Vibrational Stabilization of Nonlinear Parabolic
Systems with Neumann Boundary Conditions

Joseph Bentsman and Keum S. Hong

Abstract—This note derives the conditions for the existence of the
stabilizing vibrations for a class of distributed parameter systems gov-
erned by parabolic partial differential equations with Neumann bound-
ary conditions and gives the guidelines for the choice of the vibration
parameters that ensure stabilization. Examples of vibrational stabiliza-
tion of unstable systems by linear multiplicative and vector additive
vibrations are given to support the theory.

1. INTRODUCTION

The concept of vibrational control proposed in [1] is especially
attractive when it is applied to distributed parameter systems (DPS),
generally known as not readily amenable to sensing and actuation.
Indeed, being an open-loop strategy that can ensure desired system
behavior via zero-mean parametric excitations, vibrational control
requires no on-line sensing and it can stabilize all system modes
simultaneously. The experimental and applied theoretical results on
the vibrational control of DPS include stabilization of plasma pinches

Manuscript received March 3, 1989; revised January 10, 1990. Paper
recommended by Past Associate Editor, T.-J. Tarn. This work was sup-
" ported in part by the National Science Foundation Presidential Young
Investigator Award under Grant MSS-8957198, The National Center for
Supercomputing Applications, University of Illinois, Urbana-Champaign,
for the utilization of the CRAY X-MP/48 system.

The authors are with the Department of Mechanical Industrial Engineer-
ing, University of Illinois, Urbana-Champaign, Urbana, IL 61801.

IEEE Log Number 9042138.

0018-9286/91 /0400-0501$01.00 ©1991 IEEE



502

[2], powerful continuous CO, lasers [3], Bernard instabilities in
liquids [4], and Euler instabilities in elastic systems [4].

Along with the finite-dimensional vibrational control theory de-
veloped in [1], [5]-[7], and tested experimentally as reported in
[8]-[10], vibrational stabilizability of infinite-dimensional systems
described by hyperbolic partial differential equations (PDE’s) has
been addressed in [4] using finite-dimensional approximations, and
those described by parabolic PDE’s with Dirichlet boundary condi-
tions (DBC)—in [11], [12] using operator theory and imposing
rather restrictive assumptions on the solutions of the PDE’s consid-
ered.

There is, however, a large number of practically important
processes described by parabolic PDE’s with Neumann boundary
conditions (NBC). Physically, these boundary conditions define the
gradient at the boundary, e.g., temperature gradient. In the present
note, the case of zero gradient is considered which physically means
that the boundary is insulated. This situation arises for example in
combustion processes and chemical reactors when heat transfer
through the walls of a combustion chamber or a reactor tank is
insignificant and can be neglected. It is, therefore, of interest to
investigate the effectiveness of vibrational control as applied to
parabolic DPS with NBC. Intuitively, the effectiveness of vibra-
tional control in this case is not obvious since NBC provide substan-
tially more freedom for a system to evolve than DBC which
prescribe the evolution along the boundary beforehand.

The purpose of this note is to show that vibrational control can
ensure stabilization of unstable parabolic DPS with NBC and pre-
sent the conditions of vibrational stabilizability and a procedure for
the choice of vibration parameters for two classes of vibrations.

A class of DPS considered is described by a nonlinear parabolic
PDE

Uy = Ay, + Bu, + C(u,N), u,(0,¢) =u,(1,7) =0,
120, u(x,0)=uy(x) (1)

where # = u(x,t): R(0,1) x R,—» R"; xe(0,1); A, BeR"*"
are constant matrices; A€ R™ is a vibratile parameter; C: R” X
R™— R" is a nonlinear vector function such that C(0, N =0
subscripts of u denote corresponding partial derivatives with respect
to # and x; the Neumann boundary conditions are given by u 0,8
=u,l,?) =0, t 2 0, and initial condition by u(x,0) = u(x).

Vibrational stabilizability properties of (1) depend on the mecha-
nism through which excitations affect the spectrum of the linearized
averaged system. The efficacy of linear multiplicative vibrations (cf.
Section IT) depends on the spectrum of the linearization of (1), and
the efficacy of the other vibration types is, in addition, strongly
influenced by the nonlinear terms of (1).

