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Vibrational Control of Nonlinear Time Lag
Systems: Vibrational Stabilization
and Transient Behavior*

JOSEPH BENTSMAN,t{ KEUM S. HONGt and JAMEL FAKHFAKHY

Periodic excitations introduced into time lag systems can stabilize unstable
equilibria or induce stable periodic solutions with the desired properties.
The resulting open-loop technique termed vibrational control can be useful
when on-line measurements are not available.
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Abstract—This paper addresses two problems of control of
nonlinear time lag systems: (i) an existence and a synthesis of
parametric vibrations for their stabilization and (ii) the
transient behavior analysis of the vibrationally controlled
nonlinear systems with time lags. In this work, stabilizability
conditions for two vibration types are formulated and
procedures for the synthesis of the corresponding stabilizing
vibrations are proposed. The method for the transient
behavior analysis of vibrationally controlled systems on a
finite time interval is developed as well. Several examples are
- given to support the theory presented.

I. INTRODUCTION
VIBRATIONAL CONTROL is an open-loop technique
that utilizes parametric excitation of a dynamical
system . for .achieving control objectives. A
well-known example of the vibrational ‘control
effect is a stabilization of an inverted pendulum
by vertical -oscillations of its support. Obviously,
" in this case there is no interference into the plant
structure, and the control objective to keep the
pendulum in the upright position is achieved by
much simpler means than using feedback. An
extensive theoretical and experimental com-
parison of vibrational control with feedback and
feedforward control strategies is given by
Meerkov (1980), Cinar et al. (1987), Bentsman
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and Hvostov (1988) and Fakhfakh and Bentsman
(1990). These studies show that being an
open-loop technique, vibrational control can (1)
stabilize the plants when on-line measurements
and hence feedback, are impossible, such as in
powerful continuous CO, lasers and particle
accelerators; or (2) under the practical restric-
tions on sensing and actuation create desired
stable operating regimes unattainable by feed-
back for such plants as chemical reactors and
laser illuminated reactions. The mathematical
machinery of vibrational control has also found
important applications in the synthesis of linear
periodic feedback controllers (Lee et al., 1987)
that ensure an infinite gain margin in the robust
stabilization of the nonminimum phase plants
with the right half plane poles, which is not
possible with a linear time invariant feedback
(cf. Khargonekar et al., 1985).

The theory of vibrational control for systems
governed by linear and nonlinear ordinary
differential equations has been developed by
Meerkov (1980), and Bellman et al. (1986a,b)
and Bentsman (1987), respectively. However,
many physical systems with nonlinear behavior
such as chemical reactions and combustion
processes have time delayed states (cf. Ray 1981;
Kolmanovskii and Nosov, 1986). This motivates
studies of oscillatory stabilizing effects in
nonlinear systems with time lags.

This paper introduces the first results in
vibrational control of nonlinear systems with
time delays: conditions for the existence of
stabilizing vibrations and a procedure for their
synthesis are given for a class of nonlinear time
lag systems, a method for the transient behavior
analysis of vibrationally controlled systems is
proposed, and examples of vibrational stabi-
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lization of nonlinear time lag systems are
presented.

In this paper a class of nonlinear systems with
a finite number of constant delays is considered
which is described by the equation

£0)= 3, PG(t), x(t = d), D),

P:R"XR"XR'->R", x(t)A(;':
i=1,...,m,
P(x(1), x(t — d;), A)
=[pu(x(®), x(t—d)), 4), . . .,
Pin(x(®), x(t — d;), M),
P(0,0,2)=0; i=1,...,m, 1)
where x€R" is a state, A=[A,,..., 4,]7 are

parameters subjected to vibrations, ¢ is dimen-
sionless time, and d;, i =1, ..., m, are time lags
of the order O(e), 0< &<« 1. The paper follows
the terminology of Bellman et al. (1986a, b).

Introduce into (1) parametric vibrations
according to the law

Me) =4 +£(2) @

where A, is a constant vector and f(f) is a
periodic zero average (PAZ) vector. Then, (1)
takes the form

i(t) = i P, x(t~ &), o +f©). ()

Throughout the paper it will be assumed that (3)
can be represented as

0= 3 BGO, 3~ d), 1)+ QU0 5(0)
- @

where Q(-, ) is a vector function linear with
respect to its first argument.

Following Bellman et al. (1986a,b), if
Q(f(®), x(t)) =I(z), where I(t) is a PAZ vector,
the introduced vibrations are referred to as
vector iaddmve, if  Q(f(t), x(t)) = D(t)x(2),
where D(f) is an, n Xn PAZ matrix, the
vibrations are cal[ed linear multiplicative, and if
Q(f(1), x(0) = D(t)X(x(t)), where. X:R"—>R"
is a nonlinear map, the vibrations are termed
nonlinear multiplicative. In the present paper,
we consider vibrational stabilization and tran-
sient behavior of a class of nonlinear systems (4)
with time delays d;, i=1,..., m, of the same
order of magnitude as the period of vibrations
and with linear multiplicative and vector additive
vibrations. The proofs of all formal statements
are given in the Appendix.

