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1 Introduction

Oscillatory systems arise in many control problems such as
vibrational control, adaptive control, and robust control by
periodic feedback (vibrational feedback control).

In vibrational control the qualitative change of the global
behavior of attractors caused by high frequency zero mean
oscillations is used to achieve control objectives (Bellman et
al., 1986). This open loop technique can be used as an alter-
native control method when feedback and/or feedforward fail
due to restrictions on sensing and actuation. Examples of vi-
brational control include experiments with an oscillatory
quenching of plasma instabilities (Osovets, 1974), stabilization
of the ionization-thermal instabilities of a CO, laser (Meerkov
and Shapiro, 1976), exothermic reaction in a CSTR (Cinar et
al., 1987), (shu et al., 1989), and laser illuminated thermo-
chemical systems (Fakhfakh and Bentsman, 1990). Vibrational
control of distributed parameter systems (DPS) has been pro-
posed for linear hyperbolic systems in (Meerkov, 1984), and
for nonlinear parabolic systems in (Bentsman, 1990) and
(Bentsman and Hong, 1991).

. In an adaptive system, which tunes control laws adaptively
for plants with unknown parameters via either direct or indirect
methods (Sastry and Bodson, 1989), the convergence of the
parameters in the control laws to their nominal values is directly
related to the persistency of excitation property of a reference
input, which is guaranteed by selecting the reference input
signal to have a certain number of frequencies (Sastry and
Bodson, 1989, p. 90). The parameter convergence is also known
to be critical in finite dimensional adaptive systems in terms
of tolerating disturbances and unmodeled dynamics. A model
reference adaptive control of an infinite dimensional system
has recently been investigated, and a direct adaptive algorithm
for linear parabolic partial differential equations (PDE’s) as-
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Stability Criterion For Linear
Oscillatory Parabolic Systems’

This paper presents a stability criterion for a class of distributed Dparameter systems
governed by linear oscillatory parabolic partial differential equations with Neumann
boundary conditions. The results of numerical simulations that support the criterion
are presented as well.

suring its exponential stability was proposed in (Hong and
Bentsman, 1991).

In vibrational feedback control an additional dynamical ele-
ment is inserted in the feedback loop to improve robustness.
It is known that any linear time-invariant (LTI) feedback con-
troller for plants with at least one pole and zero in the open
right half-plane will have a finite gain margin. It was shown
that a periodic controller may guarantee an infinite gain margin
for unstable nonminimum phase LTI systems for discrete time
systems in (Khagonekar et al., 1985), and for continuous time
systems in (Lee et al., 1987) using the criterion of (Bellman et
al., 1985).

Since many physical plants are distributed parameter sys-
tems, the rigorous extension of the strategies described above
to DPS is an important problem. At present, however, there
are very few resuits available for stability analysis of oscillatory
DPS. The purpose of this paper is to extend the stability cri-
terion of (Bellman et al, 1985) to systems described by linear
oscillatory parabolic PDE’s with NBC. These equations permit
an approximate representation of such physical phenomena
as, for example, pulsating combustion in a combustion cham-
ber and oscillatory processes in chemical reactors. The stability
criterion developed in (Bellman et al., 1985) has been used as
a main tool for the synthesis of the vibrational (Beliman et
al., 1986), and vibrational feedback (Lee et al., 1987; Lee and
Meerkov, 1991) controllers for finite dimensional systems.
Therefore the extension of the criterion of (Bellman et al.,
1985) to infinite dimensional systems permits the extension of
vibrational and vibrational feedback control theory to more
general class of systems. In (Bellman et al., 1985) it was dem-
onstrated that the stability properties of finite dimensional
linear systems with oscillations of high amplitudes and fre-
quencies are identical to the stability properties of specially
constructed finite dimensional time invariant system. In the
present paper this result is extended to DPS and it is shown
that under certain conditions the stability properties of oscil-
latory parabolic DPS with NBC are governed by the stability
properties of the linear time invariant parabolic PDE’s with
NBC. Also a preliminary lemma presented in Section II extends
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the stability criterion of (Nishimura and Kitamura, 1970) for
time invariant PDE’s with DBC to those with NBC,

