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Abstract
Functional near-infrared spectroscopy (fNIRS) is a noninvasive method for acquiring hemodynamic signals from the brain 
with advantages of portability, affordability, low susceptibility to noise, and moderate temporal resolution that serves as a 
plausible solution to real-time imaging. fNIRS is an emerging brain imaging technique that measures brain activity by means 
of near-infrared light of 600–1000 nm wavelengths. Recently, there has been a surge of studies with fNIRS for the acquisi-
tion, decoding, and regulation of hemodynamic signals to investigate their behavioral consequences for the implementation 
of brain–machine interfaces (BMI). In this review, first, the existing methods of fNIRS signal processing for decoding brain 
commands for BMI purposes are reviewed. Second, recent developments, applications, and challenges faced by fNIRS-based 
BMIs are outlined. Third, current trends in fNIRS in combination with other imaging modalities are summarized. Finally, we 
propose a feedback control concept for the human brain, in which fNIRS, electroencephalography, and functional magnetic 
resonance imaging are considered sensors and stimulation techniques are considered actuators in brain therapy.

Keywords  Functional near-infrared spectroscopy · Brain–machine interface · Classification · Stimulation · 
Neuromodulation

1  Introduction

A brain–machine interface (BMI) or brain–computer inter-
face (BCI) is a software and hardware communication sys-
tem that can be used to bridge the gap between thoughts 
and actions, allowing people with physical disabilities 
(PWPD) to control external devices or communicate with 
the real world. BMI systems are designed to benefit PWPD 
by facilitating increased independence in functional areas 
such as communication, mobility, and access to computers 

and electronic aids for day-to-day living. These systems 
rely on the control signals generated from the brain and are 
executed without the involvement of peripheral nerves and 
muscles [1]. In the last two decades, several studies have 
emerged showing great potential in developing BMI appli-
cations for a variety of patients who cannot control their 
muscle movements voluntarily or for PWPD who suffer 
from illnesses including locked-in syndrome, amyotrophic 
lateral sclerosis (ALS), primary lateral sclerosis, hemi- and 
tetra-plegia, Duchenne muscular dystrophy, traumatic brain 
injury, stroke, cerebral palsy, multiple sclerosis, Parkinson’s 
disease, spinal cord injury, progressive supranuclear palsy, 
spinocerebellar ataxia, and spinal muscular atrophy [2, 3]. 
The development of BMI applications is essential in the cur-
rent era due to an increase in the population of elderly peo-
ple (age > 60) in society. A recent survey conducted by the 
United Nations has shown that the population of seniors is 
expected to grow by approximately nine billion by the year 
2050 [4]. A graph of the yearly trend of the population of 
elderly individuals is shown in Fig. 1. Since diseases such 
as Parkinson’s disease and locked-in syndrome can be more 
commonly found in elderly people, extensive developments 
have been made by researchers and scientists to improve 
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BMI methods that can cope with potential issues raised by 
an aging society and serve as neurorehabilitation tools for 
individuals with severe motor impairment.

To establish communication between the brains of PWPD 
and computers, a basic BMI scheme comprises five steps: 
(1) signal acquisition; (2) preprocessing or signal enhance-
ment; (3) feature extraction; (4) classification; and (5) the 
control interface [5]. Steps 2–5 are extensively discussed 
in the literature. Here, the primary focus is on the brain 
signal-acquisition stage, which is crucial in both invasive 
and noninvasive types of BMIs [6]. There are two types of 
brain signals detected using noninvasive brain imaging. The 
first type is neuronal signals that are directly acquired from 
the scalp as electric potentials using metal electrodes; the 
second type is known as hemodynamic signals that are gen-
erated as a result of oxygen exchange in the blood caused 
by neuronal firing. Electroencephalography (EEG) signals 
are electric potentials generated due to neuronal firing when 
some mental activity is performed, which can be used for 
BMI applications [7, 8]. On the other hand, functional near-
infrared spectroscopy (fNIRS) and functional magnetic reso-
nance imaging (fMRI) can be used for BMI applications 
that measure hemodynamic activity [9–11]. The increased 
blood flow due to activated neurons results in an increase 
and decrease of oxy- and deoxyhemoglobin, respectively, 
which can be observed using fNIRS.

Interestingly, in 1999, in parallel to the work of Chapin 
and Nicolelis on animals with invasive BMIs, Niels 
Birbaumer led the group at the University of Tubingen in 
Germany and posed their pioneered work that established a 
direct link between the brain and a computer in patients with 
locked-in syndrome [12, 13]. Birbaumer named this direct 
link BMI, which had been introduced in the literature two 
decades ago [14]. Using this noninvasive BMI, locked-in 
patients were able to write messages on the computer with 
brain signals (cortical potentials) measured through EEG. 
As an imaging modality for BMIs, EEG is commonly used 
for studies because it is low in cost, portable, and noninva-
sive [15–17]. It has a high temporal resolution that enables 
the detection of brain activity at millisecond resolution. 

Motor imagery (MI), steady-state visual evoked potentials 
(SSVEP), and P300 evoked potentials are commonly used 
brain signals for BMI development [18–22]. These brain-
originated signals in the form of electric potentials have been 
applied to control BMI devices, such as wheelchairs and 
quadcopters [23–26].