II. VIBRATIONAL STABILIZATION
Assume that (1) has an equilibrium point
x;(t) =x,=const. for a fixed A, (note that
xs(t) = xs(t - dt) = xs)'

Definition 1. An equilibrium point x, of (1) is
said to be vibrationally stabilizable (v-
stabilizable) if for any & >0 there exists a PAZ
vector f(¢) such that (3) has an asymptotically
stable almost periodic solution x*(¢), —® <t <,
characterized by

_ 1 T
¥ -xll<6, #=r® lim fo x*(f) dt.

®)

Definition 2. An equilibrium point x, of (1) is
said to be fotally wvibrationally stabilizable
(t-stabilizable) if it is v-stabilizable and in
addition x°(t) = const. = x,, —o <t <oo,

The problem of vibrational stabilization
consists of: (1) Finding the conditions for the
existence of stabilizing vibrations (v- and
t-stabilizability) and (2) finding the actual
parameters of vibrations that ensure the desired
stabilization.

In order to address this problem for zero
equilibrium of system (1) introduce system

i) = 21 Fi(x(®), x(t — en), A) ©
which is obtained from (1) by replacing d; by er;,
rr=0(1), i=1,..., m. In the discussion below,
vibrational stabilization of (6) will be first
considered and then related to that of (1).

A. Linear multiplicative vibrations
Define

E=n=x,=0
and

2 8P(§, n, A0)

B,
on

™

E=n=x,=0

Denote by ®(¢) a fundamental matrix solution of
the equation

x(0) = F(t)x() @®
and introduce an ordinary differential equation

H)=Rz() ©)
where R is defined as follows: '

R2A+ Z ; 10)
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and A and B, are computed as
A=07(AD()

& lim - f OI(NAD() A,  (11)

and
B;=® '(t)B®(t—1), i=1,..

Lome (12)

Theorem 1. Assume that there exists a
sufficiently large set Q< R”, 0eQ, such that
P(&, n, Ay) introduced in (1) is continuously
differentiable for all & neQ; Vi=1,...,m;
then
(i) The zero equilibrium x,=0 of (6) is
t-stabilizable if there exists a PAZ matrix
F(¢t) such that a fundamental matrix &(¢),
t e (—», »), of x = F(t)x is almost periodic, and
R defined in (10) is a Hurwitz matrix;
(ii) There exists positive &, = const. such that
=0 of (6) is ¢-stabilizable by linear multiplica-
tive vibrations D(t)x(¢) = (1/e)F(t/e)x(t), 0<
€ < gy, where F(t) satisfies all the conditions of
assertion (i) above.

Corollary 1. Let an assumption of Theorem 1
hold for system (1) with fixed delays d,,
i=1,..., m. Suppose that there exists a set of
- constants r;,, i =1, ..., m, such that d,/r, = d;/r;,
i,j=1,...,m, and x,=0 of system (6)
with .these constants 7, i=1,...,m, is ¢-
stabilizable by linear multiplicative vibrations
(1/e)F(t/e)x(t), 0<e=<g,. Then the zero
equilibrium of (1) is #-stabilizable by linear
mulnphcatlve vibrations  (1/&)F(t/ &,)x(¢),
&4/, i €1 = &o.

Remark 1. The significance of Corollary 1 is in
that it. relates the vibrational stabilization of
system (1) with fixed delays d; to the vibrational
stabilization of system obtained from (1) by
replacmg delays d; by quantities er;, d;/r; = d;/r;,
i,j=1,...,m, with fixed r;s and varying &. ThlS
leads to a constructive method for the synthesis
of the stabilizing vibrations, since for fixed 7,
i=1,...,m, Theorem 1 decomposes this
synthesis into a two-stage procedure. First, PAZ
matrix F(¢) is sought which makes R Hurwitz.
Once the desired matrix F(f) is found,
the second stage conmsists of a one-parameter
(¢) computer search where equation (4) with

linear multiplicative vibrations D(t)x(f) =
(1/€)F(t/e)x(t) and di—er, i=1,...,m,
di/r,=d;/r, ¥i,j=1,...,m, is simulated until

& is found for which stability is achieved. Such
€o will necessarily exist for fixed r,, i=1,...,m,
due to assertion (ii) of Theorem 1. If d,/r,=
€= &y, then the stabilizing vibrations for (4)

with the original delays d;, i=1,...,m, are
given by D(t)x(¢) = (1/&,)F(t/ £,)x(¢).