In this note, we use the terminology of [5]-[7]. The note has the
following structure. Section I discusses vibrational stabilization by
two vibration types. In this section, a stability criterion similar to
[12, Lemma] is derived for parabolic PDE’s with NBC. This
condition then permits the application of the results of [13] on
averaging without imposing any restrictive assumptions on the
properties of the solutions of the averaged system. Numerical
examples that demonstrate vibrational stabilization of unstable DPS
governed by parabolic PDE’s with NBC are presented as well.
Section III gives the conclusions. Proofs of all formal statements are
collected in the Appendix.

II. VIBRATIONAL STABILIZATION

A. Definitions and Problem Formulation
Assuming X fixed, introduce in (1) parametric vibrations as
A=+ f(1) )

where f(?) is a periodic vector function with average value equal to
zero (PAZ vector). As a result, (1) becomes

u, = Au,, + Bu, + C(u, A + f(1)),
u (0,8) =u,(1,1) =0, 120, u(x,0)=u,(x). (3)
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Throughout this note, it will be assumed that (3) has the form
u = Au,, + Bu, + C(u) + C,(f(2), u),
u(0,¢) =u,(1,£) =0, t=0, u(x,0)=u,(x)
Ci:R" X R">R", C(u)=C(u,N 4)

where C,(-, ) is a vector function linear with respect to its first
argument. If C,(f(?), u) = I(t), where I(t) is a PAZ vector, the
introduced vibrations are referred to as vector additive, if
Ci(f(1), u) = D(t)u, where D(t) is an n X n PAZ matrix, the
vibrations are called linear multiplicative, and if C(f(t), u) =
D(t) X(u), where X: R" - R" is a nonlinear map, the vibrations
are termed nonlinear multiplicative.

Throughout the note, it is also assumed that for given initial
and boundary conditions systems (1) and (3) are well posed in
the Sobolev space H"(0,1) of vector functions uv(x) =
[vy(%),** *, v,(x)]7 with components v(x) in L,(0, 1) which have
the first distributional derivatives. Norm on H™(0, 1) is defined as

1/2

ol & ( L@+ a) )

Superscripts ‘“‘n”* and ‘‘1”’ in H"'(0, 1) indicate the dimension of
the vector v(x) and the order of the highest derivative with respect
to x in the definition of norm (5).

Definition 1: The null solution of (1) is said to be vibrationally
stabilizable (v-stabilizable) if for any & > O there exists a PAZ
vector f(Z) such that system (3) has an asymptotically stable almost
periodic solution u°(x, r) e H™(0, 1) characterized by

- T

lus(x, ), <8, w(x,t) & lim l/ u'(x,t)dt. (6)
T-o T 0

Definition 2: The null solution of (1) is said to be totally
vibrationally stabilizable (z-stabilizable) if there exists a PAZ vector
J(¢) such that system (3) has the null solution asymptotically stable
in || - ||; norm.

Problem Formulation: The problem of vibrational stabilization
consists in finding 1) verifiable conditions for the existence of
stabilizing vibrations for the system (1) (v- and t-stabilizability),
and 2) the parameters of vibrations (amplitudes and frequencies)
which ensure stabilization.

System (1) with Dirichlet boundary conditions u(0, ¢) = u(l, 1)
= 0 has been shown in [12] to be #-stabilizable by linear multiplica-
tive vibrations. In this section, we extend the results of {12] to
Neumann boundary conditions u (0, f) = u (1, #) = 0, remove the
assumptions that are difficult to check a priori (see [12, expression
(6)], formulate conditions of v-stabilizability of (1) by another
vibration class—vector additive vibrations, and describe a proce-
dure for the choice of the parameters of stabilizing vibrations.