In addition to EEG, another modality commonly used 
for BMIs is fNIRS, which utilizes light in the near-infrared 
range between 600 ~ 1000 nm to measure the hemodynamic 
changes in the form of oxygenated hemoglobin (ΔHbO) 
and deoxygenated hemoglobin (ΔHbR). The cerebral blood 
flow changes are measured from the cortical brain regions 
by detecting the absorption of near-infrared light and are 
associated with brain activity [27–33]. In comparison to 
fMRI, fNIRS provides spatially specific signals at high 
temporal resolution (~ 100 ms). It is portable, less expen-
sive than fMRI, and considered safe to use. fNIRS employs 
multiple pairs of illuminators and detectors operating at two 
or more distinct wavelengths. Participants can be scanned 
under normal conditions, which make fNIRS a more viable 
option for implementing BMIs. Several previous studies 
have shown the feasibility of fNIRS for BMI applications 
and rehabilitation purposes [5, 6, 9, 34–36]. Since the focus 
of this review is on the fNIRS-based BMIs and challenges 
faced by this modality, we tried to circumvent other nonin-
vasive techniques such as EEG and fMRI. However, studies 
on the combination of these modalities will be discussed 
in future prospects of BMI applications with imaging tech-
niques. Such systems are called “Hybrids”, which have 
been employed to obtain an increased number of control 
commands and improved classification accuracies for BMI 
applications [37–40].

BMI applications that incorporate both fNIRS and EEG 
can be categorized into three types: active, passive, and reac-
tive. In an active-type BMI, to generate brain activity, vari-
ous brain tasks are used: MI, motion intention, and mental 
tasks. During these tasks, the subjective brain activity is 
generated by the individual without any external stimuli. 
Reactive-type tasks use external stimuli to generate brain 
activity. In these paradigms, the stimulus can be given in 
the form of an audio, video, interrogative, or pain stimulus 
[41–43]. Generating a command is difficult in the case of 
active and reactive cases due to the limited ability of the user 
to consciously interact with multiple components simultane-
ously. Passive BMI or passive brain activity is an arbitrary 
activity that can be generated by the brain without volun-
tary control of a subject or user [15]. Characteristically, it 
is different from cognitive user state monitoring because an 
arbitrary activity generated without any objective control 
can be used. This is advantageous because several activities 
can be detected in parallel, further used the translation of 
commands in the development of a BMI system.

Fig. 1   Expected global population by the year 2050 [4]
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The present review aims to discuss progress in fNIRS-
based BMIs. First, the procedures involved in the devel-
opment of fNIRS-based BMIs will be discussed. Second, 
the brain activities that can be detected for BMIs and brain 
imaging using an fNIRS modality are discussed. Third, the 
challenges and problems that exist in noninvasive imaging-
based BMIs are discussed. We will also discuss the role of 
fNIRS in the development of hybrid-type BMI systems for 
rehabilitation and brain therapy applications. Finally, we 
propose a closed-loop control scheme of the brain, where 
imaging modalities are considered sensors and stimula-
tion methods are considered actuators to improve the brain 
therapy process for better generation of control commands.

2 � Early advancements in fNIRS‑based BMIs

In this section, we will summarize early advancements, 
from 2004 to 2011, made in the development of fNIRS-
based BMI systems. This noninvasive imaging modality, 
introduced by Jobsis et al. in 1977, has been used for vari-
ous applications [44]. Usually, PWPD prefer nonsurgical 
options in any clinical treatment, as their safety is of extreme 
priority; therefore, noninvasive BMIs are the default choice 
for clinical applications. The first fNIRS-based BMI was 
presented by Coyle et al. in 2004 [45]. In this preliminary 
study, the subjects were asked to perform a motor imagery 
task of squeezing a ball. The BMI achieved an overall 75% 
recognition of the subjects’ imagined movements. After a 
gap of 2 years, in 2007, three more studies were published 
describing new fNIRS-based BMI concepts. A custom-built, 
simplified fNIRS device was designed to detect hemody-
namic responses (HR) generated from mental imagery 
processes that could be used as a control (on–off) channel 
for a computer application [46]. Another potential appli-
cation of fNIRS in the development of BMI applications 
was conducted by Sitaram et al. who successfully classified 
left-hand motor imagery from a right-hand MI task with an 
average accuracy of 73% for all healthy subjects using sup-
port vector machines (SVM) as a classifier [47]. The hidden 
Markov model (HMM) performed better as a classifier, with 
an average accuracy of 89%. A significant and pioneering 
study was conducted by Naito et al. to illustrate the concept 
of fNIRS-based BMIs for patients with amyotrophic lateral 
sclerosis in a totally locked-in state who were completely 
unable to move any part of the body [48]. Using quadratic 
discriminant analysis, the patients’ intentions were correctly 
classified, with an accuracy of 80%. A total of four studies 
were conducted in 2008–2009. Although the expansion in 
the field was slow but represented a never-ending develop-
ment towards optical measurement-based BMIs. On the one 
hand, in 2008, “Go-Stop” control using HR evoked from 
arithmetic calculations was demonstrated; on the other hand, 