Remark 2. Analytical estimates of an upper
bound on ¢, are usually extremely conservative
(cf. Bellman et al., 1985), therefore the value of
& for a given nonlinear time lag system of the
form (6) is best determined by a numerical
simulation as described in the previous remark.

Remark 3. The choice of a fundamental matrix
®(¢) in (8) is immaterial and is dictated only by
convenience. Indeed, since any fundamental
matrix ®(¢) of (8) is related to any other
fundamental matrix of (8), say ®,(f), via a
constant nonsingular matrix (denote it as C) as
®(t) = @,(t)C, from (10) by direct substltutlon
we have

R=C'R,C, (13)
where

R =TT 04D, + 3, B OB 7).

Thus, R, is computed exactly as.in (10) but with
®(¢t) replaced by ®@,(¢), and due to (13) R and R,
have identical spectra.

Remark 4. The assumption of almost periodicity
of ®(¢). in. .t guarantees the existence of the
averages (11) and (12). The elimination of this
assumption results in admitting zero mean
matrices F(t) for which ®(¢) is unbounded. In
this case (11) and (12) do not exist. One could
potentially use Lyapunov’s substitution to
transform X = F(¢)x into a time invariant system,
find Floquet multipliers, and reject matrices F(¢)
that give rise to unbounded ®(¢). However,

~ currently there is no constructive method for

finding closed form Lyapunov’s substitutions for
a general class of systems X = F(¢)x with periodic
zero mean F(¢). .

Remark 5. Theorem 1 and Corollary 1 show that
as in the case of nonlinear systems with no
delays (cf. Bellman et al., 1986a), the conditions
of t-stabilizability of zero equilibrium of (6) and
hence of (1) by linear multiplicative vibrations
depend only on the properties of the lineariza-
tion of (6) or of (1) at zero. However, for other
types of vibrations, this is not true as will be
shown further in the paper.

Remark 6. Theorem 1 also provides-a clue to the
robustness of ¢-stabilizability properties with
respect to small delays. It is seen that-if the
delays are of the same order of magnitude as the
period of oscillations, they cannot be neglected,
except for the special system structures, since
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quantities 7; = d;/e = O(1) significantly affect the
spectrum of matrix R, as can be seen from its
definition (10).

An example that demonstrates stabilization of
a nonlinear time delay system by linear
multiplicative vibrations is given next.

Example 1. Duffing equation with time lags.
Consider a scalar Duffing equation with time lag
d = const in the states

X(t) + a %(t) + ax(t — d) — byx(t) — box(t — d)
' +cx3() + cx}(t—d)=0,
a,, az, by, bz, ¢4, ¢, >0, (14)
which in the state space form is given by
x1(1) = x5(1),
25(t) = —ayx5(t) — ayx5(t —d) + byxy(2)
+boxy(t—d) — c1xi(t) — cox3(t - @),

x8x, x,2%

(15)

Equation (14) can serve as an approximate
model of an inverted pendulum with a cavity
filled with viscous liquid. The term with the
delayed first derivative describes dissipation of
the mechanical energy in the system due to
viscous liquid. This term is a lumped approxima-
tion of a. more complicated description of this
dissipation by the retarded integrodifferential
term given by Strizak (1982, p. 238). The
linearization of (15) at x, =0 has the form

x4(6) = x(2), | .
%o(t) = = arx,(t) — axxy(t — d) + byxy(2) (16)
+ ble(t - d).

Introducing vibrations f(¢) = (a/€) cos (¢/¢) into
coefficient b, ‘

by— b, + %‘ cos (t/¢), 17)

equation (8) is given by

[2]=[afc(:>st 8][:]’ , (18)

and its fundamental matrix is
1 0
e@)= [ ] 9)

asint 1
Replacing in (14) d by er and computing R of
(10) we obtain a corresponding averaged
equation (9) given by

Q) +nit) +nz)=0  (20)

_”1=a1+a2, r2=—(b1+b2)+§.

where

x - Initial Conditions
% T K—T T T

X1

FI1G. 1. Phase portrait of Duffing equation with a time lag
d=0.4x.