B. Preliminary Lemmas
Lemma 1: The null solution of the linear system

A, B,C’ eR™",
ueH™(0,1), u,(0,1) = u,(1,8)=0, t=20 (7)

is asymptotically stable with respect to the norm (5) if there exists a
positive-definite matrix M e R">*" such that 1) A7M + MA is a
positive-definite matrix; 2) B”M = MB; 3) C'™M + MC' is nega-
tive definite, and 4) C’ is a Hurwitz matrix.
Remark 1: Condition 4) and positive definiteness of M in
Lemma 1 do not imply condition 3) in general (see [14, p. 176)).
Assume that the ordinary differential equation

u,=Au,, + Bu,+ C'u,

dk
—=C t), 8
7 (1), £) (8)
where Cy(-, +) is defined in (4) and ¢(+) is a PAZ vector, has a
unique solution defined by every initial condition £, €eQCR",
vt = 0. Denote the general solution of (8) as £(¢) = A(t, g), h: )
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R X R"— R", where geR"” is a constant uniquely defined for
every pair of initial conditions (£, t,).
Introduce into (4) a substitution of the form

u(x,t) = h(t,v(x,1)), v:R(0,1) X R,~ R". 9)

Assuming that C,(-, u) is differentiable with respect to u, (4) takes
the form

vo=[3h/av] "'[ An(2,v),, + Bh(t,v), + C(h(t,v))]

= Fi(t,v) + F(t,v) + F(1,v) (10)
where [3h/3v]~! always exists (cf. [5, Section III]) and
Fi(t,v) & [ah/av] ' Ah(t,v),,,
Fy(t,v) & [0h/3v] "' Bh(t,v),,
Fy(1,v) & [ah/3v] "'C(h(t,v)). (11)

Introduce the equation
W, = Pl(w) + PZ(W) + P3(W)’ wx(o’ t) = x(I’ t) = 0’
=20, w(x,0)=w,(x) (12)
where w: R(0,1) x R ,— R"

i T
P(v) F(7,0) & %ﬂ?/ Fi(t,v) dt,
(]

Py(v) 2F,(t,v), and Py(v) 2F(t,0).

Lemma 2: Assume that (1) with vibrations A\ — \ + @(t), where
9(t) is a PAZ vector with the period 7*, has the form (4),
ue H"(0,1), and both C(u) and C\(-, u) are continuously differ-
entiable with respect to #. Assume also that 1) h(t, @) is periodic in
t for any g and is linear or affine in q; 2) equations (10) and (12)
are parabolic; 3) equation (12) has the null solution w = 0.

Then the null solution of (1) is 1) v-stabilizable if there exists
@(?) such that the null solution of

W, = P\(w) + Po(w) + Pyyw, Py £ aP,(0)/dw,

w,(0,2) =w,(1,2) =0 (‘13)

is asymptotically stable and h(7,0) = 0; 2) t-stabilizable if it is
v-stabilizable, C,(+,0) = 0, and A(¢,0) = 0.

Lemma 3: Let all assumptions of Lemma 2 hold. Then there
exists positive ¢ = const such that the trivial solution of (1)is 1)
v-stabilizable by vibrations

AN+ (1/€)d(1/e), (14)

if all the conditions of Lemma 2, assertion 1) hold; 2) ¢-stabilizable
by vibrations (14) if all the conditions of assertion 2) of Lemma 2
hold.

Remark 2: Lemma 2 gives conditions for v- and t-stabilizability
in terms of the existence of a PAZ vector @(t). Once ¢(t) that
satisfies conditions of Lemma 2 is found, according to Lemma 3,
the actual stabilizing vibrations are obtained via one-parameter (e)
numerical search by rescaling ¢(¢) as (1 /€)é(t/€) and simulating
system (4) with f(¢) = (1/€)é(¢/¢) until €, is determined. Such
€, > 0 must exist due to Lemma 3.

O<ese,

C. Linear Multiplicative Vibrations

The main contribution of this section is in presenting the results
similar to [12, the Theorem and Corollary] for parabolic DPS with
Neumann boundary conditions, and most importantly, in removing
the assumption [12, expression (6)] on the identical stability proper-
ties of the solutions in L,(0, 1) and in Sobolev space (H(0,1) in
the case of [12]), for all the equations considered. Besides being
overly restrictive, this assumption is usually impossible to check,
and its removal makes the vibrational stabilizability conditions for
parabolic DPS with NBC easily applicable and constructive.

ul(x st)

Uy (x,0) = cos mx

uz(x,O) 24C0S 7X

u, (0,¢) = u(lst) =0, t >0

Fig. 1. Solution u,(x, t) of system (19) without vibrations, which grows

without bound as ¢ — oo

Theorem 1: Assume that in (1) C(u) is continuously differen-
tiable with respect to u in the vicinity of u = 0, and u € H"(0, 1).

