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" Delay-Independent Exponential Stability Criteria
for Time-Varying Discrete Delay Systems

Jinn W. Wu and Keum-Shik Hong

Abstract—In this paper we derive delay-independent exponential sta-
bﬂyeondiﬁomforlhar/mnlinarﬁme—varyingdbcnteddaysystans.
Since these conditions are of delay- and easily verifiable,
they may provide handy tools for the stability analysis.

I. INTRODUCTION

In the stability analysis of time-delay systems, two different
approaches have been adopted among the researchers. One approach
is to contrive the stability conditions which do not depend upon the
delay [3]-[S], [8], and the other is to take it into account [6]. The first
direction, delay-independent stability criteria, may provide a handy
way to investigate the stability of a time-delay system at the first
stage. .

It has been proven in [4] and [8] that in the case of continuous-time
delay systems such that

N
#:(t) = —auzi(t)+ Y ayzi(t—Ty), i=1,2,---,N
J=1,5%#
(L1)

where ¢ € [0, 00), a:; and T;; > 0 are constants, the quasi-diagonal
dominance of the interconnection matrix, i.e.,

N
d:ai; + Z d;laij| <0
J=1, j#i
is a sufficient condition for exponential stability of (1.1). Thus, the
corresponding delay free system is insensitive to delays occurring in
the off-diagonal terms. ‘

In this paper, we derive delay-independent stability conditions for
linear discrete-time time-delayed (simply, discrete delay) systems
(Theorems 1-4) and nonlinear discrete delay systems (Theorem 5).
Consider a linear nonautonomous discrete delay system as

N
zi(n+1) = Y aij(n)z;(n - Ty;),

=1

(1.2)

i=1,2--,N (L3)

when n € Z* and each T; is an arbitrary nonnegative integer.
Note that delays are allowed in the diagonal terms. The solution
z(n), 2(n) € R" of the discrete delay system (1.3) depends on the
specification of initial conditions {zo(t): t =0, —1, =2,---,-T},
where T = max; ; T;;.

Definition 1: The null solution of the discrete delay system (1.3)
is said to be exponentially stable if there exist constants C > 0
and 7, 0 < 7 < 1, such that ||z(n)]] < C7n™||zolleo, Where
llzolloe = max_r<e<o {llzo()]l}. |

Obtaining exponential stability of a control system is sometimes of
great importance. In adaptive control it is known that an exponentially
stable adaptive system can tolerate a certain amount of disturbances
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and unmodeled dynamics. Recently several exponential stability
results in relation to adaptive control for different types of dynamic
systems have been investigated [1], [2].

II. DELAY INSENSITIVE SYSTEMS

If all the eigenvalues of the coefficient matrix A of the discrete
system

z(n + 1) = Az(n), nezZt, z € RN 2.1)

are inside the unit circle, then the system is exponentially stable.
This is not always so, however, for the discrete delay systems. For
example, a discrete delay system

z1(n + 1) = z2(n)

z2(n + 1) = ~0.5z;(n) — 0.8z3(n — 1)p (2.2)

is not stable (note that without delay it is exponentially stable).
This is easily seen from the equivalent system obtained by replacing
z2(n — 1) = z1(n) in the second equation of (2.2), which gives the
characteristic equation A% + 1.3 = 0.

The following theorem provides delay-independent exponential
stability criterion for the time-varying discrete system (1.3) with
arbitrary delays. .

Theorem 1: Consider a discrete delay system (1.3). Suppose that
there exist positive constants d;, dz,---,dx such that

N g
Zj|aij(n)| <é6<1 (2.3)

=1

foralln € Z* and i = 1, 2,---, N. Then the discrete delay system
(1.3) is exponentially stable.
Proof: For all z € RV define a norm

llzll = max {di'|zel}. (2.4)

