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Stability of Evolution Equations

Keum-Shik Hong, Jinn-Wen Wu, and Kyo-Tl Lee

Abstract— New ‘conditions for the M stability br beth Ha-
cor ‘nemsutensmous finite and 2 chss' of infisito-dimensionsl’ systems
described by parsbolic partial differentisl equations (PDE’s) are devived.
The resuits for the parsbelic systexas are derived via sesnigroup appreach.

L INTRODUCTION

In adaptive identification and adaptive control of lumped parameter
systems, -obtaining exponentially stable adaptive systems is very
important in the sense that an exponentiaily stable system can tolerase
nmammofd:mwbameuﬂunmoddeddynmcs.mexpo-
nemdmb:htyofmmahdnpﬁvesymukmwnwhemved
by the persistency of excitation condition of the refereace input [12).
Recently, adsptive controls of infinite-dimensional systems were also
mW%[lS]pmposedanadnpuvecmnldgomhmmhg
hmﬂmmwwhmmmmdﬂong
[7] proposed a direct model reference adaptive control algorithm for
parabolic systems and ipvestigated the exponential stability of the
closed-loop system and the convergence of the controller parameters
to.their nominal values.

Cons:dernm-lvaluepmblemmanzme

u(t) = A(t)u(t), u(s) = %o, 0<e<t<T (i 1)

where A(t): D(A(t)) C X — X is a linear operator in X. An X
valwed fuaction u: [s, T] — X is a (classical) solution of (1.1) if
u is continuous on [s, T], u(t) € D(A(t)) fors <t < T, u is
continuously differentiable on s < ¢t < T and satisfies (1.1). The
zero solution of (1. l)umdtobeexpmﬂysﬂ:leifmdonlylf
ﬂueexutpmvemmm!(nd&mchﬂm

W8 to, wo)ll < Ke™*t=10)juy)|

for all ¢ > 4o > 0, every uo € X, where ®(¢; to, wo) is the solution
of (1.1) at time ¢ starting from uo at to.
In a special case where X = R"

#(t) = A®)=(t), 2 €R", t>0 (12)
it is known that if A is a constant matrix such that the real parts

z(0) = =z,

of the cigenvalues of A are bounded above by —6, § > 0, then the

solution of (1.2) tends to zero exponeatiaily as ¢ — co. Hence, it is
natural to ask whether one might be able t0 detérmine the stability of
um-vamngA(t)byemmngthespecnumofA(t)awhnme
t. However, it has been shown by means of examples [9) that the
ﬁmmmwy(Le,theMmdhspmmofA(t) for
mmbnmuebamdedabnmby% & > 0) does not imply
theaahhtyofmzﬁmewuymgsymmmmﬂlaﬂly
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show that the solutions grow without bound as ¢ — oo even if the
spectrum of A(t) remain at fixed locations in the open lefi-half plane
for all t > 0.

Flatto and Levinson [5] show that if A(t) = B(et), where ¢ is
a small parameter, and B(t) is bounded for all ¢, then the frozen-
time stability is sufficient for all solution of (1.2) to approach to zero
cxponentially as ¢ — oo provided that ¢ is sufficiently small. By
choosing ¢ small, we can assure that A(t) is small. Other results
in the litersture for frozen-time analysis for slow-varying systems
include Rosenbrock [11] and Desoer [3]. Subsequently, the slow-
varying results have been extended to nonlinear systems ([1}, [4, p.
125] and (14, p. 218]), and instability analysis [13].

Compuedmtbﬁnm—d:msmalsyswmsthemﬂtsonmﬁmte-
dimensional systems are scarce. Conditions for the e sta-
bility for parabolic PDE'’s are found in [8] and [10]. The coadition
(P4) in [10, p. 173], however, is restrictive since it does not allow
evenpmodwﬁybf‘d;esymooeﬂims

This note has the following structure. In Section II, we first derive
mwﬂmchmumsfmlmnpedpumsym
with explicit bounds for the involved constants. In Section III, by
using the semigroup approach, we establish the conditions for the
exponential stability for parsbolic PDE’s without the knowledge of
the asymptotic behavior of A(t). ConclusnonsmgwenmSecuonIV

