energy, the potential energy and the damping
energy of the system, respectively.  Then, these are

(6a)

(6b)

(6c)

Substituting the derivatives of (4e), (4f) and (5a,b,c) into
(6a,b,c) yields

(7a)

(7b)

(7c)

Finally, for the two generalized coordinates  and
, the equations of motion are obtained as follows

(8)

(9)

where

 and .

Now, introduce the state variables as

.  Then, (8)-(9) can be
written in the state equation as follows.

(10)
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and

.

3.2 LINEARIZATION – In order to compare the charac-
teristics of (10) with that of the conventional model, (10)
is linearized at the equilibrium state where

.  Then, the resulting linear
equation is 

(11)

where

and

Now, let the output variables be .  Then the
output equation is 

(12)

where,

, ,

, ,

4.  COMPARISON OF TWO MODELS

In the conventional model, where the road input is , the
output variables were assumed to be the accelerations of
the sprung mass  and the unsprung mass . In (12),
however, while the road input is the displacement , the
outputs are the acceleration of the sprung mass  and
the angular displacement of the control arm . Thus, the
output variable that can be compared between the two
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models is the acceleration of the sprung mass .  To be
able to compare the two models, the road input in the
new model is modified to the velocity .

First, it is shown that the conventional model and the new
model coincide if the lower support point of the shock
absorber in the new model is located at the mass center
of the unsprung mass.  Let  ,  and

.  Then, equation (11) has the form

(11)’

where,

, ,

.

The output equation of (12) becomes 

(12)’

where,

, , .

For the above equations (11)′ and (12) ′, the transfer
function from a road velocity input  to the acceleration
of the sprung mass is exactly the same as (3).  That is,
the conventional model, as such, is a special case of the
new model where  and .  Thus, the new
model is more general, from the point of view that it has
an extra degree of freedom in validating the real plant
with experimental data.  

For comparing the two models, the following parameter
values of a typical Macpherson type suspension system
are used:

, , ,

, , ,

, , and  .

As compared in Table 1, the first frequency of the conven-
tional model is located below 1 Hz, whereas the that of
the new model is located at 1.25 Hz.  Since the real plant
has its first resonance frequency at 1.2 Hz, the results of
the new model better agree with the experimental results.
As it is important to decrease the resonance peak near 1

Hz to improve the ride quality, it is claimed that the new
model, which reveals the exact locations of resonance
frequencies, is a better model.

The frequency responses of the two models, with the
same road input, are compared in Fig. 5.  There are sub-
stantial differences in the resonance frequencies and
peaks between the two models.  A tendency of the new
model is that the smaller the  is, the lower the reso-
nance frequency is.  All the above observations are sum-
marized as follows:

1. The conventional model is considered as a special
case of the new model where .

2. The location of the first resonance frequency is
higher in the new model than it is in the conventional
one. This better agrees with the experimental results.
The damping ratio, however, is lower in the new
model.  

3. For the second resonance frequency, both the loca-
tion and the damping ratio are lower in the new
model.

5.  OPTIMAL POLE-PLACEMENT CONTROL: 
ACTIVE CASE

In this section, an optimal pole-placement control which
combines the LQ control and the pole-placement tech-
nique for the new model is presented.  The closed loop
system is designed to have desired characteristics by
means of the pole-placement technique, while minimizing
the cost function, as defined by the weightings of the
input, state and output of the system, as follows.

The considered linear time-invariant system and the per-
formance index are

(13)

(14)

where ,  and  are defined in (11).  For given 
and , the optimal control law and the optimal closed
loop system are

(15)
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Table 1. Comparison of the two models for a typical 
suspension system

Conventional 
model

New model

Poles -1.85±5.79I
-14.04±50.40i

-1.85±5.79i
-14.04±50.40i

-1.50±7.70i
-10.92±48.30i

Resonances
(Damping 

ratio)
0.97 Hz (0.30)
8.33 Hz (0.27)

0.97 Hz (0.30)
8.33 Hz (0.27)

1.25 Hz (0.20)
7.88 Hz (0.23)
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(16)

where  is the solution of the Riccati equation
below.