in the same year, stable HRs that were opposite in nature 
and evoked from the frontal cortex of healthy subjects were 
reported, further suggesting the application of HR towards 
BMIs [49, 50]. In 2009, a group led by Tom Chau published 
two studies that demonstrated the feasibility of BMI devel-
opment using the single-trial classification of fNIRS signals. 
A positive/negative emotional induction task was employed 
to distinguish HR features obtained from genetic algorithms 
from baseline levels in an offline analysis, with linear discri-
minant analysis (LDA) and SVM as a classifier, which ulti-
mately provided accuracies up to 75% [51]. In their second 
study, the subject’s preference towards one of their preferred 
drinks from two presented was decoded from the prefrontal 
cortex and was able to achieve an average accuracy of 80% 
with LDA [52]. In 2010, two more studies were published: 
in the first, HRs generated from mental arithmetic and music 
imagery tasks were classified with an average classification 
accuracy of 77.2% using HMM [53]. In the second study, a 
finger tapping task vs rest was classified using a multivariate 
pattern classification technique to enhance the viability of 
fNIRS-based BMIs and real-time applications [54].

In early developments, the steps followed to make 
the BMI system were the same as those alluded to in the 
Introduction section but varied in terms of classification 
techniques and task choice, i.e., either cognitive or motor 
imagery. A typical fNIRS-based BMI is shown in Fig. 2. 
This leads to a steering of the focus of our review towards 
the inclusion of later studies in terms of signal preprocessing 
methods, the activities involved in acquiring brain signals, 
and the classification techniques in the upcoming subsec-
tions. It was also noted that since there were fewer gener-
ated commands, there exists an information transfer gap, 
an inherent delay in the hemodynamic signal, and obtained 
accuracies that were not as good as in conventional, direct 
or invasive methods of controlling machines, or computers 
using the brain [55]. Therefore, promising techniques, such 
as the concept of hybrid BMIs (fNIRS-EEG, with the inclu-
sion of physiological measurements) and reduction of delay 

Fig. 2   Block diagram of a typical fNIRS-based BMI
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in HR through initial dip, will also be discussed in later 
sections [56–60].

3 � BMI modules

As alluded to in the Introduction section, BMIs can be 
designed with certain key modules. We will broadly discuss 
these modules in light of fNIRS-based BMI studies along 
with the necessary support from the literature.

3.1 � Brain activity selection

The foremost step is the selection of brain regions from 
where the signals are generated depending on the cor-
responding tasks or activities. The signals are generally 
acquired from the prefrontal and/or motor cortices. The sig-
nals corresponding to motor execution and motor imagery 
tasks can be acquired from the motor cortex, whereas those 
corresponding to cognitive tasks can be acquired from the 
prefrontal cortex [61–63]. It is pertinent to mention that 
the years 2011–2013 can be considered a golden period for 
fNIRS-based BMIs: approximately 20 studies were pub-
lished that selected prefrontal and motor cortices of the brain 
for signal acquisition where different motor and cognitive 
tasks were presented to subjects [56, 59, 64–79]. The litera-
ture suggests that the activity from the motor cortex or the 
prefrontal cortex is a good choice for fNIRS-based BMIs. 
Motor execution tasks can be explained as the movement of 
body parts, such as the finger, hand, arm, or leg, that result 
in the generation of signals at the motor cortex of the brain. 
After processing, the signals acquired through fNIRS serve 
as controlling commands of the external device, which is 
sometimes not feasible in cases of locked-in patients and 
PWPD. In this way, an alternate called motor imagery 
tasks is very handy, which is one of the most commonly 
employed tasks in fNIRS-BMI. As the name suggests, it is 
a motor function-related activity without actual movement 
of one’s own body part, i.e., the imagination of movement. 
This activity usually appears in the premotor cortex and, as 
evidence suggests, the prefrontal cortex [80]. Many cogni-
tive tasks, such as object rotation, music imagery, mental 
arithmetic, change detection, mental singing, emotionally 
rated music listening, verbal fluency, word formation, puz-
zle-solving, happy thoughts, Stroop tasks, future visuali-
zation, focus on a screen, and imagination of pictures are 
responsible for generating activity in the prefrontal cortex 
of the brain [11]. Activities from the prefrontal cortex are 
beneficial, especially in the case of locked-in patients as well 
as patients in a vegetative state where the motor cortex is 
not working. It was recently demonstrated that eleven dif-
ferent patterns of activity could be decoded from the pre-
frontal cortex [81]. Studies in the field of fNIRS have also 

demonstrated its advantage in monitoring passive activities, 
such as drowsiness detection and working memory, for the 
purpose of passive BMIs [15, 82].