II. CONDITIONS FOR FINITE-DIMENSIONAL SYSTEMS

The purpose of this section is to strengthen the exponential stability
condanonsfor(lz)byreplaangmeslow—varym;condmon,ne.,
SUP; >0 A is sufficiently small (see [1], [3}-{5], {11}, {13}, [14]),
w:hmoremal“lﬂdertype continuity of A(t). :

Theorem 1: Consider the system (1.2). If the function ¢t — A(t)
is a matrix-valued continuous function such that i) there exists m > 0
such that sup,, JJA(t)]l = m < oo, ii) there exist K, § > 0 such
that [leA*]| < Ke™® for every t, s> 0, and iii) A(t) satisfies

lAt) ~ A < L|ti -t |
foralltl,tg 20ada >0, whete

§(a+1)
2K(2InK/6)=’

then the system (1.2) is exponentially stable.
Proof: Let us choose the initial time to = 0, and rewrite (1.2) as

2(t) = A0)z(t) + [A(t) ~ A(0))=(2), z(0) ==z0. (2.1)
If z(t) is a solution of (2..1), then

L<

() = Ay 4 / A A(s) = AO)e(e)ds.  22)
Bymﬁngmbo&xﬁ;esmmingmemdiﬁomn)mm)
e < Ke el + KL [ Iela(o)lds. @3
Wye“mmmdapplymecmwm s inequality [14), then
na(tm <keexp{KL [+ ds o

ln K—5t+KL¢°+1/(¢+1) "30" (24)

Noﬁealsotlm:fdxemmalnmehadbeentomsteadofO(24)
becomes

||:c(t) " < eInK—6(t—toH-I(L(t--—!o)""""/(c:v1+-l) "30 "
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Fig. 1. Closed contour for finite-dimensional systems.

Now choose ¢ in such a way that it satisfies the following inequalities
v ' ; KLtc-H
a+1
If L < 8(a+1)/2K(2In K/6)*, then there exists ¢ > 0 such that

the above inequalities are satisfied, i.e.,

. . i/
2mK (&(a+1)) _

<0.

i) nK — %5: <0, and i) — %6t+ @5)

5 2KL
Set ¢ in (2.4) to be T £ 2In K/6; then

2an

——

le(T)l < exp ([an

+ RL(zan) Y 1)]

< 7|0l

)Uzou

- (28)

where

Hence for any integer n > 0
=Tl < e Tllzoll. 29
Fort =nT + 7,0 < 7 < T, by taking ¢, = nT' (2.4) becomes

le@)ll < Ke 5 XL /DGy, @2.10)

We suppress 7 by T" and substitute the upper bound for L into (2.10),
then we finally get

(@)l < K2~ e g
Y ™

< K%zl (11

since 8 < 4. QED

Remark: Results for the case when a = 1 in Theorem 1 is found
in [2], and its earlier version is found in [6) -

Lemma 1: If A(t): Rt — R™*" is a continuous function such
that i) there exists m > 0 such that sup,., |A(2)]| = m < oo, ii)
there exists a 6§ > 0 such that Re X\;(A(t)) < —26, for every i and
every ¢ > 0, then there exists a K such that for all ¢ > 0

fleA®) < Ke%* (2.12)
where
K= 1+(—6—12 (3m)™~*. @2.13)

.7
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Proof: The Laplace transform inversion theorem gives
A(t)r __ _1_ ‘_ -1 _zr
e = 21",/;\(21 A(t)) ‘e dz

where T is a closed contour in the left-half plane consisting of a

vertical segment of abscissa at —&, and-an arc of the circle centered

at the origin, .and of radius 2m as in Fig. 1. Note that since A(t)

has a uniform beund m for:all ¢ > 0, the contour I is chesen to be
compact. Taking norms for both sides of (2.14)

T 1 - zT
170 < 5= [T - A el 21

2.14)

(2.15)

Onl,, ;vehave z = ~b+iy, where y € [~2m, 2m]. Let ¥, be the

characteristic polynomial of 21 — A(t) for each ¢t > 0, then

We(zI — A(t)) = (2] — A@t))" + Ci (2] — A@))" ' +
+Cney(zl ~ A(t)) + Cal =0 (2.16)

wﬁere
CCe= 3 (FDMAGG e,
ipige--ig N
Ca = det (2] — A(t))(-1)",

and X; are the eigenvalues of (I — A(t)). By rearranging (2.16),
we obtain

(o] = A®) ™" = = G-{T - o))"
+Ci(2l = A()" 2+ + Cacal]. (217)
Taking norms both sides