1<k<N
Then

—_ f-l )
lz(n + 1)l = 2ax {7 zi(n + 1)1}

max {d;!
1SiN

N
< lrsxliaéxN{di_thij(n)ij(" - Tij)l}

i=1

N
Y _aii(n)z;(n ~ Ty;)

i=1

N
d; —
1‘5“.%"1\:{2;?1'“"” (m)ld; s (n - Tz‘:’)l}
]=

N d
A P
{1§?de—ila'1(n)l}

=1

IA

Ny — T
{22, @ s n - T )
< 6d;1|$h(" =T 5,)

1

where d7'|zj, (n — Tiyj)l = maxig;, j<n (07 |z5(n — T:)))).
Therefore
llz(n + DIl < 8llz(n — T;, 5, 2.5)
and
lz(m)ll < éllz(n ~ (T35, + D)II- (2.6)
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Repeating this procedure = times obtains
el < |z (n - ;(Tim ¥ 1)) ' @)
Let
o>n-Z( T, +1)2n—r(T+1) (2.8)
=

where T' = max;<;, j<n {Ti;}. Then for r > [n/(T + 1)), where
[p] is the smallest integer > p, (2.7) becomes

el < sl7 ol = (17314
< (67%) lzolles = 7" ll2olleo @9)

where ”zullgg = Max-T<e<o "zo(t)" {ZO(t) -Tr<t< 0} is the
initial data, and 7 = 6’1"-‘4-_1 0<y<1. Alsoﬂ:cfollowing mequa.hty
forn=a(T+1)4b0<b<T

_m _1_
T+1l|n "~

has been used in (2.9). Therefore, it follows that the delay system is
exponentially stable. Q.E.D.
Remark 1: Theorem 1 remains valid for the following system

a+1 a+1 _ 1
a(T+1)+b~a(T+1)+T+1 T+1

N
zi(n+s) = Eaijzj(“ - T),

=1

i=12,---,N (2.10)

where s; is a positive integer, n € Z*, and T.; is an arbitrary
nonnegative integer. It follows then that (2.10) can be converted to
the form (1.3) by defining n + s; = k + 1.

Example 1: Consider a discrete delay system

z1(n+ 1) = —0.4z1(n — 1) + 0.522(n)

z2(n + 1) = 0.5z1(n) + 0.2z2(n). 2.11)

If choosing d; = d; = 1, condition (2.3) of Theorem 1 is satisfied.

So (2.11) is exponentially stable. This can be also seen from the
equivalent system obtained by introducing z3(n) = z;(n — 1) such

that
:r;(n«}-l):l 0 05 —0.47[z:(n)
mg(n+1) = 10.5 0.2 0 xg(n) .
z3(n +1) [1 ) 0 ][zs(n)]

(2.12)

The characteristic polynomial of (2.12) is —A%+0.232—0.15+0.08.
Setting A = —p, it is noted that the polynomial p° +0.2p? +0.15A+
0.08 has decreasing coefficients. Therefore, by Theorem 5 of [10],
zeroes are inside the unit circle and the system is exponentially stable.

Using the argument similar to that given in the proof of Theorem
1, the following is established.

Theorem 2: Consider the discrete system (1.3). Suppose A(n) =
[a,,(n)], A(n) € BRY*Y and |aij(n)] < mij for all » € Z+. If

= [m,;] is stable, then the discrete system (1.3) is exponentially

stable'

HI. PARTITIONED SYSTEMS

The exponential stability of partitioned dlscrete delay systems is
considered in this section.
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Theorem 3: Consider a partitioned system -of .(1.3). Let N
N1+ Np, 2y € B, i = 1,2, Aij € BYVONS, and | A
SUPji2 yll;=1 lAijz(;)lli, where the subscript i in the notation || - ||
represents a (arbitrary) norm for the subsystem z(;y € R™:. Then
the discrete delay system

zay(n +1) = Auzgy(n — T) + Awze)(n — Tiz)

]

z@2)(n + 1) = Anz()(n — To1) + A2sz(z)(n = T2z) (3.1)
where '
z1(n — Tiy)
zay(n —Ti) = zz(n“__ Te) s
zn, (n — Teny)
and
Ny +1(n — Tk, Ny 41)
Czay(n—Tig) = | T Temsa) |y