A class of DPS considered in the paper is described by linear
parabolic PDE’s

t
U= Ay + Bu, + (C+-:—F(;) )u,

uc(0,1) =uy(1,1) =0,t 20,u, (x,0) = uy(x) )

where u=u(x,t):R(0,1) xR, - R"; x€(0,1); A,B,CeR" " are
constant matrices; F(+) is a T-periodic zero average (PAZ)
n X nmatrix valued function; 0 <e < < 1; subscripts of 4 denote
corresponding partial derivatives with respect to ¢ and x; the
Neumann boundary conditions are given by

u0,¢) =u1,t) =0,t=0; )

and the initial condition by u(x,0) = 4o (x).

We first introduce a stability criterion for parabolic PDE’s
with NBC and then use this criterion and the results of (Henry,
1981) on averaging to derive a stability criterion for system (1)
for sufficiently small ¢. Finally, we present numerical examples
that demonstrate the application of the criterion and the eval-
uation of the smallness of parameter e.

Throughout the paper it is assumed that for a given initial
condition #(x, 0) = uy(x) and boundary conditions (2), system
(1) is well-posed in the Sobolev space H™(0,1) of vector func-
tions v(x) =[v;(x), . . ., v,(x)]7 with components v;(x) in
Ly0,1) which have the first distributional derivatives, or
u(x,t)€L*0,T: H'(0,1)). Norm on H"(0,1) is defined as

172

1
vl 4 (S Vr (X)Ue(X) + vT(x)v(x)dx) , )]
0

Superscripts “n” and “1” in H™ (0,1) indicate the dimension
of the vector v(x) and the order of the highest derivative with
respect to x in the definition of norm (3).

II Stability Criterion

A. Preliminary Lemma
Lemma : The null solution of the linear system

Uy=Auo+ Bu,+ Cu, A,B,CER™™", ucH™(0,1), (4)

with Neumann boundary conditions (2) is asymptotically stable
with respect to the norm (3) if there exists a positive definite
matrix M€R"*" such that (i) A”M+ MA is a positive definite
matrix; (i) B'M=MB; (iii)C"M+ MC is a negative definite
matrix; (iv) C is a Hurwitz matrix.

Proof: Proof is given in the Appendix.

Remark: Under no restrictions on matrix M, the existence
of. positive definite matrix M that satisfies condition (iii) is
implied by condition (iv). However, under the restrictions im-
posed by conditions (i) and (ii) this is not necessarily the case.
Therefore condition (jii) can not be omitted. Also, condition
(iii) does not imply condition (iv) since there might exist another
positive matrix M, such that M, = M but C'M, + M,C
= C™ + MC, which implies that C is not Hurwitz.

B. Main Results

Theorem: Assume that (1) is parabolic and u¢ H*'(0,1). Then
there exists a constant ¢,> 0 such that for any e€(0,¢,], the null
solution u=0 of (1) is asymptotically stable if (i) there exists
a PAZ matrix F(t) such that a fundamental matrix
®(¢),7€(~ ,), of y=F(t)y, y:R—R", is periodic, and (ii)
there exsits a positive definite matrix M such that 1) 4'M + MA
is positive definite; 2)MB =B"M; 3) C is a Hurwitz matrix; 4)
C™M + MC is negative definite; where ‘

T
AA umls d~1(1)AS(1)dt,
T r-aT 0 !

T
BA limls &1 (1)BE (1) dt,
T-uT [}
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Fig. 1 Stability-instability boundary of system (8) in the «— 1/c plane
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Proof: Proof of the theorem is given in the Appendix.