Then the null solution u = 0 of (1) is t-stabilizable by linear
multiplicative vibrations if there exist 1) a PAZ matrix F(¢) with a
fundamental matrix ®(¢), ¢ € (- o, ®),of y = F(t)y, y: R - R",
being periodic, and 2) a positive-definite matrix M such that

a) ATM + MA is positive definite,

_ 1 g1
where A 2 1lim — [ &-'(+)A%(1) dt, 15)
T-o T 0
- - . 1 4T
b) MB=B"M, B2 7;im ?/ &~ Y(1)BO(¢) dt, (16)
o T Jg

1 ¢r
o C,4& Pm;; T /0 ®~1(1)C, (1) dt is a Hurwitz matrix,

where C, £ 3C(0)/du,
d) CTM + MC, is negative definite

an
18

Corollary 1: Let all assumptions of Theorem 1 hold. Assume
also that matrices A4 and B in (1) are, respectively, given by af and
bl, a > 0, a, b = const, and matrix C, is nonderogatory. Then the
null solution of (1) is v-stabilizable by linear multiplicative vibra-
tions if tr C, < 0.

Theorem 2: Let all assumptions of Theorem 1 hold. Then there
exists positive €, = const such that ¥ = 0 of (1) is #-stabilizable by
linear multiplicative vibrations D) x(t) = (1/e)F(t/e)x(t), 0 <
€ < ¢€,, where F(t) satisfies all the conditions of Theorem 1.

Example 1: Consider (1) with

_101 0 _105 0 -
A—[O 0-1], B [0 0.5], C(u)=C,u + R(u), |
_I2 7 _|0.1 u3
Co= [3 —3]’ R(u)_[o.l ui|’ (19)
and initial conditions uy(x,0) = cos 7x, uy(x,0) = —cos 7x,

further referred to as system (19). The null solution of (19) is
unstable (cf. Fig. 1). Noting that by Corollary 1 system (19) is
vibrationally stabilizable by linear multiplicative vibrations, let us
choose matrix F(f) of Theorem 1 as

F(t) = [ 0 0}.

acost 0
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uy(x,t)

"II

-
N

\
N

« Fig. 2. Solution u,(x, ) of system (19) with linear multiplicative vibra-
tions.

Then matrix ®(¢) of Theorem 1 can be taken as

- 0o o]l
2(1) —_e’{p{a[sinf OJ}’
and matrix C, is given by
2 7]
C = 7
Co 3-—a? -3}
2 |

Since for & > 1.050 C, is a Hurwitz matrix, by Theorem 2 linear
multiplicative vibrations with

°

0
a 1
— sin -
€ €

D(t) =

will ensure f-stabilization of (19) for 0 < ¢ < €,. Such stabilization
is indeed demonstrated in Fig. 2 for « = 3 and e = 0.01.

7 D. Vector Additive Vibrations

This section demonstrates that under certain conditions vector
additive vibrations introduced into a parabolic DPS with NBC are
capable of inducing an asymptotically stable periodic solution with
the average value in the vicinity of an unstable equilibrium of this
DPS.

Using the notation of [5], consider the Taylor expansion of
C(u) = [ey(u)," ++, ¢, (W]T of (1) around an equilibrium point
u,=0

-] l .
Clu) = 3 5v*® (20)
i= 1!
where '
®
0= {[vg,-++,0,] T} 2 [v],++,07]7,
3 a1
v & u,a—u1 + .- +u"6_u,, () yeos I=1,--,n.

