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Correspondence

Asymptotic Behavior Analysis of a Coupled
Time-Varying System: Application
to Adaptive Systems

Keum-Shik Hong

Abstract—Asymptotic behavior of a partial state of a coupled ordinary
and/or partial differential equation is investigated. It is specifically shown
that if a signal x(t) is a solution to a dynamic system existing for all ¢t > 0
in an abstract Banach space and is pth (p > 1) power integrable, then
z(t) — 0 as t — oc. The system is allowed to be nonautonomous and
assumes the existence of a Lyapunov function. Since the derivative of the
Lyapunov function is negative semidefinite, stability or uniform stability
in the sense of Lyapunov would be concluded. However, this paper further
asserts that the partial state which remains in the time derivative of the
Lyapunov function converges to zero asymptotically.

Index Terms— Adaptive systems, convergence, existence, time-varying
system, uniqueness.

I. INTRODUCTION

In this paper the asymptotic behavior of a part of the solution of
a coupled dynamic system, whose solution exists for all ¢ > 0, is
investigated. The coupled dynamic system is assumed to permit the
construction of a Lyapunov function with a negative semidefinite
time derivative. The system considered is allowed to be time-
varying; therefore, LaSalle’s theorem [15, p. 158] for. the case of
ordinary differential equations would not be applicable. Furthermore,
an extension of LaSalle’s theorem to infinite-dimensional systems is
not yet available. Since the derivative of the Lyapunov function is
assumed to b only negative semidefinite, stability or uniform stability
in the sense of Lyapunov would be concluded in ordinary cases.
However, this paper further addresses the asymptotic convergence to
zero of the partial state which remains in the time derivative of the
Lyapunov function.

The class of systems considered in this paper originally represented
an adaptive control problem. Hence, the applicability of the proposed
investigation is already justified. However, the application of the
results in Section II below is not limited to adaptive systems. Fur-
thermore, it should be remarked that the form of systems considered
in Section II is not critical. The key issue of this paper is what can
be said in the Lyapunov analysis about the qualitative behavior of the
partial state which remains in the derivative of a Lyapunov function.
Since only a partial state remains in the derivative, the asymptotic
stability cannot be concluded.

In adaptive identification or control problems [1], [2], [3]-[5],
(8]-[11], [13)-[14], [17], the whole closed-loop system involves
error dynamics between the plant and model, adaptation rules, and
design-dependent normalizing signals. In showing the convergence of
error dynamics (z(t)) to zero in finite-dimensional adaptive systems,
Barbalat’s lemma [11, p. 85], [14, p. 19] is used with the fact that
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x(t) € L2(0,00). In this paper it will be shown that the adaptive
system employing the Lyapunov redesign method intrinsically assures
that 2(t) — 0 as t — oc. Therefore, the results obtained in this paper
reveal an interesting fact: if the adaptation law is derived in such a
way that V(¢,z,y,7) < —a(||z||), where V' is a Lyapunov function
for the whole adaptive system, = denotes the error dynamics between
the plant and model, ¥ is the adaptation law, 7 is some normalizing
signal, and a(-) is a continuous monotone function, then the trajectory
of the plant is guaranteed to follow that of the model.

The main contribution of this paper is Theorem 1, which shows
the asymptotic convergence of a partial state of a coupled dynamic
system to zero. The application of Theorem 1 is demonstrated in
Section III but is not limited to adaptive systems. Noting that some
adaptive systems belong to the category of Theorem 1, the second
contribution of this paper is in showing that the Lyapunov redesign
method itself assures that x(t) — 0 as t — oo, where z(t) is the
error dynamics between the plant and model. In the literature the
stability and convergence analysis of a specific adaptive system has
been carried out only for the specific system considered. However,
this paper clarifies that the converging behavior of the state error
dynamics to zero with the Lyapunov redesign method is a general
property and is not dependent on the type of the system considered.
Furthermore, by using the existence and uniqueness of the solution
the convergence analysis adopted in this paper is unique.

Theorem 1 deals with infinite-dimensional systems, whereas Corol-
lary 1 deals with finite-dimensional systems. Even though the proofs
for both cases use the semigroup approach and contradiction ar-
gument, the infinite-dimensional case is assumed to be semilinear.
This is because in the infinite-dimensional case the proofs for
the existence and uniqueness of solutions are readily available for
semilinear systems but not for general systems. On the other hand, the
conditions for the finite-dimensional case will provide the existence
and uniqueness results together with the asymptotic behavior of a
portion of the solutions.

The paper is organized as follows. In Section II the asymptotic
behavior of the solution of a coupled dynamic system is investigated.
In Section IIT an example of the infinite-dimensional case is given.
Conclusions follow in Section IV. ||-|| will be adopted as a generic
norm in any Banach space.

II. ASYMPTOTIC BEHAVIOR OF SOLUTION
Theorem I: Consider a coupled dynamic system as

z(t) = A(y(t)=(t) + f(t,z,y), r(0) = z, (1)
y(t) =glt.z,y,m),  y(0) =y, (2)
N(t) = =bon(t) + h(t,z,y),  n(0) =, (3)

where r € X,y €Y, andp € Z. X, Y, and Z are Banach spaces.
A(y(t)) is a family of operators on X where y(t),t > 0 is to be
a time-varying parameter. 6, is a positive constant. The following
assumptions are made.
1) There exists a unique solution to system (1)~(3), and the
solution of (1) is given in the variation of constants formula
of the following form:

z(t) = @(t,0)z, + / et T)f(rz(),y(7))dTr  (4)
0
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where $(t,s), 0 < s <t is the evolution operator associated
with A(y(t)), and [|®(t,s)|| < M, where M, is a constant,
for 0 < s <t < oo
2)

17 (t, 2, y)Il < ao(®)llzll +co, V>0 (5)

where co is a constant and oo : ¥ — R7 is bounded for
finite values of y.

3) There exists a Lyapunov function V(t,z,y,7) : BT x X x
Y x Z — R* for system (1)(3).

4) There exists a continuous nondecreasing function a(-) with
a(0) = 0 such that

I:'r{fa Y, 7?)],:”-{3} < _E(HI") (6)

Then z(t) — 0 as t — oc for every z, € X.

Proof: The conclusion will be proved by a contradiction argu-
ment with the following three facts: 1) The existence of a Lyapunov
function V', 2) the existence and uniqueness of the solution which
includes the existence of the evolution process ®(t,s), and 3) (6)
which can be rewritten as in (9) below.

The existence of a Lyapunov function V' and the fact that V < 0
from Condition 4) imply that a set Eg = {(z,y,) : V < 8,8 €
R} is positive invariant [7, p. 82], (16, p. 138]. Hence [|z(t)],
ly(OIl, lln(t)ll < 8, ¥t > 0, where 8’ is a constant not depending
on time ¢. Let the unique solution of (1) at time ¢ starting with the
initial state x(s) at initial ime s be of the form

2(t) = B(t, s)z(s) + ] &(t,7)f(r, 2(r), y(r)) dr. (D)

Denoting (7) as z(t) = z(t, z(s), s), define a two parameter family
of map 5(¢,5) on X as

S(t, 3)3:‘(5) = z(t, z(s), ),

Then, by the finiqueness and continuous dependence of the solution
on the triple (¢,z(s),s), the mapping S(t,s) on X becomes an
evolution process [16, p. 12, p. 49] such that;
1) 5(-,s5)z(s) : R" — X is continuous (right continuous at
t = s);
2) 5(t,)() : R*xX — X is continuous;
3) S(s,s)z(s) = z(s);
4) S(t,s)x(s) = S(t,r)S(r,s)z(s), for all z(s) € X and
0<s<r<t<oo
Finally, note that (6) implies that

[ " a(|l2(t)]) dt

0

= fm a(||S(t,0)z,|})dt < V(0) — V(o) < o0 (9)

0<s<t< oo (8)

where the initial time and state are chosen to be zero and x, € Eg,
respectively.

Indeed, the conclusion of the theorem can be proven by contradic-
tion [12, p. 116]. Suppose that z(t) = S(¢,0)z, # 0 as t — oo.
Then there exists a € > 0 and an infinite sequence £; — oo such that

|15(t;,0)x,|| > €.

Now, however small the ¢ is, there always exist constants Mz > 0
and €, > 0 such that

Mz > sup ao(y(t)) (10)
Iy ()<
and
E —_ .E'_:'._ j_'_;- Eo > () “1)

€ Mz
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where ao(:) and co are found in (5), and e is the base of natural
logarnithm. Note that M; is a constant related to the Lipschitz-like
growth condition on f, and (11) is always satisfied if ¢o = 0 in (5).
Therefore, taking norms on both sides of (7) yields

llz(@®I < |1, sl III(S)H+/ @, D) f (7, 2(7), (1))l d7

< Milla(o)l + [ "M (oo (y(r)l|=(M)]| + co) d7

©opt
<Mz + 200 [ (1ol + 2 ) ar. a2)
s 2
Applying the Bellman-Gronwall’s inequality yields
IO < (Millz(e)]+ 12 M0 a3y
2

for all + > s > 0. Now, without loss of generality, we can assume
the sequence t; such that ;4 — t; > (M) M) ™. If we define the
intervals Aj as A; = [t; — (MlMg}_l,tj], then m(A;) > 0 (m =
Lebesgue measure) and the intervals A; do not overlap. For t € A;
e < lz(t)ll = [15(¢5, 0).||
= ||5(t;,t)S(t,0)z.]]
= S(ti: t}I(t)"

< (Ml ||$-(t)” + ﬂ)ﬂMleUj —t)

2

Cq
—_ ( ]-"J:( }" Mz)e

where the second inequality above is obtained from (13). Therefore
we have
£a

MI}D

EOTE

for all £ € A;. Hence

[ atisozdar > S [ atiseoza

0 =1

contradicting (9). Thus we must have z(t) — 0 as ¢ — oo. O

Remark 1: Even though the existence and uniqueness of the
solution have been assumed, which is to assert the asymptotic
convergence of the partial state = to zero, the class of systems that
permits application of the theorem is not empty, as will be shown in
Section III. The specific conditions for the existence and uniqueness
of solutions will be different, depending on the types of systems in
the considered Banach spaces. Also, there is no general existence
theorem available yet for general infinite-dimensional systems. By
defining B(t) = A(y(t)), the conditions [with respect to B(t)] for
the existence of the evolution operator ®(t,s) are found in [12, p.
134] for the hyperbolic system and in [12, p. 149] or [6, p. 108]
for the parabolic system. Furthermore, with the same conditions
19(t,s)|| < Me“"*~*) (w is a stability constant) for the hyperbolic
case [12, p. 135], and ||®(¢, s)|| < M for the parabolic case [12, p.
150], are achieved. Also, the existence, stability, and smoothness of
invariant manifolds of the hybrid system (1), (2) have been studied
in [7, p. 275]. For more detailed results refer to [6), [7], [12], [16],
and the references therein.
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Remark 2: In adaptive control, the state = represents the error
dynamics between the closed-loop plant with filters and the model.
The state y denotes the estimated parameter vector which is referred
to as the adaptation law. 5 is a design variable known as the
normalizing signal.

On the other hand, the conditions in Corollary 1 will assure the
existence and uniqueness of the solution together with the asymptotic
convergence to zero.

Corollary I: Consider a finite-dimensional system as

= f(t,z,y), =z(0)==z, (14)
y=g(tz,y,n), y(0)=y, (15)
n=—bon+h(t,xz,y), n(0)=n, (16)

where z € R", y € R™, n € R', and 8, > 0 is a constant. The
following assumptions are made.

1) f(¢,0,0) =0 and g(t,0,0,n) = 0. f, g, and % are piecewise
continuous in ¢ and are continuous in other variables. Further-
more, f and h are locally Lipschitz in = and y. g is locally
Lipschitz in z, y, and 7.

2) a)

1ft 2 )l < ao(@)llzll + co,  VE>0;

b)

[h(t,z,y)| < &I(F}IIIHE + aa(y)|z|| + c1, vt > 0

where co, ¢ are constants and ap, 03,2 : R™ — Rt are
bounded for finite values of y.
3) There exists a functional V : R* x R"t™ — R* such that

kullzl|® + k2llyll® < V({t,z,v) < ksllz|® + ka]ly]|?

where ki, k2, k3, k4 are positive constants.
49 7

V(29| 1415y < —e(llz])

where a(-) is a continuous monotone function with a(0) = 0.
Then, () — 0 as t — co.

Proof: The method of proof is exactly the same as that of
Theorem 1. The only difference is that (14) is nonlinear and (1)
is semilinear.

The existence and uniqueness of the solution to system (14)<(16)
has been established in [13]. Let the solution of (14) with the initial
state z(s) at initial time s be of the form

z(t) = z(s) + /t flryz(r),y(7)) dr. (17)

Taking norms using Condition 2)-a) yields
= < el + [ 3 (el + 22 )ar a9
8 2

where M is chosen to satisfy (11). Applying the Bellman—
Gronwall’s inequality

KIS (el + 52 )= g
for t > s > 0. Therefore, choosing A; = [t; — (M3) ™2, ¢;]
lz(t)|| 2 e, forallte A,;.
The rest of the proof is the same as Theorem 1. O
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Remark 3: Comparing (12) and (18), the difference is that one
is from the semilinear (1) and the other is from the nonlinear (14).
M> comes from the Lipschitz-like growth condition on f for both
systems (1) and (14), respectively. Equations (13) and (19) imply
that the solutions existing for all ¢ > 0 cannot grow faster than some
exponential function.

Remark 4: Note that (9) must hold for all initial conditions z, €
Bg, 3 € R*, due to the positive invariance of Bg. Therefore, (9)
will exclude the typical situation where f in (14) is a function of
only ¢ and y. Indeed, if f were of the form

z = f(t,y),

(this will never happen in adaptive control since = denotes the error

I([_I') = I, {20}

dynamics), the solution would be of the form

t
x(t) = z, +/ f(r,y(r))dr. (21)
0
Then, (9) is never achieved for any z, # 0 because (9) can be
satisfied for only one particular z, by offsetting the second term in
(21) but not for all initial conditions.

Remark 5: Corollary 1 also concludes the following. In general,
z(t) € Ly(0,00) does not imply that z(t) — 0 as t — oo. The
uniform continuity of z(t) is needed as is shown in Barbalat's lemma.
However, besides the fact that z(t) € L,, if the signal comes through
a dynamical system as £ = f(t, z, y), where a unique solution exists
for all ¢ > 0 and y is a bounded parameter, then z(t) — 0 as t — oo.
Let us consider a pathological signal x(t) which belongs to L, but
does not tend to zero (this signal will violate the uniform continuity
condition). Also, let the derivative of z(t) be {(¢). Then z(t) can
be considered as a signal generated through a dynamical system of
the form

i(t) = C(t), =(0)=0

which is exactly the form of (20), and only the zero initial condition
will provide z(t) € L,.

Remark 6: The above results may suggest the following design
procedure for a model following adaptive system: 1) derive an
adaptive control law which permits exact equation matching between
the plant and the model when the adjustable parameters in the
controller converge to some values; 2) assure the existence and
uniqueness of solutions; and 3) assure the existence of a Lyapunov
function for the whole adaptive system and that the derivative of the
Lyapunov function is of the form

V < —a(|lz|))

where zr is the state error between plant and model and a is
monotonic. Then z(t) — 0 as t — o<.

Remark 7: For the finite-dimensional case, the conditions in
Corollary 1 are equivalent to the boundedness of . Hence
z(t) € L2(0,00) together with Barbalat’s lemma implies that
z(t) — 0 as t — oo. The use of Barbalat’s lemma is standard
in adaptive control literature.

The above observation is summarized in the following remark.

Remark 8: Let x(t) € L,(0,00),p > 1 be the unique solution for
allt > 0,of = f(t,z,y), where € R", and y € R™, and let v
be a bounded parameter. Then, lim¢ ... z(¢) = 0.

III. AN EXAMPLE

In this section we demonstrate the applicability of Theorem 1 by
considering a model reference adaptive control of a parabolic partial
differential equation (PDE) and show the convergence of state error
dynamics to zero by applying Theorem 1.
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Briefly surveying infinite-dimensional adaptive systems, Baumeis-
ter and Scondo [2] investigated the parameter estimation problems
of elliptic and parabolic equations in order to generalize the finite-
dimensional adaptive control technique to the infinite-dimensional
case (their work is also found in [1, p. 256]). Demetriou and
Rosen [3]-[5] investigated on-line parameter estimation for parabolic
and hyperbolic systems, approximation theory, and persistence of
excitation of adaptive systems. The error equations appearing in
their work are identical to (25) and (26) below. The existence
and uniqueness of solutions of those error equations has been
established, and the convergence of state error to zero was proven
using the contradiction argument. More interesting questions such as
identifiability are also referred to in [1]-[5].

Parabolic PDE’s arise in many physical, biological and engineering
problems, for instance, in heat transfer, nuclear reactor dynamics,
chemical reactions, crystal growth, population genetics, flow of elec-
trons and holes in a semiconductor, nerve axon equations, hydrology,
petroleum recovery area, and fluid mechanics. For more examples
refer to [1], [7], [16], and the references therein.

