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Transient Behavior Analysis of Vibrationally
Controlled Nonlinear Parabolic Systems with
Neumann Boundary Conditions

Joseph Bentsman and Keum-Shik Hong

Abstract—In the first part [1] of this work the conditions for the
existence of the stabilizing vibrations for a class of distributed parame-
ter systems governed by parabolic partial differential equations with
Neumann boundary conditions were derived, and the guidelines for the
choice of the vibration parameters that ensure stabilization were given.
The present note addresses the transient behavior analysis of vibra-
tionally controlled systems of the same class.

I. INTRODUCTION

In [1] it was shown that appropriately chosen parametric
excitations are capable of asymptotically stabilizing unstable
equilibria or inducing asymptotically stable oscillatory regimes in
the vicinity of unstable equilibria in a class of distributed param-
eter systems (DPS) described by nonlinear parabolic partial
differential equations (PDE) with Neumann boundary condi-
tions (NBC). Since the resulting open-loop technique, termed
vibrational control [2), has found applications in the stabilization
of such distributed plants as plasma pinches (3] and powerful
continuous CO, lasers [4], not easily stabilizable by feedback, it
is of interest to develop a tool for the transient behavior analysis
of the class of systems considered in {1]. This note develops such
a tool which consists of a certain mapping and a time invariant
PDE whose trajectories under this mapping yield the approxi-
mate moving averages along the trajectories of the vibrationally
controlled system. This tool considerably enhances the under-
standing of the behavior of vibrationally controlled DPS and
facilitates a sclection of the parameters of stabilizing vibrations
that ensurc transient behavior with more desirable properties.
This note also represents an extension of the results of [S] and
[6] on the transient behavior of the vibrationally controlled
ordinary and delay differential equations, respectively, to PDE’s
with NBC.

II. STATEMENT OF THE PROBLEM

A class of DPS considered in the note is described by a
nonlinear parabolic PDE

u,=Au,, +Bu, +C(u,2), u,0,¢)=u/Ul,t)=0,

620,  u(x,0) = ug(x), )

where u = u(x,t): R(0,1) X R,—> R"; A,B € R"*" are con-

stant matrices; A € R™ is a vibratile parameter; C: R” X R™ —»

R" is a nonlinear vector function such that C(0, A) = 0; sub-

scripts of 4 denote corresponding partial derivatives with respect
to ¢t and x; the Neumann boundary conditions are given by

u,0,8) =u (1,) =0, =0 (@)

and initial condition by u(x,0) = uy(x).
Assuming A fixed, introduce in (1) parametric vibrations as

A=A+ f() 3)
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where f(t) is a periodic vector function with average value equal 1o
zero (PAZ vector). As a result, (1) becomes

u =Au,, +Bu, + Clu, A +f(1)), u,0,8) =u,l,1) =0,
u(x,0) = uy(x). 4)
Throughout this note, it will be assumed that (4) has the form
u, = Au,, + Bu, + C(u) + C,(f(t),u), .
u0,8) =u,(1,8) =0, 20, u(x,0)=uyx),
Ci:R™"XR"—>R", C(u)=C(u,l)), ®)

where C(,-) is a vector function linear with respect to its first
argument. If C(f(t), u) = I(¢), where K(¢) is a PAZ vector, the
introduced vibrations are referred to as vector additive, if
C((f(t),u) = D(t)u, where D(t) is an n X n PAZ matrix, the
vibrations are called linear multiplicative, and if C(f(¢),u) =
D(£)X(u), where X: R" — R" is a nonlinear map, the vibrations
are termed nonlinear multiplicative.

Throughout the note, it is also assumed that for a given initial
condition u(x,0) = uy(x) and boundary conditions (2), systems
(1) and (4) are well-posed in the Sobolev space H"'(0,1) of
vector functions v(x) = [v(x),++, y,(x)]” with components v,(x)
in L,(0, 1) which have the first distributional derivatives. Norm
on H"(0,1) is defined as

t>0,

172
llll, & (];)lUxT(X)vx(x) + v(x)TU(x)dx) . ()]

Superscripts “n” and “1” in H"'(0, 1) indicate the dimension of
the vector v(x) and the order of the highest derivative with
respect to x in the definition of norm (6).