C(u) will be referred to as an odd r-algebraic function in the
vicinity of ug if 1) expansion (20) may have nonzero terms only for
i€[l, r], with the last nonzero term at i = r, and r being a
bounded number; 2) expansion (20) has no terms with i = 2k,
k=123,
Represent the ith term of (20) with u = y + ¥ as
1 . 1 1
Ev’®|u=y+‘¢ - EE" + ——=8;» + HOT (y) (21)

(i-1)

i

where the elements of vector £, are algebraic forms of order i with
respect to the components of vector ¢, the elements of matrix S; are
algebraic forms of order i — 1 with respect to ¥, and HOT denotes
the higher order terms in y. The form of an element Sim Of matrix
S, is given in [5].
Define ¢ in (21) as

¥(¢) é/m(t) dt, (22)

where m(t) = [m,(t),*--, m,()}7 is a PAZ vector and introduce
a matrix

(1) =0

H=C,4 2 55(000) + 5H00) + -+

1 -
+msr(¢(t))~ (23)

Theorem 3: Assume that in (1) ue H™(0, 1), C(u) is an odd
r-algebraic function in a sufficiently large neighborhood of 0. As-
sume further that 4 = al, a = const > 0, B = bl, b = const.
Then the null solution u = 0 of (1) is v-stabilizable by vector
additive vibrations if there exists a PAZ vector m(t) such that H is
a Hurwitz matrix.

Theorem 4: Let all assumptions of Theorem 3 hold. Then there
exists positive e, = const such that ¥ = 0 of (1) is v-stabilizable by
vector additive vibrations I(f) = (/eym(t/e),0< e < €,, where
m(t) satisfies all the conditions of Theorem 3.

Example 2: Consider (1), (2) with A, B, C, asin (19), C(u) =
C,u + R(u), and

L)

R(u) = [—u. + puy — uufuz]’ b= const (24)

further referred to as system (24). The solution u(x, t) of this
system grows without bound (cf. Fig. 3). Noting that C(u) is an
odd 3-algebraic function around ¥ = 0, matrix H of (23) takes the

form
H- [

Setting p = 1.0, H is Hurwitz for ¥?(¢) > 1.430 or for o > 1.690
if m(t) = m,(t) = asin t. Hence, by Theorem 4, vector additive
vibrations /,(¢) = (a/e)sin(¢/e), 1, () = (a/€)sin(t/e), will
guarantee u-stabilization of (24) for sufficiently small e, which is
shown in Fig. 4 for « = 3 and ¢ = 0.008. :

2

8
2-2mi(1) -3+4u- #\012(1)]'
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uy (x,t)

6_| ul(x,O) = cos ux
uz(x,,O) = -C0$ X

UX(O,t) = ux(lwt) =0, t > 0

1.0

Fig. 3. Solution u,(x, £) of system (24) without vibrations, which grows
without bound as ¢ = co.

uy(x,t)
a = 3.0
. e = 0.008
6 | .
llllil I I T
I .
4 _|

Ny -

0.0 1.0

~

X

Fig. 4. Solution u,(x, ¢) of system (24) with vector additive vibrations.

IV. CoNcLusIONS

This note presents the vibrational control theory for a class of
nonlinear parabolic DPS with Neumann boundary conditions. The
theorems presented enable one to determine the existence of the
stabilizing vibrations for a class of systems and to organize a simple
one parameter (¢) numerical search for their actual magnitudes and
frequencies. Since vibrational control strategy requires no on-line
measurements, vibrational stabilization can be an attractive alterna-
tive in the situation when feedback and/or feedforward are difficult
or impossible to apply due to the restrictions on sensing and
actuation. To facilitate the application of the technique, however, it
is important to investigate the transient behavior of a vibrationally
controlled DPS. Parabolic systems with DBC have been partially
investigated in [18]. The transient behavior analysis of vibrationally
controlled DPS with NBC considered in this note needs to be
addressed in the future.

APPENDIX
Proof of Lemma 1: Let

a(x, 1) 2u(x,t) = p(r), p(t) = [py(t), -, po(1)] 7,
p(1) & /o ‘u(x, ) ds.

Consider a functional with a positive-definite matrix M such that

(A1)

-1 1
v(e) = / aTMii,(x,t) dx = / uTMu,dx. (A.2)
0 0

Differentiating (A.2) with respect to ¢, integrating by parts, and
making use of the given Neumann boundary conditions yields

av 1 T T
- -/0 uT (ATM + MA)u,, dx
1
+/0 ul,(B™ ~ MB)u, dx

. .