Therefore equation (15) with d— er, r = 0(1),
and vibrations introduced into the coefficient b,
as in (17) has a stable zero equilibrium point
when a; +a,>0 and a>[2(b; + b,)]"? for any
positive € smaller than some g,, the existence of
which for fixed r is guaranteed by Theorem 1.
Consider the case when a,=0.6, a,=0.4,
b;=b,=0.5, and c;=c¢,=0.05. Then for
a>\V2, r=const.= O(1), and O<e=g,,
vibrations (17) must stabilize the originally
unstable zero equilibrium point of (15) with any
d<gyr. Such stabilization is indeed demon-
strated in Figs 1 and 2. Figure 1 shows the phase
portrait of Duffing equation with time lags
without parametric excitation. It is seen from
this diagram that x,=0 is an unstable equi-
librium point. Two other equilibrium points are
given on the graph by x, = +V10. Figure 2
shows a trajectory of Duffing equation with
oscillations with x,(¢f) = 3 and x,(t) =5 for t =0,
a=2, d=0.4x, and ¢€,=0.05. Since the
trajectory in Fig. 2 converges to zero, we can

x - Initial Condition

15 T T T
I €=0.05,
10. Time = 10 sec -
5 L i
N i
x 0
-5 -
-10 -
-15 1 | L I ! 1 -
-8 -4 0 4 8

X1

FiG. 2. A trajectory of Duffing equation with a time lag
d =0.4x and oscillations.
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observe the qualitative changes in system
behavior, and specifically, a ¢-stabilization of an
unstable zero equilibrium.

B. Vector additive vibrations

Consider ~ the - Taylor  expansion of
P(§ n,A)=P(§ n) around an equilibrium
pointx,=E=9n=0

PEM=3ve+3 Lwte ()
=1 i—1k!

where
vr@ = {[vilx cey vin]T}r® é [v;'l; sy vt{n]T
orbo(g 8 9
Vil (Bigz+ o+ g PulE Dlsnmo

wi®={[wy,...

] 3
(ﬂla m ﬂna )Pu(g ’7)'; =n=0s

I=1,...,n, (22)

where subscript § = 7 = 0 means that derivatives
of a term p,(-, -) are evaluated at zero values of
its arguments. P(&, n) will be referred to as an
odd r,y, riy-algebraic function in the vicinity of 0 if

(1) expansion (21) may have nonzero terms

~only for j e[1, ry], k €[1, r,2], 11, r:2 <o with the

last nonzero terms at j =17, k=71,

(2) expansion (21) has no terms with j =2n,
k=2n,n=1,2,3,.

In (21) a term (1/]')0"8 with § =y +u can be
represented as

1 o 1 1

it i®|§=y+u,=j—,ﬂ'+( ~7)1
~ where the elements -of vector f; are algebraic
forms of order j with respect to the components
of vector u, the elements of matrix S| are
algebraic forms of order j — 1 with respect to u,
and HOT(y) denotes higher order terms in y.
For example, the element s}, of matrix S} is

» win]T}r® é [W;I; AR | :n]T

Siy + HOT(y) (23)

s;m = dfm[(d;.lul +-0 4 d;.nun)2
- 2 ?_J dfﬂlrdfkuk (24)
r=1k=1
Lm=1,...;n;, r¥k, r¥m, k#m
where

(&,

dipe= dip P8, M gunmo=2LED |
agm E=n=0

and

;md;k= imdfk{Pi(E: 7))}|§=q=o
_3pulE, n)

=3¢, 5%, 25)

E=n=0

Similarly, in (21) a term (1/j)w/® with n =y + u
can be represented as

1 . 1
j_! Meln=y+u =]_|‘ Bj

r
+(j "y E;y + HOT(y) (26)
where the elements of matrix E; are algebraic
forms of order j — 1 with respect to u, and, for
example the element e}, of matrix E} is given by
the right hand side of (24) and by (25) with
differentiation with respect to 7, i.e. the second
argument of P, *).
Let u in (23) and (26) be the zero average
primitive of vector m(t)

u(e) & f m@)dt and #@)=0. (27)

Introduce a matrix

a 9P m) 8P (&, 1)
aE E=n=0 an

+35 S’(u(t)) +4, Ss(u(®) + -

H;=

E=n=0

+( 11),8;,(»:(:» +2 B

Eu() ++++—<=E (). (28)

1
T
Theorem 2. Assume that in (6) each P(:, -) is an
odd r,, rp-algebraic function in a sufficiently
large neighborhood of 0. Then

(i) 0 of (6) is v-stabilizable if there exists a
PAZ vector m(t) such that with u(¢) defined in

27) H2 ¥ H, is a Hurwitz matrix;
i=1

(ii) there exists positive £, = const. such that

=0 of (6) is v-stabilizable by vector additive
vibrations I(t) = (1/e)m(t/e), 0<e =g, where
m(t) satisfies all the conditions of assertion (i)
above.

Corollary 2. Let an assumption of Theorem 2
hold for system (1) with fixed delays d,,
i=1,..., m. Suppose that there exists a set of
constants 7;,, i =1, ..., m, such that d;/r,=d,/r;,
Lj=1,...,m, and x, =0 of system (6) with
these constants r;, i =1, ..., m, is v-stabilizable
by vector additive vibrations (1/£)m(t/e),
O<e= £o.