III Numerical Examples
Example 1. Consider (1) with

0.1 0 0.5 0
e[ o[ ]

0 0.1
2 7 00
C= [3 —3]’F(t)=[acos 0]' ™

the initial conditions u, (x,0) =cosxx, u,(x,0)= —cosxx, and
boundary conditions #,(0,¢) = u;(1,£) =0, uy(0,¢) =u,(1,t) =0.
Clearly F(¢) is a PAZ matrix and a fundamental matrix & (7)
in the theorem can be taken as

@(r)=[ ! "]- @®

asint 1

Since A and B are diagonal matrices, A=A and B=B. Hence
the conditions 1), 2) of the theorem are satisfied without any
restriction on M. The matrix C is given as

= 2 7

C= [3-3.5.;2 -3]' ©)
Therefore, C is Hurwitz for every > 1.050. The existence of
M satisfying condition iii) is guaranteed by the Lyapunov equa-
tion (Vidyasagar, 1978, Theorem 55, p. 175). Now by the
theorem given above for every a> 1.050 there exists an ¢, such
that the system (7) will be asymptotically stable for any ¢€(0,¢o).
This is indeed demonstrated in Fig. 1 which shows the stability-
instability boundary in the « versus 1/¢ plane. For example,
for @ =4.0, the dotted line in Fig. 1 indicates that ¢;,=0.0164,
Fig. 2 shows the asymptotically stable solution u,(x,?) for
a=2.0 and ¢=0.016. For the purpose of comparison Fig. 3
demonstrates the unstable behavior of u,(x,7) when a=0.

Example 2. Consider (1) with

[ros], . [1 4 [ oo
A'[o.s 2]’8‘0'0‘[16 30 ]’F""[asim o]’
10)

the initial conditions u, (x,0)=1, 4;(x,0)= —1, and the same
boundary conditions as Example 1. The matrix ®(¢) can be

taken as
00
@(t)=exp{a[cost 0]} 11
And the matrix C is given as
— 1 45
C= [l6—22.5a2 ~30|" (12)

Therefore for o> 0.861, the system (10) is asymptotically stable
for sufficiently small ¢. Fig. 4 shows the stability-instability
boundary of the system (10). Figure 5 depicts an asymptotically
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Fig. 2 Asympflotically stable solution uy(x,t) of system (8) for «=2.0
and ¢=0.016
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Fig. 3 Unstable solution u,(x,t) of system (8) with «=0.0

stable solution for & =3.0 and ¢ =0.0016. Instability is shown
in Fig. 6 for a=0.

IV Conclusions

This paper presents a stability criterion for a class of linear
oscillatory parabolic DPS with Neumann boundary conditions.
The examples that demonstrate the application of the criterion
are given as well. The criterion might be useful in the synthesis
of periodic feedback and vibrational controllers for distributed
parameter systems.

APPENDIX

Proof of Lemma: Let
ﬁ(x,t)é u('x;t) "‘P(’):

1

pOY=[py (D), . . ,oa(DY, p(t)éS u(xt)dx. (A.D

0

Consider a functional with a positive definite matrix M such
that

1 ) 1

v(t) =‘S aTMil, (x,t)dx = S uTMu,dx. A2)
o (]

Differentiating (A.2) with respect to ¢, integrating by parts,

and making use of the given Neumann boundary conditions
yields
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Fig. 4 Stabliity-instability boundary of system (12) in the « — 1/ plane
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Fig. 5 Asymptotically stable solution u,(x,t) of system (12) for «=3.0
and ¢=0.016
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Fig. 6 Unstable solution uy(x,) of system (12) with «=0.0

1 1
av -S ul (ATM + MA)u dx+ S ul (B"™M— MB)u,dx
(1] 0

dt

1
+ S 4T (CTM+MC)u dx.
0

(A.3)
For the linear set of functions ¢ (x) continuous with their first

derivatives in thc/a closed interval [0,1} with ¢(0) =¢(1) =0, the
following Poincaré inequality holds (Reddy, 1986)