Let in (3) a T-periodic f(t) be given as

)= —of’ @

where € is a positive constant and ¢(-) is a PAZ vector and
introduce a moving average along the trajectory u(t) =
u(x, t,uy(x),0), u(0) = ug(x), of (5) defined as

1 4
a(e) & }-f" Tu(x,s,uo(x),O) ds. 8)

The system (5) is time varying and therefore difficult to analyze.
If, however, e is sufficiently small, then the trajectories of (5)
with T-periodic f(t) = (1/€)¢(t/€), 0 < € < 1, are usually
composed of a fast oscillatory part and a slow “evolutionary”
part. Consequently, if we represent the slow part by a moving
average along a trajectory of (5), and construct a time invariant
system whose trajectories, possibly under a time invariant map,
approximate the moving averages along the trajectories of (5),
the behavior of this time invariant system will reveal the global
“evolutionary” behavior of the vibrationally controlled system
unobscured by the fast oscillatory component. In [7], this ap-
proach has been used for the analysis of system (5) with Dirich-
let boundary conditions and linear multiplicative vibrations. In
this note this approach is applied to the analysis of system (5)
with Neumann boundary conditions and a more general class of
vibrations C,(f(t), u) with C,(:,-) linear in its first argument.
For this purpose consider an ODE

d¢
i Ci(é(2), &) &)
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where C(-,;') and ¢(-) are defined in (5) and (7), respectively.
Assume that (9) has a unique solution defined by every initial
condition £, € 2 € R", V¢ 2 0. Denote the general solution of
9) as :

£(¢t) = h(t,q), h:RXR"->R", (10)

where g € R" is a constant uniquely defined for every pair of
initial conditions (£, t,) and assume that h(t,q) is almost
periodic in ¢ for any g. Introduce into (5) a substitution of the
form ’

u(x,t) = h(t,v(x,1)), v: R(0,1) X R,—.R". (11)

Assuming that C(-,u) is differentiable with respect ‘to u, (5)
takes the form

v, = [9h/3v] ™[ Ah(t,v)zz + Bh(t,v)z + C(h(t,v))]
= F\(t,v) + F,(t,v) + F;(5,v)
where [dh/av]™! always exists (cf. [8, Section II]) and
Fi(t,v) & [ah/av] ™" Ah(t,v)xs,
Fy(t,v) & [6h/v]™ ' Ba(t,v)x,
Fy(t,v) & [ah/v]™'C(A(t,v)).
Introduce an averaged equation
w, = Pi(w) + Py(w) + Py(w),
t20,

(12)

w(0,t) = w,(1,t) = 0,

w(x,0) = wy(x), (13)

where
w: R(0,1) X R,= R",

P R Y
P(v) &F(t,v) & lim, ?[o Ft,v) dt,

Pz(U) a Fz(t, u)y Pg(v) 2 F;('; U),

and  uy(x) = A0, wy(x)), (14)

and a time invariant map
- 1 -
A& lim = [Th(s,)ds, R:R"oR". (19)
Too T (]

The problem consists in giving the conditions for the closeness
of the exact moving averages (8) along the trajectories of (5) with
the trajectories of (13) under map (15) on finite as well as
infinite time interval. These conditions, if found, indicate when
the trajectories of (13) under map (15) are approximate moving
averages along the trajectories of (5), and therefore can serve as
a tool for the simplified analysis of the transient behavior of (5).
This problem is addressed next.

I11. APPROXIMATE MOVING AVERAGES ALONG THE
TRAJECTORIES OF A VIBRATIONALLY CONTROLLED DPS
witH NBC

Theorem 1: Assume that i) the general solution A(z, ) of (9)
is T*-periodic in ¢, where T* is the period of ¢(¢), and is linear
or affine in g; ii) C(§, A) is continuously differentiable for all
£€ Q in a sufficiently large open set { € R". Let u(f) =
u(x, t,ug(x),0) and w(t) = wix,t,wo(x),0), with (0, wy(x)) =
uq(x), be solutions of (5) with T-periodic f(¢) = (1/€)¢(t/¢€)
and (13), respectively, where (13) is assumed to be parabolic.
Then for any positive § as small as desired and « as large as
desired there exists €, = €(8, «) such that for system (5) with
f(t) = (1/€)d(t/€), 0 < € < €, the following holds:

) M) -awenlh <8, Vveelo,«], (16)
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where

1 T.
7 h(s,w(t)) ds;
ii) whenever the null solution of the linearization of (13) g
zero is exponentially stable, there exists a domain 2, € H"'(0, 1),
0 € Q,, such that (16) holds for all ¢ € [0, ») provided h(w(x)),
uo(x) € Qp Vx € (01 1)-
Proof: The proof of Theorem 1 is given in the Appendix.

Remark 1: Inequality (16) demonstrates that (17) is indeed ap
approximate moving average along the trajectories of (5) with
f(e) = (1/€)g(¢/€) and e sufficiently small.

Remark 2: A comparison of the trajectories of the system
without vibrations with the approximate moving averages along
the trajectories of the corresponding vibrationally controlled
system reveals the nonlocal changes in the system behavior
caused by oscillations.

Remark 3: Although a derivation of the rigorous vibrational
stabilizability conditions for parabolic systems with Dirichiet
boundary conditions (DBC) is an open problem unlike those for
systems with Neumann boundary conditions (NBC), simulations

h(w(1)) = 17

" show that vibrational stabilizability is not significantly affected

by the choice of boundary conditions. Indeed, (7] demonstrates

vibrational stabilization of a parabolic system with DBC which is

also vibrationally stabilizable when DBC are replaced by NBC.
Example I: Consider (1) with

01 0 05 0
A'[o 0.1]' B'[o 0.5]' |
Cu) = Cqu + R(), q,-[§ _73].

u;

. |+ m=constant, (18)
—uy + puy = puiuy

R(u) = [

and initial conditions u(x,0) = cos 7x, u,(x,0)= —coswx,
further referred to as system (18). The null solution of (18) is
unstable. Introduce vector additive vibrations as

a
1 t : sin -E-
(1) = :m(:) =| . | (19)
— sin —
€ €
In [1] it was shown that the linearization at zero of the average_d
equation (13) corresponding to (18) with vibrations (19) I
asymptotically stable for a = 1.593 when u = 1.0 in (18). In (1}
it was also demonstrated that vibrations (19) induce in (18) an
asymptotically stable oscillatory regime with the average located
in the vicinity of the trivial solution of (18). Fig. 1 shows sueh 2
.soultion u,(x,) for p = 1.0, « = 3, and ¢ = 0.008. Here, the
general solution of (9) is Ay(f,q) = —acost + q,, h(t.9) =
— a cost + g,. Equation (13) has the form
w, = Aw,, + Bw, + P,(w),  w,(1,1) =w,(0,1) =0, t20
with 4 and B of (18) and -

2w, + 8w,
a?
2(1 - ;LT)WI
a?
+(—3 + y.(l - 7))w2 ~ uwiw,

P4(W) el

=
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Fig. 1. Solution u,(x, t) of (18) with vector additive vibrations at x = 1.

and the approximate moving average along u(r) is given as
Ri(w(0)) = w(¢), Ry(w()) = wy(r), with mapping (15) being a
unity matrix.

Fig. 2 shows exact and approxiamte moving averages () and
hy(w(r)) at x = 1. Similar closeness is observed in simulations
for any x € (0, 1) and for u(x,¢).

Example 2: Consider (1), (2) with A4, B, C, as in (18), C(u) =
Cout + R(u), and

RG) = [0.14] 0.1u3]", (20)

further referred to as system (20). The null solution of (20) is
unstable. Introducing into (20) linear multiplicative vibrations

0 0 u
1
o[uz], @

1 t
D(t)u = -F(-)u =|a !
€ € — COs —
€ €
yields stabilization of the trivial solution of (20) as shown in [1].
Fig. 3 demonstrates solution u,(x, ¢) of (20) with zero equilib-
rium stabilized by linear multiplication vibrations when a = 3.0
and e = 0.004. In this case, the general solution of (9) is

h(t,q) = [ 1 ?][Z;]
(13) has the form

sin ¢
W, =Aw, + Bw, + P;(w), w,(1,t) =w,(0,) =0, >0,
with 4 and B of (20) and

(22)

2w, + Tw, + 0.1w?
P3(W) = [ ! 2 ! ]’

[3 - (a?/2)7Iw; — 3w, + 0.1w}

and the approximate moving average along u(¢) is given by
h(w(2)) = wi(1), Ry (w(t)) = wy(t), with uy(x) = A0, wo(x)) =
Wo(x).