(17)

The solution of the Riccati equation, , can be
obtained in another approach as follows. Let

.  Introduce a Hamiltonian matrix  as

(18)

The Jordan decomposition of  is of the form

where  and  contain the eigenvectors and the eigen-
values of , respectively.  Then, the following relation-
ship is known [9].

(19)

where  is the closed loop system matrix defined in

(16),  denotes an eigen matrix in which the eigen-

values of  appear in diagonal terms, ,

 consists of the eigenvectors of  corre-

sponding to the eigenvalues of , and

. Furthermore,  and  are
determined as follows.

(20)

(21)

where .

In the problem of shifting the eigenvalues of the closed
loop system by  further to the left, where the  is
said to be the degree of relative stability of the optimal
pole-placement problem, the following theorem holds.

Theorem[9]: For given  and  let  be the spectrum
of optimal system (16).  Let the degree of relative stability
be .  Let  be perturbed by

(22)

where  is the negative (semi) definite solution given
by (21).  Then, , the spectrum of the optimal closed
system obtained with the modified weighting matrix,

, is 

(23)

where  denotes the closed loop system matrix resulted
from .   

Design Procedure

1. Select  and , and design a LQR controller.

2. Evaluate the performance of the LQR controller, and
determine the eigenvalues that need to be shifted.

3. Construct the Hamiltonian matrix , and find the
eigenvectors of  corresponding to the eigenvalues
that need to be shifted.

4. Obtain

(24)

where  is the matrix that is composed of the
unstable eigenvectors corresponding to the eigenval-
ues that need to be shifted, and the stable eigenvec-
tors corresponding to the eigenvalues that stay in
their original locations.

5. Let  be the degree of relative stability of the eigen-
values that are to be shifted.  Calculate

  where (25)

 where (26)

6. Solve the Riccati equation with the modified matri-
ces, or try the second method (20), to obtain the
desired closed loop pole locations.

5.1 LQR – In this paper, it is assumed that the main pur-
pose of the control system design is to improve the ride
quality.  Thus, to reduce the vertical acceleration of the
sprung mass at the resonance frequency near 1 Hz,
more weights are put on the state variables  and 
that correspond to the displacement and velocity of the
sprung mass.  The weighting matrices initially selected
are

(27)

The closed loop eigenvalues with (27) are

.

Compared to the open loop system, the resonance peak
near 1 Hz of the controlled system is lower.  Due to length
considerations, simulation results for (27) are omitted.

5.2 OPTIMAL POLE-PLACEMENT – In this section, the
damping ratios of the two dominant poles are raised for
the purpose of increasing the rise time.  The damping
ratio of the first resonance frequency is increased from
0.407 to 0.841 by shifting the dominant pole, by –8, to the
left.  Therefore, the eigenvalues of the closed loop sys-
tem are 

.

Fig. 6 compares the frequency responses of the open
loop system and the optimal pole-placement controller.  It
is shown that the performance in the low frequency
range, including 1 Hz, has been significantly improved
with the optimal pole-placement controller.  Fig. 7 shows
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the time domain responses when passing over a speed
bump which is  in height and  in length.  Also,
note the great improvement in the settling time.

( ⋅⋅⋅ conventional model,   new model )

Figure 5. Frequency responses of the conventional and 
new models.

( ⋅⋅⋅ open loop system,   optimal pole-placement )

Figure 6. Comparison of the frequency responses.

6. APPLICATION TO A SEMI-ACTIVE DAMPER

In this section, the optimal pole-placement technique,
discussed in Section 5, is applied to a semi-active
damper.  The purpose of this section is to figure out how
much the control performance of the active control is
degraded when the control law, derived for an active
actuator, is applied to a plant with a semi-active actuator.