(=T - A@) M < =T - A"

1
[ Cal
+Cu| I =AD"+ 4 | Ca-r .
Since | i |< ||z — A <] 2 | +[|A@®)|| € 2m + m = 3m for
each i on I'; and

I Cel= E | Aig dig -+ g [ (Z)(3m)k§

irig-eig

< &[(§)omrs (Jomr
1

(2.18)

2.19

(2.18) becomes

(=1 — A@) "I}

R iy [Co |
G )+ (e

= --3-”-—(3111)"‘1 (2.20)
1 . -1 Tz
g L I = A 1 2
‘ 12" n—1 —51'
S 2r 6" (3 ) 4m
=K,e % Q21
where
22" -1 netl
K1 = ;Tm(3m) .
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On the other hand, on I'z, we have

51; /r 2ll(zI —A®) Nle™N | dz |

1 ( 1 ) —6r
ol ———— 1" " 2m7
T 2 \|z| -||A(®)]
< —1-—1-21111re"r
2rm
=e %, 2.22)
Therefore (2.15) with (2.21) and (2.22) becomes
lle*®@7y) < -1—( / + ) < Ke™® 2.23)
2r T, T2

whereKisdeﬁnedin(2.13).Notethathependsononlym
& and does not depend on t. : : ‘QED

Theorem 2: Consider the system (1.2). If A(t) is continuous such
that i) there exists m > 0 such that sup,,, llA(t)[| = m < oo, ii)
there exists a § > 0 such that Re \i(A(t)) < —24, for every i and
every t > 0, and iii) A(t) satisfies :

A1) -~ A S Lt —t2 |

for all t3,22 > 0, and any @ > 0, where L < §a +
1)/2K(21n K/6)*, then the system (1.2) is exponentially stable.

. Proof: The proof directly follows from Theorem 1 and Lemma
1. )

Example 1: Consider the following second-order ODE used as
models in the areas of micro waves, acoustics, and random vibrations
[16].

B(t) + pa(t) + '(1 +0.5c08 (2t))z(t) = 0

or in a state variable form

#t) = [_1 _ o'gm (21) __lp]z(t) 2 ADz(t).  (224)
Specifically, if p = 0.2, then Rea(A(t)) = —0.1, and [|A®)]| <
V329 for all £ > 0. Also for ¢, s > 0

0 0
14(®) - A9l = " [0.5[cos(2t) - cos (25)] 0] "
= 0.5 |cos(2t) — cos(2s)]
= 0.5|2sin(27)| |t - 5]

for some 7 € (s, t]. Hence L = 1 and a = 1. Therefore, the condition
for L in Theorem 2 is not satisfied. The ximate monodromy (cf.
[16]) of (2.24) defined as ®(x, 0) = [;_., (I + hA(kh)), AN = 7,
for N = 10° and s = 0.2 is given by numerical anatysis (MATLAB)

—0.9073

- 0.3207]
®(r, 0) = [ 0.3575 ]

-0.9429

and the Floquet multipliers are —0.5813, and —1.2689. Therefore,
(2.24) is unstable when 1 = 0.2. On the other hand, if we increase
p up to 0.5, then

—0.4349

$(r,0) = [ 0309 0.2283]

—0.5506

and the Floquet multipliers are —0.3108, and —0.6747. So 224)is
exponentially stable.
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Fig. 2. Contour for parabolic systems.

- III. CONDITIONS FOR PARABOLIC SYSTEMS
In this section, we derive conditions for the exponential stability
for PDE’s. We first define a sector in the complex plane such that

Tse £ {M]ag(A+6)| < 7/2+4}U{-6}  @G.D)

where § > 0, and 0 < ¢ < /2. A densely defined operator A in
X satisfying i) S5, 4 C p(A), where p(A) is the resolvent set of A
which is open in the compiex plane, and ii) || R(A: A)}f < M/ | ) | for
M > 0,and X € I, ¢ is the infinitesimal generator of an (uniformly
bounded) analytic semigroup [10].