Fig. 4 presents exact and approximate moving averages (1)
and h,(w(t)) along u,(x,t) at x = 1. Simulation shows similar
behavior for any x € (0,1) and for u(x,¢) as well. Thus, it is
Seen that evolutionary component of u(x, ¢) is indeed described
very closely by the approximate moving average h(w(r)) for
$mall . Simulations also demonstrate that as € becomes smaller
the difference between the exact and approximate moving aver-
ages becomes vanishingly small on the entire time interval.
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Fig. 2. Comparison of exact and approximate moving averages of
solution u,(x, ) of (18) at x = 1.

_5 i ] !
o 2 4 5 8
TIME ( SEC )

Fig. 3. Solution u,(x,t) of (20) with linear multiplicative vibrations at
x =1

IV. CONCLUSIONS

This note shows that a time invariant system can be con-
structed whose trajectories under a time invariant coordinate
transformation represent the approximate moving averages along
the trajectories of the vibrationally controlled nonlinear parabolic
PDE with Neumann boundary conditions. This yields a conve-
nient tool for the analysis and improvement of the transient
behavior of the vibrationally controlled DPS with NBC.

v ' APPENDIX
Proof of Theorem 1—Proof of Assertion i): Equation (5) with
f(t) = (1/€)d(t/¢€) takes the form

1.(t
u,-Au,x+Bu,+C(u)+C1(;¢(:),u). (A1)

Since C,(-,+) is linear with respect to its first argument, (A.1) can
be written in time 7= t/¢ as

u, = e[Au,, + Bu, + C(w)] + C(p(1),u). (A2)



1606
6 T [A !
—_ exact meving aQverage
e AP Proxirmaote mMmoving average T
3 4
o -
S IILLAASAR
o
= .
-3 4 e =3.0
e = 0.004
-8 ! 1 |
o 2 = 8

-
TIME ( SEC )

Fig. 4. Comparison of exact and approximate moving averages of -

solution u,(x,1) of 20) at x = 1.

Equation (9) with ¢ replaced by 7 yields a substitution

u(x, 1) = h(r,v(x, 7)) (A3)

where h(-,+) is given in (10). Introducing into (A.2) substitution
(A.3) yields

u = e[Fy(r,0) + Fy(r,v) + Fy(r,0)l,  (A4)

where F(:,), i = 1,2,3, are defined in (12). Averaging the
right-hand side of (A.4) with respect to = yields

w, = e[ Pi(w) + P,(w) + P3(w)] (A.5)

where P(), i = 1,2,3, are defined in (14). Since by assumption
h(-,») is linear or affine with respect to the second argument,
Py(w) and P,(w) can be represented as

P(w) = Piw,,, Py(w) = Piw,,

where P| and P; are constant n X n matrices. Therefore, de-
noting the linearization of Py(w) at w = 0'as P;,w, defining

9? 2]
x2 +P5; +P3o)|l’(x), 'P(x) EH’”(O)I)r

o
(A.6)

and

Py(x) & (P;

and noting that (13) is assumed to be parabolic, operator P:
H™(0,1) - L,(0,1) is m-sectorial in the sense of Kato (cf. [9, p.
280D or sectorial in the sense of Henry (cf. [10, p. 18]. Now,
representing Py(w) in terms of linear part P;, at w = 0 and
high order terms as P;(w) = Pyw + Py,(w), (A.4) can be rewrit-
ten in time ¢ as

t
vy, = Py, + Pyy, + Pyv + P‘(:,v), A7)

where
t 3 t 3
P‘(—,v) = EF,-(—,v) - Y P(v) + Py, (v).
€ im1 V€ im1
Now by [10, theorem 3.4.9], for any « > 0 and 7 > 0 there exists
€, > 0 such that

lv(t) —w)lli<n, V¥el0,x], (A.8)
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where v(t) = v(x, 1, wo(x),0) and w(t) = w(x, t,wy(x),0) are sq.
lutions of (A.7) and (A.5) in time ¢, respectively. Since

u(x,t) = h(é,u(x,l)), (A9)

T = 0(e), and u, and v, are of the order (1) in time ¢ = ¢ /¢, we
have

- 1 t+T t 1 ¢+T. S
OB h(-e-,v(t)) at==f h(-e-,v(t)) ds + K (e)

1 i ]
-= f‘ T h(s, v(e)) ds + K(e), (A.10)

where || K (€)ll; = 0(¢) so that || K (e)ll; uniformly approaches g
as € = 0. Now, for the left-hand side of inequality (16) from
(A.8) and (A.10) for any given n and « we have

a(e) - Rw(e)l;

1 . 1 .
-"Ffor h(s,v(t)) ds — F;/(;T h(s,w(t)) ds + K,(¢€)

1

1 1
S—

= la(s, v(2)) = A(s,w(tD Il ds + 1K (),
0

1 .
swzr 0’ lo(e) = w(n)lli ds +1 K (N,

sun+lK(l,, O<e<e

where u is some bounded number which exists since A(s, q) is a
periodic solution of (9) defined on s € [0, »).
Finally, since ¢, < €, and 7 can always be chosen so that

I13] +"K1(€0)"l < 6, Ve e [0, K]v (A.ll)

assertion i) of Theorem 1 is proven.

Proof of Assertion ii): Let v(t) = v(x,t,wy(x),t,) and w(z) =
w(x, t, wy(x), to) be solutions of (A.4) and (A.S), respectively, in
time ¢, with wy(x) € Q,. Since by assumption C(0, A) =0,
Fy(r,0) = 0 as well, hence (A.4) has zero equilibrium v, =0,
and by uniqueness stated in assertion i), {10, p. 222], there exists
€, such that for any 0 < € < ¢, there is no periodic solution in
the vicinity of zero other than zero itself. Then by assertion ii),
[10, pp. 222] there exist positive constants, r, €,, 8 such that for
0 < € < min(e,, €,) if at some time ¢,

lv(epll, < r (A.12)
then
lu()ly < re=Be-, BVt >1,. (A13)
Since P3(0) = 0, (A.5) has equilibrium w, = 0 which must be
(uniformly) asymptotically stable due to the assumption of expo-
nentially stable linearization of (A.S) at zero. Let D ¢ H"'(0, 1Y
be the domain of attraction of w, = 0 in (A.S), and let Q, € D
Then due to uniform asymptotic stability of w, = 0 we can
always choose « > 0 such that for any given 8 > 0, no matter
how small, a solution w(¢) satisfies

Iw)lli <6/2 fort>«/2,
or taking @ = r, where r is that of (A.12)
lwt)h <r/2 (A.14)

By (10, theorem 3.4.9] choose €, < min(e,, €;) such that fof
0 < € < €, and previously chosen «

lu(t) = wdlh < r/2,

forx/2 <t <,

tg <t < k. (A15)
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For any ¢ we have

C lull <) = wiedl +Iw)l,

which due to (A.14) and (A.15) yields
luidh sr, «x/2<tsx. (A.16)

Thus, (A.16) shows that for every ¢ = ¢, € [x/2, k] inequality
(A.12) is satisfied. Consequently, taking ¢, = x/2, from (A.13)
we obtain

lvli<r, «k/2<t<c. (A.17)
Since
lve) = w()lli v +lw()lh, Ve e[0,=),

from (A.17) and (A.14) we have
r 3
lv(e) = w)lli s 7 + 3= 3" k/2 st <=, (A.18)

Combining (A.18) and (A.15) and noting a time overlap, we
obtain

luv(e) = w(l < 3/2)r, ty st <,

Finally, choosing r = (2/3)n, we extend the validity of inequality
(16) to infinite time interval. Q.E.D.
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