If the actuator in Fig. 4 is a semi-active type, the passive
damper and the actuation part involving the arrow sign
need to be combined as one variable damper.  In deriving
the equations of motion for a semi-active damper, the
equation of motion for the coordinate  is the same as
equation (8).  However, the equation of motion for 
needs to be modified as follows.

( ⋅⋅⋅ open loop system,   optimal pole-placement)

Figure 7. Comparison of the time domain responses.

(28)

where  stands for a semi-active control force.  The
system matrix  of (11) needs to be modified as follows.

(29)

where , ,  and  are the same as in Section
3.2.

6.1 CONTINUOUSLY VARIABLE DAMPER – Fig. 8 shows
the damping force characteristics of a typical continu-
ously variable damper used for the simulations in this
paper.  Detailed descriptions for the variable damper are
omitted.  In general, the damping force of a semi-active
damper is adjusted by changing the size of an orifice.  In
Fig. 8, the -axis represents the relative velocity of the
rattle space, and the -axis denotes the generated
damping force.  The three curves represents three differ-
ent damping force characteristics corresponding to the
three current inputs of 0 ampere, 0.8 ampere, and 1.6
ampere.  The curve with the highest slope denotes the
characteristics of 0 ampere control input, which denotes
the most hard damping effect.
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Figure 8. Damping force characteristics of a typical 
continuously variable damper.

6.2 LIMITED CONTROL ACTION – Control law (15)
assumes that there are no limits, in terms of the magni-
tude and the direction, to the control input.  However, if a
semi-active type actuator of Section 6.1 is used, the actu-
ating force is limited as follows

(30)

where  and  denote the maximum and the mini-
mum damping forces at a given relative velocity.  As, for
example, in Fig. 8 when the rattle space is extended at a
relative velocity 1 , the maximum damping force is
about 2700 . This corresponds to 0A. At the same time
the minimum damping force is about 1400 , which cor-
responds to 1.6A.

Fig. 9 compares the accelerations of the sprung mass of
passive, semi-active and active suspension systems,
when the magnitude and the frequency of the road input
are 0.01  and 1 Hz.  Compared to the passive system,
both the semi-active and the active systems show a
reduction in the magnitude of the vertical acceleration.
Therefore, it is concluded that the control law, derived for
an active suspension system, may be applicable to a
semi-active suspension system without resulting in much
degradation of control performance.  Fig. 10 compares
the control forces applied to the plant by the active and
semi-active dampers together with the relative velocity of
the damper.  In the case of the semi-active damper, the
occurrence of the phase lag is due to the actuation limita-
tion.  This also causes the phase difference in the
response of the sprung mass acceleration in Fig. 9.  Fig.
11 shows the current input applied to the continuously
variable semi-active damper of Fig. 8.

( -⋅- passive,   semi-active,  ⋅⋅⋅ active )

Figure 9. Comparison of passive, semi-active, and 
active suspension systems.

( -⋅- active control force(desired),   semi-active damping 
force(generated),  ⋅⋅⋅ relative velocity of the damper )

Figure 10. Control forces

Figure 11. Current input applied to the continuously-
variable damper in Fig. 8

7. CONCLUSIONS

In this paper a new control-oriented model, for the
Macpherson type suspension system, that incorporates
the rotational motion of the control arm was investigated
for the first time.  The nonlinear equations of motion have
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been linearized at an equilibrium point.  It was shown that
the conventional model is a special case of the new
model, i.e., if  and , then the transfer function
of the new model coincides exactly with that of the con-
ventional model. By changing the length of the control
arm, it is possible to design a wide range of plant models.
An optimal pole-placement controller, which combines
the LQ control and the pole-placement method, was
investigated.  The control law was further applied to a
semi-active suspension equipped with a continuously
variable damper.  When the active control law was
applied to the semi-active damper, a small degradation in
the vertical acceleration of the sprung mass was noticed.
However, the overall performance was acceptable.  The
new model proposed in this paper has applications in the
areas of dynamics analysis and control system design.
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