1 2 2
do T
(&) == )
If we consider d¢/dx to be a generalized derivative of ¢(e),
then inequality (A.4) also holds for ¢€eHY0,1) and conse-

quently, when the condition (i) of Lemma 1 is satisfied, with
¢—u, it follows from (A.4) and NBC in (1) that

Slq&zdx. (A4)

0

1 2,1
S ul(ATM + MA)udx= (E) S uT(ATM + MA)u,dx.
0 0

(A.5)
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Further, if the conditions (ii) and (iii) of the Lemma hold,
from (A.3) and (A.S5) it follows that

1 2
%—:fss ul[CT™M + MC - (1—') (ATM+MA)Judx<0.  (A.6)
0

Therefore, u,(x,¢) and hence #,(x,t) converges to 0 almost
everywhere, which in turn implies that #(x,t) converges to 0
pointwise. Further, since p,(f) =p.(t) =0, convergence prop-
erties of p(?) are defined by the spectrum of matrix C, there-
fore, if condition (iv) of the Lemma is satisfied, p(#) converges
to 0, and consequently u(x,t) converges to zero pointwise.
Thus, if all the conditions of the Lemma hoid, the null solution
of (7) is globally asymptotically stable with respect to the norm
(5). Q.E.D.

Proof of the Theorem:
T=1t/€ as

System (1) can be rewritten in time

u,=elAuy+ Bu,+ Cul + F(r)u. (A.7)

Fundamental solution ®() of the equation y =F(¢)y yields
the following substitution with 7 replaced by 7.

u(x,7)=8(r)v(x7).
Substituting (A.8) into (A.7) yields
U,=€[® (1) AB(T) v+ B (1) BE ()0, + @~ (1) CR(7)1]
AeP(7)0. (A.9)
Assuming that the condition (i) of the Theorem holds and
averaging the right-hand side of (A.9) with respect to 7 yields.
W,=AWg+Bw,+Cw, (A.10)
where A, B, and C are defined in (6). Defining
— _# —0 —
A 9 R 1
Py(x)A (Aax2+Bax+C Y(x),¥(x)eH™(0,1), (A.11)

and noting that (A.10) is parabolic, operator P:
H™(0,1)~L,(0,1) is m-sectorial in the sense of Kato (1976,
p.280) or sectorial in the sense of Henry (1981, p.18). Equation
(A.9) can be rewritten in time # as .

(A.8)

v,=va+l_3vx+év+P<§,v>, (A.12)

P(Z,v) QP(E) v-Pv
€ €

Re?resenting (A.12) as an evolution equation in Sobolev space
H™(1,0), assertion (ii) on p. 222 of (Henry, 1981) is applicable
to (A.12). Indeed, if the conditions (1), (2), and (3) of the
Theorem hold, then all the conditions of the Lemma are sat-
isfied as well and, consequently, the null solution of (A.10) is
asymptotically stable. Therefore spectrum of the linear op-
erator P in the evolution lies in the open left half-plane. Iden-
tifying P(¢/¢,v) in (A.12) with f(£,x) on p. 222 of (Henry,
1981) and following the notation of (Henry, 1981) we have
3fp(0)/3x=0 where

where

™
l *
fo(x)=-—T,§ J(tx)dt,T* =Te (A.13)
o
where T is the period of &(r). Consequently, defining e4

1/w, due to assertions (i) and (ii) on p. 222 of (Henry, 1981)
for -any given #>0 there exists wp and, hence ¢ = 1/wy
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= ¢€o(n) such that for any 0 < e < ¢y or w> wy (A.12) has a unique
T* — periodic asymptotically stable solution v*(?, x) for which

suplv®(x,0)l; <n. (A.14)

Finally asymptotic stability of 0 in (1) follows from asymptotic
stability of v;(x, t), stability reserving maping ®(t/¢) v’(x,?)
and the uniqueness of the asymptotically stable solution of
(A.12) in the vicinity of 0 which must be the null solution itself,
since it is already known to exist. Q.E.D.
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