IN1+Np ('"' - Tk, N1+Nz)

is exponentially stable if § = max {|lA1n]l + Ai2ll, |42l +
lA22]l} < L. oo

Proof: For all z; € RM, i = 1,2, where
x n
N = N Na, et = 0)()], d define
R 1+ N, le a:(n) [z(g)(n) an
Hlz(n)il = max {||lz(1)(n)ll1, l|z(2)(n)]|2}. Then
lz(n +1)]|

< max {|l Aus|lllzy(n = Ta)llh + [[Asz2]lllz2) (n — Ta2)lle,
lA21 Hllzqay (n = To)llx + [|422liliz(2) (n — T22)ll2}
< max {||Avi ]| + ll4s2ll, [[A2:1]] + || A2z}
-max {l|zqy(n — Ty, flzg)(n = Ta1)lh,
llz@(n = Taz)llz, lz2)(n — T22)ll2}
< 6"1:(.‘1)(71 - qul)"td

where {|z(:,)(n — Tpyq,)lli; £ max {|lz¢1)(n — i)l Nlzqy(n -
To)lh, 2@y (n — Ti2)ll2, llzee)(n = Toz)ll2}. Therefore

lz(n + Dl < 8llz(n — Tpy )Ml

and
lz(n)ll < 6llz(n = (Tpyq, + D)II-
Repeating this procedure r times (see the proof of Theorem 1) gives
llzm)ll < 81T jzo]les

where ||o[leo = max.r<i<o [[2o(B)l], {2o(t): =T <t < 0} is the
initial data. The rest of the proof follows the pioof of Theorem 1.
Therefore, it follows that the delay system is exponentially stable.
Q.ED.
Remark 2: The mwethod of proof used in Theorem 3 is also
applicable when the system is partitioned into p parts, p > 3, and
when each A;; is a function of » instead of constant.

IV. STATE FEEDBACK WITH DELAY
The following theorem provides conditions for the exponential
stability of a discrete feedback control system
z(n + 1) = A(n)z(n) + B(n)u(n) 4.1)
where z € RN, A € RV*N_ in which the state feedback involves
an arbitrary delay such that

u(n) = Kz(n — t). 4.2)
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Theorem 4: Suppose z € R" and A(n) and B(n)K € RV*N,
IfthetcexistsapositiveintegerM,anumberé,Os6<l,anda
norm [| - || in RV such that

A +IB(n)K]| < 6 (4.3)
for all n > M, then the discrete delay system
2(n+1) = A(n)z(n) + B(n)Kz(n - t) @.4)
where ¢ is an integer, ¢ 2 1, is exponentially stable.
Proof: 1t follows that
llz(n + 1| < |AM)lle(m)]| + |B(R)K (lllz(n — )||.  (4.5)
Setting ||:c(n)|| = zn and rewriting the equation obtains
Znt1 < |4 |2n + [BEK 2.
Define y(a, b) = max {Za, Tat1,*-,2s}. Then
Znt1 < (A + |B(r)K|))y(n — ¢, n) (4.6)
and for all 7 > max (t, M),
Zn+1 < Sy(n —t, n)
or i
ZTn K by(n—(t+1),n~1). @.mn
Repeating this procedure r times obtains
zn <8 y(n—r(t+1),n—r). “4.8)
For r a positive integer such that
n —’r(t +1)>M
we set
r= [%] -1 4.9)

where [p] is the smallest integer > p. On the other hand, for the
(bounded) initial data o = ||z(0)|, z1 = ||z(1)]),- -+, ¢ = ||=(2)]]

y(n—r(t+1), n~r) < pmax{zo, z1,--,2} <

where y is some positive constant depending on the starting part of
the evolution system (4.4), and o is some positive number. Therefore
foraltk, k =0,1,---

Tk S (27
and furthermore from (4.8)
zn, < ab”.