Another important step is the positioning of fNIRS 
optodes (illuminators and detectors) atop the subject heads. 
Usually, the optodes are placed around the brain using the 
International 10/20 or 10/10 EEG electrode placement sys-
tem [83]. It is important to place optodes at specific loca-
tions to obtain maximum fNIRS measurements; usually, 
2.5–3 cm distances are recommended [84–86]. Various 
optode arrangements can be made on desired brain areas; 
for example, a more than 5 cm separation might result in 
weak signals, while less than 1 cm distance may contain 
artifacts from skin-scalp contributions. However, the latest 
studies show promising results by incorporating short sepa-
ration (0.8–1 cm apart) channels for the removal of cortical 
noise [87–91]. Another aspect is the sufficient number of 
illuminators/detector pairs for adequate extraction of neu-
ronal activity. This number varies depending on the type of 
brain signals (motor or cognitive) that can be used for BMI 
purposes. For obtaining cognitive measurements from the 
prefrontal cortex, three illuminators and eight detectors may 
be sufficient for an adequate amount of brain signals [52, 
53, 74]. Several configurations of fNIRS optodes have been 
used in obtaining brain activities corresponding to motor 
tasks for BMIs, such as six and four pairs of optodes or four 
illuminators and ten detectors, which can cover the entire 
cortex [47, 92–94].

3.2 � Preprocessing

After selection of the brain region for the acquisition of sig-
nals corresponding to a particular activity and the correct 
positioning of optodes over the subject’s head, the obtained 
signals are then processed to obtain relevant information that 
can be used for communication and control. It is likely that 
the acquired signals may contain different kinds of noise, 
such as instrumental noise, physiological noises, and experi-
mental error [6, 41, 95–97]. Instrumental noise is the noise 
found in fNIRS signals generated either by hardware or from 
the surrounding environment. Instrumental degradation can 
be considered as an example. It commonly involves high 
(constant) frequencies that can be removed by a low-pass fil-
ter. Likewise, by minimizing the variation of external lights, 
instrument noise can be significantly reduced. Experimental 
errors include motion artifacts, i.e., head motions, which 
cause the movement of optodes from their assigned posi-
tions. This can cause a sudden change in the light inten-
sity, resulting in spike-like noise. Various filters have been 
applied in the past to eliminate experimental-related errors, 
such as Savitzky–Golay filters, Wavelet analysis-based meth-
ods, Wiener filtering, and eigenvector-based spatial filtering 
[53, 77, 98, 99]. Since instrumental noise and experimental 
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errors are not related to brain activity, it is better to remove 
them prior to converting the raw optical density signals to 
the concentration changes of ΔHbO and ΔHbR through the 
modified Beer–Lambert law [100]. Physiological noises 
include those due to circulation, respiration, and Mayer 
waves, which are related to blood pressure fluctuations. In 
signal preprocessing, these noises are removed from the con-
verted data, i.e., the concentration changes of hemoglobin. 
Various methods have been applied to remove physiological 
noise from the data in the studies alluded to above and in 
later studies, including band-pass filtering, common averag-
ing reference, spatial filtering, adaptive filtering, principal 
component analysis, and independent component analysis 
[47, 101–104]. When the frequencies of the physiological 
noise are known, a band-pass filter can serve the purpose of 
removing them. Conversely, respiration-related noise may 
not be removed using band-pass filtering, and then adaptive 
filtering can be applied. Independent and principal compo-
nent analyses are helpful in determining when to separate 
physiological noises from the mixed signals that ultimately 
provide the desired HR. Many fNIRS-based BMI studies 
have used these filters for the removal of unnecessary noise 
[105–108]. However, the advantage of a particular noise 
removal technique over others has not yet been reported.

3.3 � Features and classification

After preprocessing—in other words, the removal of noise—
the specific characteristics of signals, known as features, are 
acquired for translation into control commands. An impor-
tant aspect of acquiring features is to define the size of a time 
window that is most suitable for acquiring features for the 
generation of control commands. Due to the delayed nature 
of hemodynamic signals, features have been mostly selected 
in time ranges of 0–5, 2–7, 0–10, 0–15, 0–17, or 0–20 s win-
dows [6, 15, 94]. It is not unusual to select a larger window 
size depending on the length of the stimulation, but for a 10 s 
stimulation task, a 2–7 s time window may provide better 
results [109]. Once the time window is selected, features can 
be extracted from the signals for further processing.

In fNIRS-based BMIs, primarily hemodynamic signals 
have been used for the extraction of certain features [110]. 
Additionally, the literature indicates that light intensity sig-
nals have also been used for the acquisition of appropriate 
features [52, 53]. In comparison to light intensity signals, 
more options are available in the selection of suitable fea-
tures from various hemodynamic signals that include HbO, 
HbR, total hemoglobin (HbT), and cerebral oxygen exchange 
(COE = HbO–HbR). Better results in classifying these sig-
nals can be achieved by obtaining optimal feature sets that 
are similar to a certain class and different from others. In 
past BMI studies, many features, such as the mean HbO, 
mean HbR, skewness, kurtosis, variance, zero crossings, 

decomposed intrinsic mode functions, slope, number of 
peaks, sum of peaks, and peak values, were computed from 
specific time windows for classification [47, 51, 58, 74, 
111–113]. Moreover, different combinations of such features 
may provide the necessary discriminatory information for 
the purpose of classification [114]. Most of these features 
can be obtained using built-in functions in MATLAB™; the 
definitions of these features in the form of equations can be 
found in the literature [15]. Recently, studies have shown 
the use of HbT and COE for initial dip detection, which can 
be used as a feature for quicker command generation [115, 
116].