4 [WH(C™M+ MCYu ax. (a3)
0

For any continuously differentiable function ¢(x) with 6(0) = ¢(1)

= 0, the following Wirtinger’s inequality holds (cf. [15])

/1 ( d¢ )2 dx ™\2 1 )
— > [~

o \dx ( 2 ) /0 ¢ dx.

If we consider d¢/dx to be a generalized derivative of @(+), then

inequality (A.4) also holds for ¢ eH,}(O, 1) and consequently, when

the Lemma 1, condition 1) is satisfied, with ¢ — u, it follows from
(A.4) and NBC in (1) that

(A4)

1 v w\2r1
/ufx(ATM+ MA)u,, dx = (3)/ uz(A™ + MA)u, dx.
0 0

(A.5)
Further, if Lemma 1, conditions 2) and 3) hold, from (A.3) and
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(A.5) it follows that

av 1 T\2

= = / uT| C'T™M + MC’ - (5) (ATM + MA) |u, dx < 0.
o . .

(A.6)

Therefore, u,(x,t) and hence #,(x,t) converges to 0 almost
everywhere, which in turn jmplies that #@(x, f) converges to 0
pointwise. Further, since p,(f) = DP,»(%) = 0, convergence proper-
ties of p(f) are defined by the spectrum of matrix C, therefore, if
Lemma 1, condition 4) is satisfied, p(f) converges to 0, and
consequently u(x, f) converges to zero pointwise. Thus, if all the
conditions of Lemma 1 hold, the null solution of (7) is globally
asymptotically stable with respect to the norm (5). Q.E.D.
Proof of Lemmas 2 and 3: Consider system (4) with f(¢) =
(1/e)é(t/¢), i.e., system of the form
1 [t
u, = Au,, + Bu, + C(u) + C‘(:d’(:)’ u) . (A
Since C\(* , - ) is linear with respect to its first argument, (A.6) can
be rewritten in time 7 = /¢ as

u, = ¢ Au,, + Bu, + C(u)] + C,(¢(7),u). (A.8)
Equation (8) with ¢ replaced by 7 yields a substitution
u(x, 1') = h('r,u(x,'r)) (A.9)

where A( , *) is defined in of Section II-B. Introducing into (A.8),
substitution (A.9) yields the equation
v, = e[ Fy(7,v) + Fy(7,v) + Fy(7,v)] (A.10)

where Fi(-,), i=1,2,3, are defined in (11). Averaging the
right-hand side of (A.10) with respect to 7 yields

w, = e[Pl(w) + Py(w) + Ps(w)]

where P(-), i = 1,2, 3, are defined in (12).

Since by assumption A(: , - ) is linear or affine with respect to the
second argument, P;(w) and P,(w) can be represented as Py(w)
= P{w,, and P,(w) = P;w,, where P; and P, are constant
n X n matrices. Therefore, defining

Py(x) & [P}(3%/3x?) + P(3/3x) + P3]v(x),

\

\

where Y(x)e H"(0, 1), and noting that (12) is assumed to be -

parabolic, operator P: H™(0,1) = L,(0, 1) is m-sectorial in the
sense of Kato (cf. [16, p. 280]) or sectorial in the sense of Henry
(cf. [13, p. 18]). Now, representing P,(w) in terms of linear part
Py, at w =0 and high-order terms as P;(w) = Py;uw + Py (w),
(A.10) can be rewritten in time 7 as

t
v,=P,’vxx+P£vx+P3ov+P4(;,v) (A.12)
where Py(t/€, v) = L7 F(t/e, v) — T3 P(v) + Py, (v).
Representing (A.12) as an evolution equation in Sobolev space
H"™(1,0), [13, p. 222, assertion 2)] is applicable to (A.12). Indeed,
if conditions of Lemma 2, assertion 1) hold, spectrum of the linear
operator P in the evolution equation lies in the open left-half plane.
Identifying P,(2/e, v) in (A.12) with f(¢, x) on [13, p. 222] and
following the notation of [13], we have df,(0)/dx = 0 where
foX) = (1/T) [;£(¢, x) dt. Consequently, defining ¢ 2 1/w, due
to [13, p. 222, assertions (i) and (ii)], for any given % > O there
exists w, and, hence ¢, = 1/w, = €,(n) such that for any 0 < ¢ <
€, Of @ > w, (A.12) has a unique T-periodic asymptotically stable
solution v®(¢, x) for which

sup|lv¥(x, £) ||, <. (A.13)