(4.10)

Since n — oo implies r — oo, :}:,z — 0. Thus the system is
exponentially stable.- Q.E.D.
Example 2: Consider a discrete system

o)z [;]u(m

0 05
with a particular feedback control u(n) = [—0.18 0]z(n — t), where
0

t is an arbitrary delay. Since
’ -0.18 0
llAllee + | BK |00 = ” [ 0 0,5] “w + ”[ 0 0] IL

0.8
=0.84+0.18 =0.98

:c(n+1)=[

z(n) — 0 as n — co exponentially by Theorem 4.
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V. NONLINEAR SYSTEMS
Theorem 5: Consider the following nonlinear delay system

z1(n + 1)=f1(z1(n - Tu1), z2(n — Ti2),- -, zn(n — Tin))
z2(n + D=fa(z1(n — Ta1), z2(n = Taa), - -, zn(n - Ton))

zn(n+1)P=fn(z1(0 ~ Trni1), z2(n — Tnz), -, 2Nl — Tnn)).
.1

where f: RY — RY, C'-function, and f(0) = 0. Then (5.1) is
exponentially stable if there exists § > 0 such that

IVfi(2)ll, <6<1 ¢.2)

for every z € R" and every i = 1, 2,---, N, where the norm || - [}
is defined as [|zfl, = TN, |z
We state the following lemma to be used in the proof of Theorem 5.
Lemma: Let f: RN — RY be continuously differentiable. Then
for every z, y € R", there exist z € ZF such that

f¥) = f(2) =(Vf(z), y — z) (5.3
where Ty = {2 € R": z=az+(1-a)y, 0< a < 1}.
Proof of Theorem 5: For every z € R, define
V(e) =zl £ max |z (54)

Let the maximum in (5.4) be achieved at the i,th component, then
lz(n + DI = |2:, (n + 1)}
= If"l (z1(n - Ti1), z2(n — Tiy2),--- ,ZN(n ~ Tiyn)|-
(5.5)
Nowletz =0,and y = [z:(n — Ti)1) z2(n = Tip2) -+« zn(n—

T:,)], then by the condition of Theorem 5 and the Lemma, there
exists z € Oy such that

l=tn+ Dl = KV £:,(2), 9

N .

@
N .

<3 |%Ee

=1

< nyuwg[%’%wl

=yl IV £ir (2)I,
< Sllyllo

=8 max {lz;(n ~ T0,,)|}

< bllz(n — T, 50)l

ly;l

(5.6)
where [|z(n — T, j, )| = maxi<;<n {|ej(n = T}, ;)|}. Therefore

lz()ll < 8llz(n ~ T:,;, - 1)|}
< 62”“’(" - Tilil = Tiaio = 2)|I-

Repeating this r times obtains

z (n - i(nkjk + 1))

k=1

lz(n)l} < 6" . 5.7

Noting that (5.7) is of the form (2.7), the rest of the proof follows
the proof of Theorem 1. Q.E.D.
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Corollary 1: Consider the system (5.1). Suppose that there exist

v VL. CONCLUSION
dy, dg,-- stuchthatforevcryz,l<z<N and every z € RV

| In this paper several stability criteria, which are independent of the
idelay, for discrete delay systems are derived. The obtained results

(5.8)  are simple and easy to apply.

Zd 2% (X)‘ <6<1

then the system (5.1) is exponentially stable.
Proof: The proof can be easily modified from the proof of
Theorem 5.
Example 3: Consider
sin xz(u - Tm)
3(1 -+ :cf(n Tn))

—log(l + (n T2) +:c2(n T22))
= fz(-’m = Toy, z2 — To2)-

71 (n+1)= = fi(z1 = Th1, 22 = T12)

z2(n+1) = i

Then ]
2]sin z2| lcos z2)
30+ T 3T a0
2'1’1| 1
3(1+422)

Iz .

{41

. (5
()
3\1+(V2-1)
<1

where the function f(z) = (1+ z)/(1 + %), = € [0, o), achieves
the maximum at /2 — 1. Similarly

|21] + |22

19520l = 153 < ﬁ<1.

By the theorem, the system is. globally exponentially stable and
" independent of the delay. size. .

IA

[6]
M
(8]
9
[10]
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