Classification techniques are used to identify the different 
brain signals generated by the user. These identified signals 
are then translated into control commands for application 
interface purposes. In most existing fNIRS-BMIs, such 
identification is performed using classification techniques 
to discriminate various brain signals based on appropriate 
features. These classifiers can be termed discrete classifi-
ers, which convert neuronal activities into discrete choices. 
Since the user can generate a limited number of commands 
in noninvasive BMIs, these types of discrete classifiers are 
commonly used. Such classification algorithms, calibrated 
by supervised learning during a training phase, can detect 
brain-signal patterns during the testing stage. Some of the 
more commonly used mathematical algorithms in fNIRS-
BMIs for discrete classification purposes include LDAs, 
SVMs, HMM, heuristic search algorithms, extreme learn-
ing machines, and artificial neural networks (ANNs) [15, 61, 
117–119]. Although SVM, ANN, and HMM showed better 
performance due to their inherent nature of nonlinearity, for 
BMI applications, it is useful to deploy classifiers that must 
be fast and accurate. Thus, LDA, due to its simple struc-
ture and low computational cost, has been widely used. The 
mathematics involved in these classification algorithms can 
be obtained from the literature [11].

Figure 3 shows pie charts illustrating the distribution of 
features and classifiers that have been used in the literature 
(2010–2019, 74 articles). This will be helpful for research 
groups in the BMI field to select proper features from fNIRS 
signals and classifiers.

4 � Applications

The core purpose of BMIs is to communicate with PWPD 
or patients with persistent locked-in syndrome, which is not 
achievable in the absence of an absolute interface with a 
machine. Therefore, after classification, the generated com-
mand signals are sent to the external interfaces for com-
munication. It is difficult for PWPD to generate multiple 
commands to operate complex systems. Therefore, fNIRS-
based BMIs must be designed with respect to the numbers of 
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commands that the end-user can generate. Researchers have 
developed an fNIRS-BMI system for binary communication 
based on activation from the prefrontal area [106]. The sub-
jects were asked to perform a specific task such as mental 
arithmetic or music imagery to increase the cognitive load 
and thereby respond “yes,” or to remain relaxed and thus 
respond “no”, to the given question. Gallegos-Ayala et al. 
reported on an fNIRS-based BMI system for a patient with 
ALS who answered different questions by simply thinking 
‘yes’ or ‘no’, which resulted in an online classification accu-
racy of ~ 72% [35]. Hwang et al. tested a similar paradigm on 
eight healthy participants that resulted in an offline average 
accuracy of ~ 76% when the best feature set was employed 
for each participant [120]. Astonishingly, the fNIRS chan-
nel locations did not cover the temporal regions, which are 

mostly considered important speech-related brain areas. In 
[34], Chaudhary et al. extended the work presented in [35] 
by increasing the number of ALS patients to four and thus 
achieved an average online classification accuracy of more 
than ~ 70%. Another notable study by Abdalmalak et al. 
reported the feasibility of a time-resolved system, which was 
tested to communicate with a patient with Guillain–Barre 
syndrome, without the need for prior training, for the estab-
lishment of an fNIRS-based BMI system [36].

In another study, a less restrictive and stable measurement 
system for BMIs for second language learning was proposed, 
which resulted in the creation of the Yerkes–Dodson law 
[121]. An fNIRS-based BMI was demonstrated as a new 
type of neural prosthetic system for helping locked-in syn-
drome patients by identifying/reconstructing speech with a 
machine algorithm that achieved average classification accu-
racies of ~ 75% and ~ 44% for 50-s- and 25-s-long stories, 
respectively [122]. Moreover, some studies have shown the 
ability to classify multiple commands simultaneously from 
two different regions of the brain [109]. In addition, a 3-class 
online fNIRS-based imagined speech BMI has been demon-
strated using regularized LDA by optimizing its parameters 
during the study, which resulted in an accuracy of ~ 84% for 
9 out of 12 subjects [123].

fNIRS is more attractive than fMRI with regard to access-
ing subcortical brain signals because of its low cost, user-
friendliness, and portability. Most of its appeal, however, 
is in its lower susceptibility to motion artifacts. Given the 
above points, the potential uses of fNIRS in neurofeed-
back studies are numerous [110]. Using neurofeedback, the 
induction of neuroplasticity in selected brain areas can be 
accomplished, which has the potential to improve cognitive 
performance. A study aimed at developing a synchronous 
fNIRS-based BMI paradigm using an action observation 
task that represents a neural activity comprised of imagin-
ing movement while watching a complex motor action and 
empirical analysis was able to decode these tasks with rea-
sonable accuracy as BMI commands [124, 125]. In another 
study, the possibility of using neurofeedback that allows 
users to deliberately regulate their own brain function cor-
responding to a motor imagery task was presented. These 
results were further replicated in Stroke patients [126]. 
Similarly, another study was conducted to check the effect 
of feedback while imagining squeezing an elastic ball that 
resulted in modulation of activity [127]. Yet another study 
explored the affective engagement of subjects with a virtual 
agent as neurofeedback [128]. Recently, a toolbox named 
Turbo-Satori was designed for real-time applications of 
fNIRS-based BMIs with neurofeedback [129].

Though the use of fNIRS in BMIs is still emerging, it has 
shown potential as a supplement or replacement for electro-
encephalography for the restoration of movement capabili-
ties for PWPD. The control commands generated by a BMI 

Fig. 3   Features (upper panel) and classifiers (lower panel) used in 
fNIRS-based BMI studies. The charts were constructed using 74 
articles (2010–2019) from Web of Science (https​://www.isikn​owled​
ge.com)

https://www.isiknowledge.com
https://www.isiknowledge.com
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system can be used to control a prosthetic limb or a wheel-
chair. A study has demonstrated the first online results of 
four motor-imagery tasks (left hand, right hand, left foot, and 
right foot) mapped to four high-level commands (turn left/
right, move forward/backward) to control the navigation of 
a virtual avatar or a DARwIn-OP humanoid robot; the clas-
sification accuracy during the control of original robot was 
significantly improved [130]. However, most fNIRS studies 
have not yet provided a device interface, such as the wheel-
chair, that can prove its utility for patients. Additionally, it is 
desirable to have a portable system for these applications so 
that the user can move freely [131]. Moreover, these applica-
tions, for safety purposes, cannot afford high error rates and 
must be fast enough to provide real-time control. Several 
fNIRS-based BMI studies have tried to improve classifica-
tion accuracies using adaptive algorithms and to enhance 
information transfer rates [132, 133]. A Gaussian mixture 
model and general linear model-based adaptive algorithms 
were applied to enhance classification accuracy [134, 135]. 
A common spatial pattern-based algorithm has also been 
used to improve the average accuracies [136].

5 � Challenges

It can be concluded from the discussion above that we are 
still far from successfully implementing a BMI for PWPD 
in real-time. Nevertheless, current research is heading in the 
right direction, and consequently, the desired goals may be 
achievable. Some key issues still need to be resolved before 
progressing towards achieving these goals.

The first shortcoming in current research on BMIs is the 
lack of patients’ inclusion in the experiments. A large body 
of fNIRS-based BMI research uses healthy subjects, which 
creates a translation gap from proof of concept to actual 
implementations. Successful results from healthy people 
may not reflect the achievement of the same outcomes in 
patients.

The selection of suitable brain activity for patients is the 
second essential factor for BMIs. Based on the presently 
available literature, we have no confidence to say which 
brain task is the most appropriate for a patient. Although 
a healthy person can perform any rational task, a patient 
may need various options to choose the appropriate one. A 
robust conclusion can only be achieved if a sufficient number 
of patients are used in BMI studies for evaluating various 
brain tasks.

The third concern is the selection of a suitable brain 
region. As alluded to in the preceding sections, a consensus 
has not yet been achieved on using one or two appropri-
ate regions for patients. However, this decision may vary 
depending on the specific patient case. Additionally, most 
studies either use averaging of fNIRS channels or rely only 

on a single channel for BMIs, but a precise positioning of 
optodes on the brain is required for high-quality detection 
of activity.

One more issue with current fNIRS studies is the lack of 
physical implementation of BMIs. Additional sensors, such 
as those monitoring blood pressure and respiration, may be 
helpful in generating correct commands with BMI realiza-
tion. Due to the incorrect generation of commands, the out-
come may be severe in real-time scenarios with locked-in 
patients, even in binary decoding. Thus, expansion in this 
category is necessary.

Other challenges are the lower number of commands and 
command generation time, assuming the above issues are 
fully addressed. A definite number of commands are essen-
tial for the accurate operation of BMI systems, but increas-
ing the number of commands will reduce the classification 
accuracy and thus reduce the decoding ability. Therefore, 
in the following section, we will review some methods and 
techniques used to increase the number of commands and 
reduce command generation time, along with the inclusion 
of some noninvasive techniques of brain therapy for modula-
tion of brain activities.

6 � Current trends

Current trends in fNIRS are now moving towards hybridiza-
tion, reduction in command generation time with the help 
of initial dip techniques, and noninvasive brain therapies 
such as transcranial direct current stimulation (tDCS) or 
repetitive transcranial magnetic stimulation (rTMS). In the 
next subsections, we will briefly overview the advantages 
of hybrid systems in light of improvements in BMI applica-
tions. We will also summarize the notable findings of hybrid 
systems in tabular form. Furthermore, studies involved in 
reducing command generation time will be discussed along 
with stimulation therapy that can be used for enhancement 
of cortical activities.

6.1 � Hybrid systems

In literature covering BMIs or BCIs, it can be inferred that 
the output from hemodynamics is sufficient to control exter-
nal devices. Conversely, the obtained high accuracy may be 
due to the false detection of hemodynamic signals or the 
bias of fewer participants in the study. In real-time cases, 
this incorrect judgment may become a problem for patients 
from a safety point of view. For this reason, a hybrid sys-
tem approach, specifically the combination of hemodynamic 
signals (fNIRS) and neuronal signals (EEG), may be useful. 
Although research on concurrent fNIRS-EEG measurements 
is very limited, the obtained results are improved in terms 
of increased classification or a higher number of control 



	 Artificial Life and Robotics

1 3

Ta
bl

e 
1  

H
yb

rid
 fN

IR
S-

EE
G

 B
ra

in
–m

ac
hi

ne
 in

te
rfa

ce
 st

ud
ie

s w
ith

 a
pp

lic
at

io
ns

 to
 in

cr
ea

se
d 

ac
cu

ra
cy

 (f
ro

m
 2

01
2 

to
 2

01
9)

A
ut

ho
rs

B
ra

in
 a

re
a

Ta
sk

EE
G

 fe
at

ur
e

fN
IR

S 
fe

at
ur

e
C

la
ss

ifi
er

A
cc

ur
ac

y

Fa
zl

i e
t a

l. 
[3

7]
Fr

on
ta

l, 
se

ns
or

im
ot

or
, a

nd
 

pa
rie

ta
l

M
ot

or
 e

xe
cu

tio
n 

an
d 

im
ag

er
y

B
an

d 
po

w
er

M
ea

n 
Δ

H
bO

, Δ
H

bR
 a

nd
 

Δ
H

bT
LD

A
>

 90

K
ai

se
r e

t a
l. 

[1
37

]
Se

ns
or

im
ot

or
M

ot
or

 im
ag

er
y

M
ea

n 
Δ

H
bO

≤
 70

%
To

m
ita

 e
t a

l. 
[3

8]
O

cc
ip

ita
l

Fl
ic

ke
rin

g 
vi

su
al

 st
im

ul
i

SS
V

EP
Fi

rs
t a

nd
 se

co
nd

 d
er

iv
at

iv
es

 
of

 th
e 

di
ffe

re
nc

e 
of

 Δ
H

bO
 

an
d 

Δ
H

bR

Jo
in

t c
la

ss
ifi

er
Im

pr
ov

em
en

t i
n 

er
ro

r r
at

es
 

85
%

K
ha

n 
et

 a
l. 

[9
2]

fN
IR

S:
 p

re
fro

nt
al

EE
G

: s
en

so
rim

ot
or

M
en

ta
l a

rit
hm

et
ic

 a
nd

 m
ot

or
 

im
ag

er
y

Pe
ak

 a
m

pl
itu

de
s

M
ea

n 
va

lu
es

 o
f Δ

H
bO

 a
nd

 
Δ

H
bR

LD
A

>
 80

%

B
lo

kl
an

d 
et

 a
l. 

[1
38

]
Se

ns
or

im
ot

or
M

ot
or

 im
ag

er
y 

an
d 

at
te

m
pt

Po
w

er
 sp

ec
tra

l f
ea

tu
re

s i
n 

0 ~
 15

 s 
w

in
do

w
M

ea
n 

of
 H

bO
 a

nd
 H

bR
 in

 
3 ~

 18
 s 

w
in

do
w

Li
ne

ar
 lo

gi
sti

c 
re

gr
es

si
on

 c
la

s-
si

fie
r

A
ve

ra
ge

 a
cc

ur
ac

y =
  ~

 78
%

Pu
tz

e 
et

 a
l. 

[1
39

]
fN

IR
S:

 T
em

po
ra

l a
nd

 
oc

ci
pi

ta
l

EE
G

: w
ho

le
 sc

al
p

A
ud

io
 a

nd
 v

id
eo

 p
er

ce
pt

io
n

Ev
en

t-r
el

at
ed

 p
ot

en
tia

l a
nd

 
ba

nd
 p

ow
er

 c
ha

ng
es

D
iff

er
en

ce
 o

f m
ea

n 
of

 H
bO

 
an

d 
H

bR
SV

M
>

 90
%

M
or

io
ka

 e
t a

l. 
[1

40
]

fN
IR

S:
 p

ar
ie

ta
l a

nd
 o

cc
ip

i-
ta

l
EE

G
: W

ho
le

 sc
al

p

Sp
at

ia
l a

tte
nt

io
n

A
lp

ha
 a

nd
 b

et
a 

ba
nd

s
M

ea
n 

of
 H

bO
~ 

79
%

K
oo

 e
t a

l. 
[1

41
]

Se
ns

or
im

ot
or

M
ot

or
 im

ag
er

y
A

lp
ha

 b
an

d 
po

w
er

Th
re

sh
ol

d 
fo

r H
bO

SV
M

Tr
ue

 p
os

iti
ve

 ra
te

 o
f 8

8%
Y

in
 e

t a
l. 

[1
42

]
Ti

m
e–

fr
eq

ue
nc

y 
Ph

as
e

D
iff

er
en

ce
 o

f H
bO

 a
nd

 H
bR

EL
M

~ 
89

%
Le

e 
et

 a
l. 

[1
43

]
M

ot
or

 im
ag

er
y 

w
ith

 v
is

ua
l 

fe
ed

ba
ck

C
om

m
on

 sp
at

ia
l p

at
te

rn
 a

nd
 

Lo
g 

va
ria

nc
e

M
ea

n 
am

pl
itu

de
s o

f Δ
H

bO
 

an
d 

Δ
H

bR
LD

A
~ 

59
%

B
uc

ci
no

 e
t a

l. 
[1

44
]

M
ot

or
 e

xe
cu

tio
n

C
om

m
on

 sp
at

ia
l p

at
te

rn
M

ea
n 

an
d 

sl
op

e 
of

 H
bO

~ 
70

%
A

hn
 e

t a
l. 