Then the zero equilibrium of (1) is v-
stabilizable. by vector additive vibrations
(1/e)m(t/ey), e, 2 difr, if e, <&

Remark 7. Unlike linear multiplicative vibra-
tions vector additive vibrations are incapable of
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stabilizing an unstable linear system. Indeed, in
general, an unstable linear system has an
unstable impulse response and is not bounded-
input-bounded-state stable, therefore, any addi-
tive time-periodic input will give rise to an
unbounded growth of system state. Conse-
quently, nonlinearity - is necessary for the
v-stabilizability of an unstable equilibrium of a
dynamical system by vector additive vibrations.

Example 2. Van der Pol equation with time
delays. Consider equation

() + p(*(8) — 1)E(0) + byx(r)
+ (¥t — d) — D)i(t - d)
+box(t—d)=0 (29)

or in state space form with vector additive
vibrations

[5O)-[ x(0) ]
x(t) —byx,(#) + paxa(t) — "lx%(t)xZ(t)

0
+ [—bzx,(t - d) + st — d) — (e — )t — d)]
5L(® -
+, (t)]. (30)

Here the right hand side of (30) with
I,(t) =1(t) =0 and d replaced by &r satisfies all
assumptions of Theorem 2 and it is an odd
3,3-algebraic function around x;, =x, =0.
Several trajectories of equation (30) without
vibrations, i.e. with [;(¢) =1L(f)=0, shown in
Fig. 3 for b, = b, = u, = u, = 0.5 demonstrate an
instability- of an equilibrium x,=0. Choosing
my(t) =acost and my(t)=0, matrix H of
Theorem 2 is given by

0 1

—(b,+ by) (“1_{_”2)(1_%2) T (3D

H=

x - Initial Conditions

FIG. 3. Phase portrait of Van der Pol equation with a time
) lag d = 0.4x.

T ' i '
- €=01, x,(0)=3, x5(0)=5

Mg
AN m ‘hl,p” HHEH RS RS
X 0 — l‘l Rt ‘i‘\“"“ 1 [ Iill AN |||;> ‘M ‘(‘
_5 —
-10 L 1 L i L ] | ! L
(o] 10 20 30 40 50
TIME ( SEC)
10 T T T T
(b)
i €=01, x1(0)=3, x,{0)=5
s
N o 4 Wiy
—s -y
-10 1 1 N A1 1 Il L Il 1
] 10 20 30 40 50

TIME ( SEC)

F16. 4. Solutions x,(f) and x,(¢f) versus time of Van der Pol
equation with oscillations and a time lag d =0.4x.

Hence for (b,+by)>0 and (u,+ ) >0 zero
equilibrium of the Van der Pol equation with
delays (29) is v-stabilizable by vector additive
vibrations [;(t) = (a/€) cos (t/€), UI(t)=0, if
a>V2 and delay d is sufficiently small. Such
stabilization is indeed shown in Fig. 4 for
d =0.47. The last element in the lower row of
matrix H in (31) demonstrates that nonlinearities
play a decisive role in the vibrational stabi-
lization of this class of systems by vector additive
vibrations.

III. TRANSIENT BEHAVIOR ANALYSIS OF
VIBRATIONALLY CONTROLLED NONLINEAR
TIME LAG SYSTEMS

Vibrational stabilization considered in the
previous sections addresses the local behavior of
vibrationally controlled nonlinear systems aro-
und an equilibrium point with the main emphasis
on attractivity, i.e. on behavior as t— . For
control purposes it is also of interest to analyze
the nonlocal system behavior at every time
moment starting from ¢=0, i.e. the transient
behavior of a system. Analysis of trajectories of
vibrationally controlled system (3) is a difficult



Vibrational control of time lag systems 497

task; however, if vibrations are of the form
f@)=(Q/e)p(t/e), ¢(-)-PAZ function, 0< &<
1, e=const., i.e. sufficiently fast, then trajec-

tories of system (3) are usually composed of a-

fast oscillatory part with the period of ¢(t/¢)
superimposed on a slow part. A comparison of a
slow part of a trajectory of the. oscillatory system
with a trajectory of the corresponding system
without vibrations for the same initial conditions
reveals the qualititive changes in system
behavior caused by oscillations.

In order to analyze the transient behavior of a
vibrationally controlled system, a solution of the
initial value problem for every delay equation in
this paper will be denoted as x(¢, xo, 0) and
interpreted in the sense of (Driver, 1977, p. 257)
as a continuous function x:[—r, ®)—>R"
that reproduces the initial data, curve xy(s),
s€[-r, 0], and satisfies the equation con-
sidered for +=0 with %(0) being understood as
the right-hand derivative.

In this section we consider the transient
behavior analysis of the system (6) with linear
multiplicative and vector additive vibrations on a
finite time interval. Then we relate it to system
(4) with fixed delays, d;, i=1, ..., m, as in the
previous section. Thus we consider system

A(t) = il Px(t), x(t — en), ho)

+Q((1/e)g(t/e), x(2)) (32)

with the right-hand side defined in (1) and (4)
and r;, i=1, ..., m, being positive constants of
the order O(1).

Let x(z, xo, 0), where x(0,x,,0)=x, be a
trajectory of equation (32). In order to strip
~ x(t,x0,0) of its fast oscillating component
~ introduce a moving average along a trajectory
x(t, x0, 0) as

1 t+T
HOEE f x(s, X0, 0) ds, 0=t<e, (33)
t

where T is a period of ¢(t/¢).

If the quantity %(¢) can be closely approxim-
ated by the trajectory of a time-invariant system
then the transient behavior analysis of system
(32) for various magnitudes and frequencies of
the oscillations can be greatly simplified,
resulting in the constructive procedure for the
design of the parametric excitations that induce
the desired qualitative changes in the system
behavior.

A. Linear multiplicative vibrations
Let linear multiplicative vibrations in (32) be
of the form (1/¢)F(t/€)x(¢). Assume that

equation
(@) = F(0)x(¢) (34
has a periodic in ¢ fundamental matrix ®(¢).
Along with (33) introduce

Eu(z(0) & B(0)z(t, 2, 0), (35)

where ®(t)=(1/T*)f3" ®(t)dt, T*2 T/e, and
z(t, 20, 0) with 2(0, zp,0)=2zy=const. is a
solution of the equation

2(t) = 0(z(1)),

oweimwm [ oeya
To= 0

where

0, y) 2 @) i

Pt(d)(t)yt (D(t - ri)y’ A‘O) (37)

If %,(2(t)) stays close to %(¢) on a time interval
of interest, then %,(z(#)) can be viewed as an
approximate: moving average along a trajectory
x(t, x%9,0) of (32) with linear multiplicative
vibrations on this time interval. Theorem 3
below gives the conditions under which %,,(z(r))
and X(f) can be made arbitrarily close on the
arbitrarily large finite time inverval.

Theorem 3. Assume that (a) functions
P(E,m, A), i=1,...,m, of system (32) are
continuously differentiable with. respect to
¢, neQ,cR” and (b) fundamental matrix ®(¢)
of (34) is T*-periodic where T* is a period of
F(:) in (34).

Then for any 6 as small as desired and x as
large as desired there exists & = £y(8, k) such
that for 0 < ¢ = ¢, the following holds

1£(t) — Zr(z(@))t <8, te[0,x], (38)
where zy = ®(0)x,(0).

Corollary 3. Let assumptions (a) and (b) of
Theorem 3 hold for system (4) with fixed delays
d, i=1,...,m, and linear multiplicative
vibrations D(#)x(¢). Suppose that there exists a
set of constants r, i=1,...,m, such that
d;/ri=d;[r;, i,j=1,...,m, and solutions of
system (32) with these constants r; satisfy
inequality (38) for given 8 and k for 0< ¢ < g,
Then solutions of system (4) with vibrations
D()x(t) = (1/)F(t/e)x(t), &, 2d;/r, satisfy
inequality (38) for the same 6 and « if &, < &g,

Example 3. Duffing equation (15) with time lags
and linear multiplicative vibrations

1 /¢t 0 0 x |

(2 )

€ \e * ¢ cos£ 0 |Lx, (39)
€ €
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Since ®(¢) in this case is given by (19), from (35)
we have

Im(z(1))=z(t) and Frn(z(t)) = 2(r) (40)

where z(f) =z(t, 2o, 0) is a solution of equation
(36) which for this specific case takes the form

H(6) =2(t),
H(t)=—(a,+ a2)22(t‘)rz 1)
+ (bl +b,~ ?)zl(t) —(c1 + ¢2)z3(1).

Figure 5 shows that %,,,(2(¢)) and %,(z(f)) given
by dashed curves indeed represent approximate
moving averages along x,(f) and x,(t),
respectively, given by solid curves for delay
d=0.17x, €=0.05, a;=0.6, a,=0.4, b;=b,=
0.5, and ¢, = ¢, =0.05.

B. Vector additive vibrations
Let vector additive vibrations in (32) be of the
form (1/&)m(t/¢).

Theorem 4. Let assumption (a) of Theorem 3
hold and u(f) be the T*-periodic zero mean
primitive of m(¢).