(A.11) |
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Now, since A(?, q) is a solution of (8) defined for all #¢ [0, o),
there exists a constant p such that

[+ (2. ve.0) -4
(A.14)

Consequently, choosing 7 in (A.13) as & /u and taking the time
average of (A.14), we obtain

h(g,u’(x,t)) —h(é,o) |

If h(¢,0) = 0 holds, then from (A.15)
t
“h(— ,v¥(x, t)) < 8.
€ 1

Due to (A.9), inequality (A.16) coincides with (6) for f(¢) =
(1/€)é(t/e). Finally, asymptotic stability of u*(x, ¢) follows from
asymptotic stability of v'(x,?) via mapping h((t/e), - ), i.e.,
S(#) = (1/€)¢(t/¢) indeed are stabilizing vibrations in the sense of
Definition 1. This proves Lemmas 2 and 3, assertions 1).

If conditions of Lemma 2, assertion 2) hold, then (1) with
vibrations f(#) = (1/€)$(f/e) must have the null solution and so
does (A.10). Now, of Lemmas 2 and 3, assertions 2) follow from
the uniqueness of the asymptotically stable solution of (A.12) in the
vicinity of 0 which must be the null solution itself, since it is already
known to exist. Q.E.D.

Proof of Theorem I: Under the assumptions and conditions
of Theorem 1, function A(t, v(x, ) in (9) is given by ®(#)v(x, ?),
therefore (13) takes the form

w, = Aw,, + Bw,+ C,w.

= ullv(x,8)}, ve=zo.

1

= plv’(x, )|, < 5. (A.15)

(A.16)

(A.17)

If all the conditions of Theorem 1 hold, then all the conditions of
Lemma 1 are satisfied as well and, consequently, the null solution of
(A.17) is asymptotically stable. Now, noting that in this case
h(¢,0) = 0, the assertion of Theorem 1 directly follows from
Lemma 2. Q.E.D.
Proof of Corollary 1: Since A =al, a>0, and B = bl,
Theorem 1, conditions a), b) hold for any positive-definite matrix
M. Further, if matrix C, is nonderogatory, there exists a nonsingu-
lar matrix K such that matrix K~!C,K is in the companion form.
Assume now that tr C, < 0. Then .
trC,=trK~'C,K <0. (A.18)
In this case from the Theorem of [17] it follows that there exists a
periodic matrix D,(#) such that a fundamental matrix ®,(f) of
Y = Dy(t)y is periodic and matrix

1 T
Q2 lim — [ &'(£)K"'C,K®,(t) dt
T T )

is Hurwitz. Setting F(¢) = KD,(£)X~! in Theorem 1, condition,
1) a fundamental matrix ®(¢) = K® () of y = F(¢)y guarantees
that matrix C, defined in (17) is Hurwitz and therefore, there exists
positive-definite matrix M such that matrix CJM + MC, is nega-
tive definite. Now, the assertion of Corollary 1 follows from
Theorem 1. Q.E.D.

Proof of Theorem 2: 1t directly follows from Lemma 3,
assertion 2). Q.E.D.

Proof of Theorem 3: Under the assumptions and conditions

of Theorem 3 function A(Z, v(x, #)) in (9) is given by Y(¢) +

v(x, ), with {(¢) defined in (22), therefore (13) takes the form

w, = alw,, + blw, + Hw (A.19)
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where H is given in (23). If H is a Hurwitz matrix, due to 4 = af
and B = bl, all the conditions of Lemma 1 are satisfied, conse-
quently the null solution of (A.19) is asymptotically stable. Finally,
since in this case h(f, q) = ¥(#) + q and therefore according to
(22) h(¢t,0)= 0, the assertion of Theorem 3 directly follows from
assertion 1) of Lemma 2. Q.E.D.

Proof of Theorem 4: 1t directly follows from Lemma 3,
assertion 1). Q.E.D.