Lemma 2: Consider 4(t) = A(t)u(t),t > 0, u € X. If i) the
domain D(A(t)) = D, t > 0, is dense in X and independent of ¢,
ii) there exist constants § > 0, ¢ € (0, #/2), and M > 0 such that
the resolvent R(\: A(t)) of A(t) exists for all A € £5, 4 C p(A(t))
uniformly in ¢ > 0, and
M

: —— ,t> 2

[1R(X A(t))llsu_'_““, for A€Zs4,t20 (32)
then there exists X' > 0 such that for all s €[0, o)

i) [1®.(0))| < Ke™*, , t>0 (3.3)

i) A< K, >0 (4

where ®,(t) is the semigroup generated by A(s), s > 0, and K
depends only on M and ¢.
Proof:
Setfort > 0

«I»(t_) = 2—;; /r e R(\: A(T))d)

where I' as in Fig. 2 is the path composed of two rays '} =
{-6+re™™: 0<r< oo}, and Iy = {=6+re®: 0 < r < oo},
where 6 € (7/2, 7/2 + ¢). Note that I' is oriented so that Im A
increases along . From (3.5) it follows easily that for ¢ > 0
the integral in (3.5) converges in the uniform topology. Moreover
since R(X: A(t)) is analytic in Ts, 4, we may shift the path of
integration in (3.5) to I't, ¢ > 0, where I’y = I’} UT; UT; and
[l = {-6+re”™: 1/t <7 < 0}, Ty = {=6+ (1/t)e":
-0 <9 <6}, T3 ={-6+re: 1/t < r < 0o} without changing
the value of the integral in (3.5). Hence

1

Aoy,
o fr < *RO: ) i

3.5

1
<5 [ 16 RO AN x|
ry

-6t o0
e tr COS @ M
S5 /,,,‘ YIS

-6t oo -8
< Me / e ds

= 2 Jo cose §
=Kye™ ¥ (3.6)

where Ky = (M/2x)[% _.(e™*/s)ds. A substitution s =
~trcosf and cos & < 0 have been used in getting the third inequality
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in (3.6). The integral on T'; is established similarly as on T|. On
I'5, we have - .

—6t poo ’
Mzeﬂ /;meF” "dn = Kpe™ %
’ 3.7
where K; = (M/Zw)] 0 e"""dn Therefore there is a constant
such that

18- ()]l < (2K:1 + K2)e™ = Kze™*,

L [ aepos
5 / RO A) d|| <

t>0. (38)

- Now differentiating (3.6) formally with respect to ¢ yields
g = 1 [y aip. .
2(8.(0) = A®(0) = 5 /r NMBOCAR)YD (3.9)

where the contour is I’ =
| A< r+ 6, we have

1
27i

't UT2..0n I'; by using the fact that

~6t ool .

¢ COS 0 MIXi

<--— — 1

o7 /oe ro+1
Me™* trcoseT + 6

S 27r/; r+1dr

Also:f& >1, thenr+6 < 6(r+1) Ifé<1, then(r+6)/(r+l) < 1.
Therefore, we have

”ﬂ?L“”R(’ﬁA(f))d/\“

< Me'“:’t{l, 6}/°°e"°°s’dr

[ AMR(A: A(r)) dA

Me-&t max{l, 6} ooenQOSO .
= dq
27 v ‘
_ Me%*max{1,6} 1
= o7 T]cosh |
e—&t :
=K (3.10)

where K4 = M max {1, §}/2n | cosd |. Let K = max { K3, 2K4}.
Then (3.3) and (3.4) are obtained for all 7 £[0, co). QED

Theorem 3: Let A(t) be an infinitesimal generator of analytic
semigroup ®:(s), s > O, defined for all ¢t > 0 such that i) the
domamD(A(t))-D t >0,1sdensemX and;independent of ¢,
ii) there exist constants § > 0, ¢ € (0, 7/2), and M > 0 such that
the resolvent R(A: A(t)) of A(t) exists for all A€ Zs, 4 C p(A(2))
umformly int > 0, and

M
s+

iiii) there exist constants L,3 > 0 and a, 0 < & < 1 such that
) - A A < LIt -t |

for ti, ta, ts > 0. Then (1.1) is exponentially stable.
Proof: Let us take the initial time to be 0 for simplicity. For
any fixed T > 0, we can rewrite (1.1) in the form

4(t) = A(T)u(t) + (A(t) - AT))u(t). (3.11)

Let &1(t) be the semigroup generated by A(T). Then the solution
of (3.11) is of the form [10, p. 105]

RO A < for A € 25, 6 t20,

u(t) = 7 (t)u(0) + /Ot@p(t — 8)(A(s) — A(T))u(s)ds

Let $1(t) be the semigroup generated by A(T). Then the solution
IO Ny A )at A )

-®r (t'¥ s)u(s)ds (3.12)
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where o < 1 is chosen. Taking norms both sides

le(®ll < @7 (e)u(O)l + /o ll(A(s) = ADIA(D)||
NAS(T)@r(t = s)l llu(s)llds

< Ke™*!|lu(0)]| + / KLIT - ff S lu(s)llds
=y
< Ke *|ju(0)|| + KLT?e=* /O — )ae“'ﬂu(s)llds-

(3.13)

Now by multiplying e®* both sides of (3.13) and applying an extended
form of the Gronwall’s inequality [17, pp. 190], thea we obtain

lu@ll < KCe™*Jlu(0)l (3.14)
where C = C(o, KLT?) < oo is constant. We now rewrite (3 14) as
()] < e782eUnK -8/ ).

Then for any given K, 6, and C there exists To > 0 such that
In(KC) - 6To/2 < 0. Hence for some fixed T > To

(@)l < e 5772 ||u(0))|
- < e T u(o)||
where 8 = §/2. Therefore for any integer n > 0
el < e#"T [|u(0)]]. (3.15)

For an arbitrary t = nT + 7,2 > 0,0 < 7 < T, by taking T as the
initial time, and using the same argument as above we obtain
lu@®ll < e lu()]l- (3.16)

Now by Theorem 6.1 [10, p. 150] under the conditions i)-iii), there
exists a unique evolution system ®(t, s) such that ¢ — &(¢, s) is
strongly differentiable in X and

u(7) = &(7, 0)u(0)
where 0 < 7 < T. Therefore
llu(r < 12(r, O){I}=(0)Il

< max |12 0l (@)l £ ~llu(O)]

3.17

where ~ = tg{ﬁ]”@(T,O)" < oo. Hence

flu@)ll < e~ T lu(0)]| = ve® e~ ||u(0)|
< vefTe P [u(0)|| = He ™ ||u(0)||

where H = ve7. QED
Example 2: Consider (1.1) with
2
A®) =+ 0.5sin(t))aa? 2 (D,
u(t, 0) = u(t, 1) =0,
u(0) = ug (3.18)
where D(A(t)) = W(J), J = [0, 1], a(t) is differentiable, and

o(A(t)) = {a(t)n?*n%, n = 1,2,3,---}. A(t) is a closed and
densely defined operator which generates an analytic semigroup for
each ¢ > 0, and the semigroup generated by A(?) is given as

- sl e s - —

Qg(s) = Ze—a(t)n =2 S(R )

n=l
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where R, = sin(nwz). Since a(t) > 1/2, [|®(s)] <
Ke™*®% < Ke=5, where § = 72/2 and K is independent
of t. Therefore

® - el)s—6s - K
IRO: A@)] < K / et gy = X

where Re) > —n2/4. Now, if we let A(t3)"'v=u forv € LEJ)

[l(A(t:) — At2))Ats) ™|

= sup  [[(A(t:) - A(ta))Ats) " o]

livli=1, veL3(J)
a(t;) - a(tg)v

= sup
lleli=1, v€LE(N) a(ts)
2|ti-t: %, 0<a<l (3.19)

The inequality in (3.19) is from that i) if | ¢, —t, |> 1, | 0.5(sint; —
sint2)/(14+0.5sint3) [K2< 2| t1 2 |*, and i) if | ¢, — 22 |< 1,
then | 0.5(sint, — sint2)/(1 + 0.5sint3) |< 2sup,epo, o0y 1 9'(1) |1
t1 — t2 |[<| t1 — t2 |*. Therefore (3.18) is exponentially stable.

IV. CONCLUSIONS

New conditions for the exponential stability for a linear finite-
dimensional system as well as a class of infinite-dimensional systems
described by parabolic partial differential equations are derived. It is
shown for finite-dimensional systems that the frozen time analysis
is justifiable for the systems with Holder-type continuity which is
broader than the class of slow-varying systems. For parabolic systems
the restrictive condition such as the existence of A(co) has been
removed. The proofs are carried out using the semigroup theory and
variation of constant formulas, and specific bounds for K and L are
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