10 T T
(a)
€=005
x1(0) = X (2(0)) =3

s - " x(0) = Xya(2(0)) =5
8
£ o
2 4

_5 —
-10 1 i i 1 L

0 5 10 15
TIME ( SEC)
10 T : T
(0) =005, x,(0) = Xyy(2(0)) = 3
7 "%2(0) = Xp2(2(0)) =5

s -
g 1
& o -
¥

_5 -
-10 i | i 1 1

0 10 1S

5
TIME ( SEC)

FIG. 5. Solutions x,(f) and x,(f) versus time of Duffing

equation with oscillations and a time lag d =0.1x and their

approximate moving averages X,,(2(?)) and %,.,(z(¢#)) versus
) time.

Then for any & as small as desired and x as
large as desired there exists &, = g¢(8, k) such
that for 0 < ¢ < ¢, the following holds

£@) -z <8, t€[0, x] (42)

where z,=u(0) +x0(0), and z(f, z,0) is a
solution of an ordinary differential equation

m

=7 [ 3 Bz +u6), 20
+u(s =), o) ds. )

Corollary 4. Let all assumptions of Theorem 4
hold for system (4) with fixed delays d,,
i=1,..., m, and vector additive vibrations I/(¢).
Suppose that there exists a set of constants r;,
i=1,...,m, such that d/ri=d;/r;, i j=
1, ..., m and solutions of system (32) with these
constants r; satisfy inequality (42) for given 6 and
k for 0<e=g, Then solutions of system (4)
with vibrations I(t)=(1/e,)m(t/e,), & 2d;/r,
satisfy inequality (42) for the same & and x if
€, = &,.

Example 4. Van der Pol equation (30) with
time lags and vector additive vibrations

8 T T

(a)
€=005, x,(0)=2,(0) =3
x2(0)=25(0)=5

-4 -

‘ S'RIME ( SEC )10 '
" T oos, %1 (0)= 2,(0)= 3
1 %2(0)=2,(0)=5
“.o: lll'lhtl”lﬂll A LLAR A
Sy ] “l L
1 ' ll” ‘
° STIME ( SEC ]10 l S

FI1G. 6. Solutions x,(#) and x,(f) versus time of Van der Pol
equation with oscillations and a time lag d =0.2 and their
approximate moving average, z,(#) and z,(t) versus time.
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[(a/€)sin (t/€), (a/€)sin(t/€)}". Equation (43)
in this case has the form

2(t) = (1),

2(t) = [(by + by) + (1 + p2) @’z (t)

+(u + !‘2)(1 - %j)Zz(t)

= (i + p2)23(1) (1)

Approximate moving averages z;(f) and z(¢)
(dashed curves) along with the corresponding
solutions x,(¢) and x,(¢) (solid curves), respec-
tively, are shown in Fig. 6 for b;=b,=pu, =
U>=0.5,d=0.2 and £ =0.05.

(44)

IV. CONCLUSIONS

This paper demonstrates that under certain
conditions, parametric vibrations approxim-
ately introduced into a nonlinear time lag system
of the form (1) are capable of converting
an unstable ‘equilibrium of a system into
an asymptotically stable one or creating an
asymptotically stable oscillatory regime with the
average located at an unstable equilibrium point.
The criteria presented enable one to investigate
the existence of the stabilizing vibrations and
give procedures for the choice of their
-parameters. - While the theory presented is
restricted to the delays of the order O(e),
0<e«1, Examples 1 and 2 demonstrate that
vibrations are capable of stabilizing systems with
delays of the order O(1). The method for the
transient behavior analysis of a vibrationally
controlled system is also given and is supported
by numerical examples. Thus, vibrational control
is shown to be a possible alternative for control
of nonlinear systems with time delays in the
situations where conventional methods are
expensive, difficult, or impossible to apply due to
restrictions on sensing and actuation.
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APPENDIX: PROOFS OF THE FORMAL
STATEMENTS

Proof of Theorem 1. With vibrations
Q(f (), x(1)) = D()x(r) = (M/e)F(t/e)x(r),  (1a)

t21¢/¢, and d,—er, i=1,..., m, equation (4) takes the

form
&) _ ¢ $ pex(a), x(e-1), 30
T i=1
+ F(1)x(7). (2a)
Introducing into equation (2a) coordinate transformation
(1) = B(2)y(3), (3a)

which for the delayed states takes the form
x(r-r)=®(-n)y(r-r), i=1...,m, (43

(2a) reduces to a standard form
dy(v) _ -1 N
5 =@ é

X B(®(r)y(z), D(r - r)y(1—r), &). (Sa)

Since F(7) is a periodic bounded zero mean function of T,
by Abel’s formula (cf. Brockett, 1970, Theorem 3.3) &~ (1)
is bounded for 7 € (—, ) and the right-hand side of (5a) is
well defined for all 7.

" Averaging the right hand side of (5a) with respect to 7,
linearizing it at y(t) = y(t — r;) = 0 and dropping the delays in
the states we obtain an ordinary differential equation

20 o[ @aem + 3 TT@BRE -7 o) (60
T i=1

that for sufficiently small € governs the stability properties of
the trivial solution of (Sa). Finally, noting that the averaged
equation corresponding -to (Sa) is given in time ¢ by
2(t) = Rz(r), where matrix R is defined in (10), and that if
®(t) is almost periodic then (3a) and (4a) are stability
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preserving, the assertions of the theorem directly follow from
Theorem 3.3 of Hale (1966). Q.E.D.

Proof of Corollary 1. Under the assumptions of Corollary 1,
conditions of assertion (i) of Theorem 1 are satisfied for
systems (1). Therefore, for €, < &, the proof of Corollary 1
directly follows from assertion (ii) of Theorem 1. Q.E.D.

Proof of Theorem 2. System (6) with vector additive
vibrations I(r) = (1/€)m(t/€) in time t2¢/eis given by

2= 3 R, x(r-n) ) tm(a). Ow)

With u(z) defined by (27), substitutions

x(7) = y(7) + u(v) (8a)
and
x(x=r)=y(x—rn)+u(t—r) (9a)
reduce (7a) to a standard form
U= e 3 Ry + (e, (-
+u(t =), Al . (102)

Expanding every F/(, 1, A))=P(§, n) around §=7y=0,
under the assumption of Theorem 2, we obtain

i=1 =1

K1 e
+ [glﬁw-‘ lil‘y(f—'t)ﬂl(r—n)}' (11a)

1 .o
j—!u'a |gmy(z)+u(n)

Averaging the right hand side of (11a) with respect to 7 and
dropping the delays in the states, we have

@ _ (2 H,~)z(t) +HOT(2) (12a)
dz i=1
where matrices H;, i=1, ..., m, are defined in (28).
Assume now that _ﬁl H; is a Hurwitz matrix. Then, noting
=

that (12a) has a zero equilibrium, by Theorem 3.3 of Hale
(1966) for every 6 >0 there exists £,(5) such that (10a) with
0< &= g has a unique asymptoticaily stable almost periodic
solution y*(z) characterized by

lly*(e)ll < é. (13a)

Now, the proof Theorem 2 follows from (13a) upon noting
that due to (8a)

F@)=y@)+a(x)=5(r).
Q.E.D.
Proof of Coroliary 2. Directly follows from Theorem 2. ‘
Proof of Theorem 3. Follows that of Theorem 1 until and

including the sentenee after equation (5a). Dropping the
delays in state variable y(-) and averaging the right hand side
of (5a) we obtain

dz(t =
CIUBTE0) (142)
where Q(-) is given in (36) and (37).

Now by Theorem 4.32 of Halanay (1966, p. 460) for
y(0) =y,(0)=2z(0)=2, and every x>0 and 6>0 there
exists &, >0 such that for 0 < ¢ < ¢, we have

"y(r» Yo, 0) - Z(‘t, 295 0)" < n, Vre [0, K/S]. (153)
Since
x(‘; Xo0s 0) = Q(t/e)y(t, X0, 0): (168)

T =0(¢), and i(f) and J(¢) are of the order O(1) in time
t=t/e, we have

t+T R
f(t)=%, [ Ot/ e)y(r) dt

107 /s

=7 e(Q)apo+ K

1 (™
-[=] ewra]ho+re
(4]

= o)y + Ky(e), (17a)
where y(f) = y(t, xo, 0), Ky(€) = O(¢) and ||K,(¢)|| uniformly
approaches 0 as ¢—>0.

Denoting z(f) = z(t, 2y, 0), for the left hand side of

inequality (38) from (15a) and (17a) for any given 1 and x
we have in time ¢

1) = Zr(2 (D)l = 1By () + Ko(e) = D)z
= D)y () — 2@ + 1Ky (e)
SN ly(®) =zl + 1Ky ()Nl
=Nn+[K(e)ll, 0<e=e,, (18a)
where N is some positive constant which exists since ®(?) is a
constant matrix with bounded elements.
Finally, since we can always choose &, < &, and % such that
Nn+(|K(eo)li <8, Vte[0,x),

Theorem 3 is proven. Q.E.D.

Proof of Corollary 3. Directly follows from Theorem 3.

Proof of Theorem 4. Follows that of Theorem 2 until and
including equation (10a). Dropping the delays in state
variable y(-) and averaging the right hand side of (10a) we
obtain in time ¢ equation (43). Now the proof follows that of
Theorem 3 after equation (14a), with ®(t/e)y(s, x,, 0)
replaced by u(t/€)+y(t, xo, 0) and %,,(z(¢)) replaced by
z(1). Q.E.D.

Proof of Corollary 4. Directly follows from Theorem 4.