ACKNOWLEDGMENT

‘Prof. M. J. Balas, Prof. A. Dwyer, and Prof, T. I. Seidman are
gratefully acknowledged for stimulating discussions on operator
theory and the properties of the solutions of PDE’s. J. Bentsman
would also like to gratefully acknowledge his earlier collaboration
with Prof. S. M. Meerkov and Dr. X. Shu.

REFERENCES

S. M. Meerkov, ‘‘Principle of vibrational control: Theory and appli-
cations,”’ IEEE Trans. Automat. Contr., vol. AC-25, pp. 755-762,
Aug. 1980.

S. M. Osovets, ‘‘Dynamic methods of retention and stabilization of
plasma,”’ Soviet Phys. Uspekhi, vol. 112, pp. 637-684, 1974,

S. M. Meerkov and G. 1. Shapiro, ‘‘Method of vibrational control in
the problem of stabilization of ionization-thermal instability of a
powerful continuous CO, laser,”” Automat. Remote Contr., vol.
37, pp. 821-830, 1976.

S. M. Meerkov, ¢‘Vibrational stabilizability of distributed parameter
systems,” J. Math. Anal. Appl., vol. 92, pp. 408-418, Feb.
1984.

R. E. Bellman, J. Bentsman, and S. M. Meerkov, ‘‘Vibrational
control of nonlinear systems: Vibrational stabilizability,”” IEEE
Trans. Automat. Contr., vol. AC-31, pp. 710-716, Aug. 1986.
——, ““Vibrational control of nonlinear systems: Vibrational control-

11}

2]

3]

41

B3]

[6]

Y]

(81

9]

[10]

[11]

(12]

[13]
[14]

[15]

[16]
17

(18]

lability and transient behavior,”” IEEE Trans. Automat. Contr.,
vol. AC-31, pp. 717-724, Aug. 1986.

J. Bentsman, ‘‘Vibrational control of a class of nonlinear systems by
nonlinear multiplicative vibrations,”’ IEEE Trans. Automat. Contr.,
vol. AC-32, pp. 711-716, Aug. 1987.

A. Cinar, J. Deng, S. M. Meerkov, and X. Shu, *‘Vibrational control
of an exothermic reaction in a CSTR: Theory and experiment,”
AIChE J., vol. 33, no. 3, pp. 353-365, 1987.

X. Shu, K. Rigopoulos, and A. Cinar, ‘‘Vibrational control of an
exothermic CSTR: Productivity improvement by multiple input oscil-
lations,”” IEEE Trans. Automat. Contr., vol. 34, pp. 193-195,
1989.

J. Fakhfakh and J. Bentsman, ‘‘Experiment with vibrational control of
a laser illuminated thermochemical system,”” ASME J. Dynam.
Syst. Meas., Contr_., vol. 112, no. 1, pp. 42-47, 1990.

J. Bentsman, S. M. Meerkov, and X. Shu, ‘‘Vibrational stabilizability
of a class of distributed parameter systems,’’ in Proc., IV IFAC
Symp. Contr. Distributed Parameters Syst., IFAC Proc. Series,
Vol. 3. New York: Pergamon, 1987, pp. 453-457.

——, ‘‘Vibrational control of nonlinear parabolic systems,’”” 1987
IFAC World Congress (preprints), vol. 9, Munich, Germany, 1987,
pp. 285-288.

D. Henry, Geometric Theory of Semilinear Parabolic Equations.
New York: Springer-Verlag, 1981.

M. Vidyasagar, Nonlinear System Analysis. Englewood Cliffs,
NIJ: Prentice-Hall, 1978.

J. B. Diaz and F. T. Metcalf, ‘‘Variations of Wirtinger’s inequalities,”’
in Inequalities, O. Shisha, Ed. New York: Academic, 1967, pp.
79-103.

T. Kato, Perturbation Theory for Linear Operators.
Springer-Verlag, 1976.

S. M. Meerkov and Y. Tsitkin, ‘‘The effectiveness of the method
of vibrational control for the dynamical systems of the order n,”
Automat. Remote Contr., vol. 36, pp. 525-529, 1975.

J. Bentsman, *‘Oscillations-induced transitions and their application in
control of dynamical systems,”” ASME J. Dynam. Syst. Meas.
Contr., vol. 112, no. 3, pp. 313-319, 1990.

New York:



