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Abstract—An averaging theorem for integro-differential
equations is applied to the convergence analysis of controller
parameters of a model reference adaptive control (MRAC)
algorithm for a class of parabolic partial differential
equations (PDEs) with constant coefficients. The stability of
an adaptive conirol algorithm is proven as well.

1. Introduction
THIS PAPER PRESENTS an application of an averaging theorem
for nonlinear integro-differential equations to a model
reference adaptive control (MRAC) algorithm for linear
one-dimensional, parabolic partial differential equations
(PDEs). The method of averaging is an asymptotic method
which permits the analysis of the dynamic behavior of a
nonautonomous system via an autonomous (averaged)
system obtained by time-averaging of the original nonauton-
omous system. Since the first systematic averaging analysis
for systems of ordinary differential equations (ODEs) in the
standard form was introduced by Bogoliubov and Mit-
ropolsky (1961), this method has been extended to various
equations including functional, integro-differential, difference
and PDEs. Recently, this method has emerged as a
creditable tool for stability analysis in vibrational control and
adaptive control (Bellman et al., 1986; Bentsman and Hong,
1991; Bentsman et al., 1991; Hong and Bentsman, 1992). An
averaging theorem which will be introduced in Section 2
establishes the asymptotic stability of an attractor of a
nonautonomous -nonlinear integro-differential equation on
the basis of the exponential stability of the corresponding
attractor of the autonomous (averaged) nonlinear differential
equation.

The adaptive control problem addressed in Section 3
consists of designing a control strategy that achieves . the
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desired objective: either regulation or tracking, for a given
class of plants whose structure is known but parameters in
the structure are unknown. It is assumed that the unknown
parameters in the system equation are constant, and that
distributed sensing and actuation are available. The adaptive
control problem involves (i) the construction of a control law
which is adjusted adaptively using available input and output
data from the plant in such a way that the desired control
objective is achieved, and (ii) assurance of the global stability
of the system when the parameters are tuned according to
the adaptation laws.

Besides providing a natural extension of the Lyapunov
redesign method of finite dimensional adaptive control
(Parks, 1966) to parabolic PDEs, the paper makes the
following contributions. (i) The proof for the analysis of the
parameter convergence in the finite dimensional MRAC
(Anderson et al., 1986; Sastry and Bodson, 1989) is extended
to PDEs. This extension consists of representing the closed
loop dynamics in the form of an integro-differential equation
via. the solution of the infinite dimensional error equation.
This representation, then, permits the use of the averaging
theorem for integro-differential equations to establish the
convergence of the controller parameters to their nominal
values. (ii) It is demonstrated that the concept of persistency
of excitation in the adaptive control of PDEs arises not only
with respect to the time variable as in the finite dimensional
case but also with respect to the spatial variable, and it is
shown that even a constant input can be persistently exciting
in MRAC of distributed parameter systems in the sense of
ensuring the convergence of the controller parameters to
their nominal values.

The paper has the following structure. In Section 2 we
introduce an averaging theorem. In Section 3 we consider an
adaptive control algorithm for a linear constant coefficient
parabolic plant, and show the convergence of a state error to
zero and the boundedness of all signals in the closed loop. In
Section 4 we use the averaging theorem of Section 2 to
demonstrate the convergence of the parameters of the
adaptive controller to zero. Conclusions are given in Section
S.

2. Averaging method for integro-differential equations
Extensions of Bogoliubov’s averaging theorems (Bogoli-
ubov and Mitropolsky, 1961) for systems of ODEs in the
standard form to integro-differential equations can be found
in several papers. Filatov (1967) first extended the results of
the closeness of a solution of the original system to that of
the averaged system on a finite, but arbitrarily large, time
interval re[0,L/¢], & L>0, for the nonlinear integro-
differential equation in the following standard form:

x(t)y= EX(I, x(1), jl &(1, s, x(5)) ds), x(0) = x,.
0

Subsequently, various forms of averaging theorems (Filatov
and Talipova, 1969, 1970; Bakhabov, 1969; Melikidze, 1970;
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Eshmatov, 1974; Bainov and Sarafova, 1977) for integro-
differential equations appeared. Bakhabov (1969) gave a
different proof of the results of Filatov (1967), and Filatov
and Talipova (1970) proved the proximity of the solutions of
the original system and the corresponding averaged system
both on a finite and an infinite time interval; however, they
did not provide the results on the existence, uniqueness and
the exponential stability of an attractor of the time varying
system in the vicinity of that of the averaged system. In this
section an- averaging theorem of Melikidze (1970), which
deduced the stability of the original system from that of the
corresponding averaged system for a nonlinear system of
integro-differential equations in the standard form, is
presented.

Consider a system of nonlinear integro-differential
equations of the form

£ = eX (150,50 [ 80,5,56), 260 ), x©)=x0,
M

where x, X, ¢ are n-vector valued functions, £ >0 is a small
parameter, ¢ denotes the time and a dot denotes the
derivative with respect to ¢ System (1) appears in the
problems of the dynamics of imperfectly elastic bodies in
which derivatives cannot be explicitly solved. X(t,x,y,z) is a
vector which is continuous in the domain Q={te R, x,y
DcR", z e R"}; where D is assumed to be compact and
0e D. The function (1 s, x,y) is also assumed to be
continuous in the domain Q'={(t,s) e R%, x,y e D=R"}.
Let the limit

1 1o+ T "t A
lim —f X(t, X, Y, j (5, %,) ds) dt=Xo(x, y) (2)
=T to 0

exist uniformly with respect to (¢, x, y) € R X D. Notice that
the variables x, y in the limiting process of (2) are treated as
parameters independent of s. Then the averaged system
corresponding to (1) is defined as :

é= eXo(é, f)y £(0) = x,. ()]

Theorem 1 (Melikidze, 1970). Let X(t,x,y,z) and
(1, 5, x, y) be defined and continuous in the domains Q and
Q', respectively. Assume that the following conditions are
satisfied. (1) In the domain Q, the function X(t,x,y,2) is
bounded, and satisfies the Lipschitz condition, that is,

Xt x y, )l =M,
“X(t’ X Y1 Zl)“X(t, X2, Y2, ZZ)" (4)
= M{lx = x2ll + Iy —yall + 20— zall},

where M, A, are positive constants. (2) In the domain Q’, the
function (1, s, x, y) is bounded and satisfies the Lipschitz
condition, that is,

(s, x y)I=N, ©)
b(t, s, x1, y1) — bt 5, X2, Y < Adllxs — %2l + {31 — 2l b,

where A, is a positive constant. (3) The limit (2) exists
uniformly with respect to (f, x, y) € R X D, and equation (3)
has a periodic solution such that

x=¢(1), £(a+2m)=§{a). (6)

(4) The real parts of all the (n — 1) characteristic exponents
of the perturbation equation

dé d

D xilton), o Q)
corresponding to the periodic solution (6) are different from
zero..(5) It.is possible to find some p-neighborhood U, of the
orbit of this periodic solution, such that the function
X(t,x,y,z) and its partial derivatives with respect to x, y, z
up to (m + 2)th order are bounded and uniformly continuous
with respect to x, y in the domain {t € R, x, y e U, = D}. (6)
X(t,x,y,2) is an almost periodic function of ¢, uniformly
with respect to x, y € U,. Then there exist positive numbers
€, and o such that for any £ < g, the following assertions are

valid: (i) (1) has a unique integral manifold S, which belongs
to the domain U, for every t; (ii) S, admits a parametric
representation of the form x=F(t,0), where F(,6) is
defined for every real t and 6, and has period 27 with respect
to the angle 6. In addition, it is possible to find functions
8(¢), n(e)—>0 for e—0 such that ||F(s, 8) — £(8)|| = 8(¢),
and |F(s, &) — F(t, 8,)ll = ()16, — 6,| for any real ¢, 6,
6,. It is possible to construct a function G(z, 6) defined
for every real t, @ satisfying the inequalities.|G(t, 8)|| =

- 8%(e), 11G(1, 8,) — G(t, 8,)ll =71*(€) 16, — 0|, ‘where 8*(e),

n*(g) — 0 for £— 0 such that any solution of (1) belonging to
the manifold S, is representable in the form x = F(z, 6()),
where (¢) is some solution to the equation de/dt = eG(t, 9).
Furthermore, let that x(¢) be any solution of (1) which
satisfies the relation for some t, as x(t,) € U,,, 0o <p, where
U, is the oy-neighborhood of the orbit of026). Then if the
real part of each of the (n—1) characteristic exponents of
the system (3) is negative, the distance d(x(¢), S;) from the
point to the set S, tends exponentially to zero as t— .

3. Direct adaptive control of parabolic systems

In this section we derive and analyze an adaptive control
algorithm for a class of DPSs described by linear,
one-dimensional, parabolic PDEs with unknown constant
coefficients. As in adaptive control of finite dimensional
systems, we will focus on MRAC under the assumption that
the structure of the plant is known and only parameters in
the system equation (not in the boundary conditions) are
unknown.

Consider a DPS described by a linear parabolic PDE with
constant coefficients

ul(-xx t) = auxx(x’ t) + bu(x, t) +f(x» !)r u(o’ t) = Bl(t)r
u(l,1)=Bo(1), ulx,0)=uo(x),

where x € [0, 1], 1> 0, a and b are constants, subscripts ¢ and
x stand for partial derivatives with respect to ¢ and x,
respectively, and f(x,f) is a control input function. The
output y of (8) in general is given by y(x, t) = Hu(x, t), where
H:C([0, 1] X R*)— C((Q<[0, 1]) X R™) is a linear bounded
time-invariant operator with the form depending on the
characteristics of the sensor. The following assumptions are
made.

®

Assumptions. (i) The structure of the plant is a priori
known. (ii) Boundary conditions are a priori known, and
B.(*), B(-) € CT[0, »). (iii) Distributed sensing and actua-
tion are available, and the observation operator H is a priori
known (we may assume that H =1, where I denotes the
identity operator from C([0,1]X R*) onto itself). (iv)
Coefficients a and b are unknown; however, a >0 (due to
parabolicity).
Now the reference model can be introduced as

a,(x, ) =ad, (x, ) +ba(x, 1)+ rx, 1), @(0,1)=p (),
ﬁ(l’ t) = ﬂz(t)r ﬁ(x’ 0) = ‘20’

where a circumflex indicates variables and parameters related
to the reference model, and r(x, t) is the reference input,
which is analytic on [0, 1] X [0, ). It is assumed that 4 >0,
b <0. It is known that if r(-, -) is analytic in [0,1] X [0, ®),
then the solution of (9) is analytic in [0, 1] X {0<t<T <}
(Friedman, 1969, p. 212). The control objective of the
MRAC can now be stated as follows: find a bounded control
signal f that drives u to 4 asymptotically and keeps all signals
in the closed loop uniformly bounded.

Now consider the following control law with adjustable
controller parameters ¢,(¢) and ¢,(¢) such that

' fO, 1) = Ga(uee(x, 1) + p(Du(x, ) + r(x, 1), (10)
ba(1) = e (x, 1), e (x, ) + ,(x, 1)), 6,(0) = $50>0, (112)
bp(1) = —ele(x, 1), e(x, ) +d(x, 1)), $5(0) = bpo, (11b)
where e(x, t) E u(x, t) — d(x, t), the dot represents derivative

with respect to time, and (-, -) is the inner product in L0, 1),
which is the space of square integrable functions on [0, 1].

&)
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Theorem 2. Let the parabolic plant (8) satisfy the above
assumptions, and the reference model be given by (9). Let
the feedback control law f be given as (10) with tuning laws
(11a) and (11b). Then all the signals in the closed loop
system are bounded, and |le(x, t)||—0 as t — .

We first introduce the following Lemmas to be used
subsequently for proving Theorem 2.

Lemma 1 (Popov, 1973, p. 211). If f(t):R* — R is uniformly
t
continuous for =0, and lim | |f(7)| dr exists and is finite,
1—» Jy
then f(1)—0 as t — .

The next Lemma is an extension of Lemma 1 to functions
more than one independent variables.

Lemma 2. If e(x,t):(Q=R")XR*—>R is bounded,
"l

{e(x, D)}, cq is equicontinuous in ¢, and ,ILTC J; llex, )12 dt
exists and is finite, then lim [le(x, £)]| .2y = 0.
{—>oe

Proof. Let [odx=A <o and the bound for e(x,t) be M.
From the equicontinuity for any £ <0 there exists 8(¢) >0
such that whenever |, —1,| <8 for every x e Q we have
le(x, t,) — e(x, ;)| < e/2AM. Now,

l€%(x, 1,) — €%(x, )| = le(x, t,) + e(x, 1,)| le(x, t;) — e(x, )}
=¢€/A.

Therefore {ez(x, }ieca Is equicontinuous in: ¢. Define
F(8) = lle(x, 1)|%. Then

£ (1) = F@)l = |lex, 1) 17 — lle(x, £2)117)
SJ’ |82(x’ tl) - eZ(x’ t2)| dr=e
Q

Hence f(t) is uniformly continuoﬁs. Since f(¢) satisfies both
hypotheses in Lemma 1, |le|]—0 as r— .

Corollary 1. If e(x,t) e L(QXR*)NL(QXR*), and
e,(x, t) is bounded, then |le(x, {)|| >0 as t— o,

Proof. The proof follows directly from Lemma 2.

Proof of Theorem 2. Define the nominal values of the
controller parameters as ¢*=(d —a), ¢f=(b—-b), and
controller parameter errors as

Y1) 2 b () — 2, Un(1) 2 dy(0) — 02 (12)

Note that when ¢,(f) and ¢,(¢) in (11a) and (11b) converge
to ¢F and ¢f, respectively, the closed loop equation of the
plant with the control law (10) matches the reference model
equation exactly, that is,

U =(a+ @ (g +(b+ dp(tu+r (13)

becomes the exact reference model when ¢,(t) = ¢ and
¢5(t) = 4. Also note that é,(f) = y,(r) and ,(¢) = gy (t)
from (12). Subtracting (9) from (13) yields the state error
equation as

(a + wa(t))exx + (B + l,’b(r))e + l/’n(t)ﬁxx + ‘pb(t)ﬁ
vvwuaies v/ vadvt 1 Cluiving vy wiren Ya\l) — ¥q , £uu)

&5(t) = &% Also note that ¢,(t)=4,(t) and $,(t) = du(t)
Now consider a Lyapunov functional as

Vee o =3[ @noac+ Lo i, a9
Differentiating V with respect to ¢ along the trajectories of
(14) employing integration by parts, using boundary
conditions, and utilizing (11a) and (11b) yields

1 1
Vsj (—ae3+5e2)dxsﬁf e?dx =<0, (16)
0 0
Since Ve, ¥, ¥,) is nonincreasing and bounded beiow, e, 4,

and ¢, are bounded with resgect to their norms. Also, from
V=<b |le]?>, we have ee L%([0, 1] X [0, <)). Furthermore,

from the first inequality in (16), e, e L*([0, 1] X [0, )).
Therefore e € L*([0, 1] X [0, <)), which is seen from the
linear structure of (14) with homogeneous Dirichlet
boundary condition. Since & is bounded for bounded input 7,
so is u. ¢, and ¢, are all bounded from (12) due to the
boundedness of ¢, and ¢,. Finally, since the separation of
variables holds for (14) and all the derivatives appearing in
the right-hand side of (14) are with respect to the spatial
variable, de(x, t)/at is bounded. Hence from Corollary 1 it
follows that |le|| -0 as t—>». Q.E.D.

Remark. Equations (14) and (11a) and (11b) represent the
overall adaptive system, where # is an exogenous signal. By
substituting (11a) and (11b) into (14) the state error system
(14) has the form

elx, 1) = ale,, e, (x, 1) + gle, e, 1), (17)
where

't 1
a(ex,t)=&+¢a0+£ff (ece, +e i) dx de, (18)
070
t 1
g(e,ex,z)=5e+(-/f,,o—sfj e(e+12)dxdt>(e+12)
070

+ (lp,,(, te fo ' fo oo+ ) dr dr)ﬁ,,,. 9)

The initial condition of (11a) needs to be chosen such that
@ + Y,0> 0. Since the exogeneous signal & is smooth, there
exists a £,>0 such that the principal coefficient a(e,, t) is
strongly elliptic for all € [0, 75). Therefore (17) is parabolic
(Friedman, 1969, p. 134). Hence, the results of Friedman
(1969, pp. 169-181) are applicable for the existence of a
unique solution of (17) for 1 € [0, £,). 2pecxﬁcally, the A, on
p. 169 of Friedman (1969) is (@ + ) 8°/0x?, and satisfaction
of the conditions F2-F4 of Friedman (1969, pp. 169-170) is
easily seen by choosing those e, o, p on p. 170 of Friedman
(1969) as @a=1/2 and o=p=1 in our case. Finally, the
Lyapunov function defined as in (15) ensures that all
solutions belong to a closed bounded set; their existence for
all =0 guaranteed as well.

4. Analysis of parameter convergence

In this section, we demonstrate the convergence of the
controller parameters to their nominal values using the
results on averaging in Section 2. A new finding from the
analysis given below is that unlike the finite dimensional
case, even the constant input can be persistently exciting in
the infinite dimensional setting in the sense of ensuring
convergence of the controller parameters to their nominal
values, and that the concept of the persistency of excitation
arises in DPS not only with respect to the time variable but
also the spatial variable.

Following Anderson et ai. (1986), our analysis utilizes the
linearization. The difference in comparison to Anderson et al.
(1986) is in using the explicit solution of the parabolic PDE
which represents a linearized state error equation in the form
of an integro-differential equation and then applying
averaging for integro-differential systems. The linearized
error equations (Frechet differentials) of (11a) and (11b) and
(14) around zero are

Ja(t) = —ele(x, 1), Bu(x, 1)), $2(0) = Yo, (20)

of an mtegro—dlﬁerentlal equauon and then applymg

e me',(x, t) ‘—“ae,,:{x, f) iy be(x, t) ¥ z//a(t)u:(l:x, t)
+ ll’b(t)u (X, t)’ (22)
e(0,r)=e(1,1)=0, e(x,0)=uy,—i,.

Theorem 3. Consider the parabolic plant (8) with homo-
geneous boundary condition and the reference model (9). Let
the feedback control law f be given as (10) with tuning laws
(20) and (21). Let the reference input r be of the form (i)

=¢(x), and (ii) r=¢(x)sin(1). Then |y, ()], ()0
exponentially as t — o, if ¢(x)# 0 on at least one interval of
nonzero measure in x for all ¢.

Proof. Noting that (8), (9) and (22) have the same form, the
solution of (9) with homogeneous boundary conditions is
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given as

o 3 1
0w 0= 3 twe e, 00+ 3 [ [ e0-0r, @) de oo,
n=1 n=1%LJ0
n=12..., (23)

where k,=d(nm)> -5, and @,(x)=sin(nmx), d,,=
2(120(x) (p,,(x)), r,(t) =2(r(x, t), ,(x)). The first and second
series in (23) reflects the influence of the initial state 4q(x)
and the forcing term r, respectively.

(i) r = ¢(x). Equation (23) with r = ¢(x) reduces to

30= 3 tore 0+ 5 22010000, 20

n= l

where ¢, =2(¢(x), ¢,(x)). Similarly, the solution of (22) has
the form

e(xr t) = 2 (uOn - ﬁOn)e_k”l‘Pn(x)

+ 2 ([ rrmaram. e
where k
Fn(t) = 2<¢aaxx + !ﬂbﬁ, (P,,(x))

2
iy Sl TR VAORE U YACREY

By substituting (24) and (25) into (20) and (21), respectively,
the adaptation law becomes

8

'I’a(t) =€ 2 ]iﬁo,,(uo,, - uOn)(’”t)z ~2knt

+e 2 (1o, — ﬁ%)‘bn(""')z e—k,,((l _ e-—k,,l)

n=1 2’(,,
_ - 0n¢n(n”) eknt| e=knlt=0) (1 — g~k
"'El e jo (1 - e~ (1) d
+e 3 Bondal0) ot oottty — by () de
n=1 n 0

,,(nn) (1 ""n’)J i 1)(1 e_k"t)ll’a(f)dt

d’n(n”) (1 “"n’)f O f)(l"‘ _k"r)'llb(r) dr
(27a)

%
—e X T
n=1
%
+e 2
n=1

()= —¢ 2 $on(Uon = Hoa)e ™"

—¢ z % —knt(] — g=kt)
n—l n

+E 2 uOn‘;r;c(n”) e—-k,,lj e—k,,(r—r)(l "e_k"t)llla(‘f) d‘l'

n=1 n 0

> Gon®n —k,,tJ’ e k=] — e~*nTyy, (1) dT
n=1 2k Y

ey "”"z(ki') (1-e ematn - ety () ds

x

~e 3 - ek et - 0
=1
(27b)

Noting that (27a) and (27b) is of the form of an
integro-differential equation (1), it is easily seen that
assumptions (4) and (5) of Theorem 1 are satisfied due to the
linearity of the equations. Furthermore, X(t, 0, 0, 0) = 0, and
¢(4,5,0,0) =0. Averaging the right-hand side of (27a) and
(27b), that is,

tim 7

1 r+T[R .H.S. of (27a)] d (28)

R.H.S. of (27b)

where the limit exist uniformly, yields an averaged system

such that

alao]

di(nn)’
,.Z, 2k3 [fa(t)

" 2

g ':2(:375) 22k3 &(1)
£(0)] _ [ o
[f,,w)]‘[wbo]’ @)

where d)z is the Fourier coefficient of ¢(x) and k, =

|=eace,

a(nm)? — b. Note that tr A <0, and
¢,.(nﬂ')‘ K Su(nn) &,
detA = ”21 2 ’gl (2k3)]/2 (2’(3)”2
<2 ‘(ﬁzngﬂ (zkd;")‘”>° €0

The strict inequality in (30) is achieved by applying to the
second term of (30) the Cauchy—Schwagz inequality

£ £ 172
(Royden, 1988) such that 3 i< (3 1) (3, 197) -

where the equality is achieved only when x = Ay for some
A =0. Therefore, (29) is exponentially stable if ¢(x)#0 on
at least one interval of nonzero measure. Further, we note
that the periodic solution (6) mentioned in Theorem 1 is in
fact the trivial solution of (29), and that the corresponding
solution of the original system (27a) and (27b) is its trivial
solution as well. Hence by applying Theorem 1 to (27a) and
(27b) the parameter errors ¢,(f), ¥,(¢) converge to zero
exponentially as long as there exists at least one ¢, #0,
which is one of the Fourier coefficients of ¢(x), which is the
case if ¢(x)# 0 on at least one interval of nonzero measure.
Now, due to the almost periodicity of (27a) and (27b) the
trivial solution ,(t)=¢,(r)=0 of (27a) and (27b) is
uniformly exponentially stable. Combined with the results of
Theorem 2, this implies that the zero equilibrium of (11a)
and (11b) and (14) is uniformly asymptotically stable, and
that there is a neighborhood of zero equilibrium where both
¥,(¢) and ¢, (¢) have exponential convergence to zero.

(i) r = ¢(x) sin (r). First we note that the first term on the
right-hand side of (23), which tends to zero exponentlally,
did not affect the form of (29) obtained through averaging.
Therefore, we choose all initial conditions to be zero.
Through a similar development as in case (i) we finally
obtain the adaptation law as

(1) =—¢ 2 2?1”-(0-":2))2 (k, sint — cos t +e %)

'
X I e ¥k sin T — cos T+ e ¥y, (1) dt
0

+¢ E 2(1"?:2))2 (k, sint —cost + e %)

'
X J; e *nU=I(k, sin 7 ~ cos 7 + e ¥y, (1) d7

(31a)
- ¢n(n ) 1 - ~hnt
W) =¢ E 2 +k2)2(k" sin ¢ — cos ¢ + e ~%n)
t
X J’ e "Ik, sin 7 — cos T + e )y, (1) dt
Y0
ket
"¢ 25 +k2)2(k Sint = cos ¢ +e7)
(]
% f e~ =k sinT—cos T+ e *"),(7) dr.
(]
(31b)

Therefore, the averaged system corresponding to the above
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integro-differential equation becomes

d &
dt [fb(l)]
S _anm)* _¢Xnm)*
_ 2 4(1 + k2)? E (4(1 + k2)? [g,,(z)]= B
s e & a2 |lawn] 7O
41+ K22 240+ k2P

[ol=lye] e

where tr B <0, det B >0. Consequently, again by Theorem
1, the parameter errors y,(tf), #,(f) converge to zero
exponentially if at least one ¢, # 0, that is, if ¢(x) 0 for at
least one interval of nonzero measure. Therefore, considera-
tions similar to those at the end of the proof of part (i)
complete the proof.

Remark. Although the same conclusions may be arrived at
by using the theorem of Filatov and Talipova (1970), we have
chosen to quote the theorem of Melikidze (1970) due to its
wider applicability and the explicit statements regarding the
existence, uniqueness and the exponential stability of an
attractor of the time-varying system.

S. Conclusions

In this paper we considered an application of an averaging
theorem for integro-differential equations to the convergence
analysis of parameters of an MRAC algorithm for parabolic
systems with constant coefficients. The stability of an
adaptive algorithm for a specific control law obtained
through the Lyapunov redesign method in Section 3 was
proved under the assumption that distributed measurement
and control were possible. The convergence analysis of
controller parameters for a constant coefficient parabolic
system in Section 4 shows that if the reference input is not
zero for at least one interval in x of nonzero measure, in
which case at least one of the Fourier coefficients of the
reference input is not zero, then the controller parameters
converge to their nominal values. The averaging theorem
given in Section 2 is applicable to a much more general class
of equations than considered here, and therefore it is likely
to permit extensions of the results presented in this paper to
a broader class of systems.
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