Consider model reference adaptive control of a linear parabolic
PDE with spatially varying coefficients as

E(p,t) = (a(p)€' (p, 1) + b(p)E(p, 1) + u(p, t), (22)

where ¢ is time and p € 2 C R denotes the spatial variable. The
symbols - and / denote the derivatives with respect to { and p,
respectively. u(p,t) is a control input function. a(p) and b(p) are
unknown but a(p) > 0 for system (22) to be parabolic. Boundary
and initial conditions are given as

£(p,t) = B(¢),
£(p,0) = & (p).
It is assumed that a(p), b(p), and the boundary data 3(t) are analytic
in their appropriate domains. It is also assumed that 5(¢) is known a
priori, and distributed sensing and actuation are available. A reference
model is defined as
Em(Pt) = (3m(P)em(P,1)) + b (p)em (P, 2) + r(p,t), t>0
Em(p,t) = B(t), p€OQ
fm{P!n} = fmu(P)
where r(p,t) is a bounded reference input. It is assumed that
ﬂm(p} = a, > 0, E’m{P} < 0, lbm(F‘}I > b, > 0 and that ﬂm(ﬂ):

bm(p) are analytic in £2. Now consider the following control law
u(p, t) with adjustable parameters ¢, (p,t) and ¢4(p,t) such that

u(p,t) = ($a(p, )€ (2, 1)) + du(p, t)E(p, t) + r(p,t).  (24)

The closed-loop plant equation becomes identical to the equa-
tion of the reference model when lim:—. ¢o(p,t) = ¢; and
im; .o ¢u(p,t) = ¢}, where ¢ (p) and ¢; (p) are nominal functions
defined as ¢ (p) = am(p) —a(p) and ¢; (p) = bm (p) — b(p). Define
the state error e as e(p,t) = £(p,t) — {m(p,t) and the controller
parameter errors ¥, and ¥y as Ya(p,t) = ¢a(p,t) — ¢a(p) and
¥s(p,t) = du(p,t) — ¢y (p), respectively. Subtracting (23) from
(22) yields the state error equation with homogeneous boundary
conditions as

é(p,t) = (am(p)e'(p,t))" + bm(p)e(p,t)
+ (Ya(p, )€ (P, 1)) + s (p, )E(p, 1)
= ((am(p) + ¥a(p,t))e (p, 1))
+ (b (p) + ¥ (p, t))e(p,t)
+ {(Ya(p, t)em(p, 1)) + YD, £)Em(ps t)
e(p,t) =0, pe€ N
e(p,0) = &o(p) — Emo(p)

t>0

p € 042

(23)

(25)
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where £, 1s an exogenous signal at our disposal. Consider the
adaptation laws given by

ba(p:t) = e€'(p, )€ (Pr1), $a(p, 0) = o
‘:ﬁb{prt} = _EE(FatJE{Prt}m qbb{f}'r 0) = ¢

(26a)
(26b)

where £ > 0 is the adaptation gain. Then by considering a functional
V i (La(2))° — R as
- 1 2 1.2 2
Viewa,ds) =3 [ )+ (valp,t) + ¥s(p,1)) |dp
(27)
and differentiating (27) with respect to ¢ and substituting (25)

f’:f (E(ﬂ.mﬂ;}'ﬁ-ﬁmﬂz
L9

Fof 1, - T
+ e{a€ ) + el + E(wu’rﬁn + wbwa}) dp.
If we integrate the first and third terms by parts, then
[ e{ame') dp = e{ume’}‘aﬂ - / am(e' ) dp
Q Q
and
f e(tat) dp = e(hat')| o — f Yae'€ dp.
Q Q
Since the state error equation has homogeneous boundary conditions,

the first two terms in the above expressions are zero. Hence V
becomes

-[;r = f (— {Im(ﬁf}z -]-ITJ',.-mE2 - T,f')nErEE
2

1 . .
+ Ypel + E(wa% + %Tﬁb)) dp. (28)
Now applying (26a) and (26b) to (28) yields
V= / (= am(e')® + bme*) dp
Q
< / bme> dp
Q
< —bollell®. (29)

Note that (25), (26), and (29) correspond precisely to (1), (2), and
(6), respectively, in Theorem 1. There is no signal corresponding to
(3) in the example. From the results in [1, p. 258], it follows that
the coupled system (25) and (26) has a unique solution (e, ¢a, ®s)
with (e, ¢a, ) € L*(0,T; Hy x L? x L?) for any T > 0. And (27)
is a Lyapunov function for (25) and (26). The specific forms of the
solutions to (25) and (26) when plant (22) and reference model (23)
have constant coefficients rather than spatially varying coefficients .
are referred to in [8]. Hence, by applying Theorem 1, e(p,t) — 0
as t — oo

I'V. CONCLUSION

The asymptotic behavior of a part of the solution of a hybrid
dynamic system was investigated. Since the system is nonautonomous
and the time derivative of the Lyapunov function is negative semidef-
inite, only stability or uniform stability would be concluded using
Lyapunov’s second method. However, further investigation in this
paper has shown that the partial state which remains in the derivative
of the Lyapunov function converges to zero asymptotically. The
resuits were applied to an adaptive system.
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