[1
45

]
fN

IR
S:

 p
re

fro
nt

al
EE

G
: w

ho
le

 sc
al

p
Si

m
ul

at
ed

 d
riv

in
g

A
lp

ha
/b

et
a 

ba
nd

 p
ow

er
A

m
pl

itu
de

 o
f H

bO
 a

nd
 H

bR
~ 

68
%

K
ha

n 
an

d 
H

on
g 

[3
9]

Pr
ef

ro
nt

al
M

en
ta

l t
as

k
M

ea
n 

an
d 

nu
m

be
r o

f p
ea

ks
Pe

ak
 a

nd
 m

ea
n 

of
 Δ

H
bO

 
an

d 
In

iti
al

 d
ip

 fe
at

ur
es

 
(m

in
im

um
 v

al
ue

 in
 2

 s 
w

in
do

w
)

~ 
76

%

Li
 e

t a
l. 

[1
46

]
Se

ns
or

im
ot

or
M

ot
or

 e
xe

cu
tio

n
C

oe
ffi

ci
en

t o
f w

av
el

et
 

tra
ns

fo
rm

M
ea

n 
va

lu
es

 o
f H

bO
 a

nd
 

H
bR

 in
 2

 s 
w

in
do

w
SV

M
~ 

91
%

A
gh

aj
an

i e
t a

l. 
[1

47
]

Pr
ef

ro
nt

al
W

or
ki

ng
 m

em
or

y
B

an
d 

po
w

er
 a

nd
 p

ha
se

 lo
ck

-
in

g 
va

lu
e

Pe
ak

, s
lo

pe
, s

ta
nd

ar
d 

de
vi

a-
tio

n,
 sk

ew
ne

ss
 a

nd
 k

ur
to

-
si

s o
f H

bO
 a

nd
 H

bR

>
 80

%

Li
u 

et
 a

l. 
[1

48
]

fN
IR

S:
 p

re
fro

nt
al

EE
G

: w
ho

le
 sc

al
p

W
or

ki
ng

 m
em

or
y

B
an

ds
 p

ow
er

M
ea

n 
am

pl
itu

de
 o

f Δ
H

bO
 

an
d 

Δ
H

bR
LD

A
~ 

72
%

Sh
in

 e
t a

l. 
[1

49
]

fN
IR

S:
 p

re
fro

nt
al

EE
G

: w
ho

le
 sc

al
p

St
ro

op
 a

nd
 m

en
ta

l a
rit

hm
e-

tic
 ta

sk
Lo

g-
sc

al
ed

 v
ar

ia
nc

e
M

ea
n 

va
lu

es
 a

nd
 av

er
ag

e 
sl

op
e 

of
 Δ

H
bO

 a
nd

 Δ
H

bR
Sh

rin
ka

ge
 L

D
A

~ 
88

%

O
m

ur
ta

g 
et

 a
l. 

[1
50

]
fN

IR
S:

 p
re

fro
nt

al
EE

G
: w

ho
le

 sc
al

p
C

at
eg

or
y 

flu
en

cy
 ta

sk
B

an
d 

po
w

er
 a

nd
 p

ha
se

 lo
ck

-
in

g 
va

lu
e

M
ea

n 
va

lu
es

 a
nd

 c
or

re
la

tio
n 

of
 Δ

H
bO

 a
nd

 Δ
H

bR
SV

M
~ 

90
%

Zh
an

g 
et

 a
l. 

[1
51

]
Se

ns
or

im
ot

or
Fi

sti
ng

 a
ct

io
n 

ta
sk

W
av

el
et

 C
oe

ffi
ci

en
t

Sl
op

e 
of

 Δ
H

bO
SV

M
~ 

83
%



Artificial Life and Robotics	

1 3

commands compared to fNIRS- or EEG-only systems. The 
hybrid fNIRS-EEG system was evolved in 2012, and until 
2019–2020 studies have been published specifically for the 
purpose of developing BMIs [37–39, 92, 137–152]. Sum-
maries of their developments toward BMIs are provided in 
Table 1. The majority of studies were carried out on healthy 
people. The simultaneous measurement of fNIRS with other 
biosignals showed promising results. However, for BMI 
applications, the hybrid fNIRS-EEG is considered best to 
date. An imperative disadvantage of using hemodynamics 
(either fMRI or fNIRS) is the inherent delay in its response, 
which makes the generation of commands slower compared 
to EEG. However, in the case of combined fNIRS-EEG, this 
kind of disadvantage can be removed.

6.2 � Command generation

As alluded to above, some research issues are still present 
in fNIRS-based BMIs without the inclusion of additional 
modalities: (1) improvement in the classification accuracy; 
(2) increase in the number of commands generated from the 
brain for external control; and (3) rapid decoding of the com-
mand to reduce delays. In 2016, a study was conducted to 
improve the vector phase diagram by incorporating a thresh-
old circle with a radius of max(∆HbO2 + ∆HbR2)1/2 during 
the resting state. This was used as a decision criterion for the 
occurrence of an initial dip, thereby reducing the detection 
time to approximately 0.9 s [115]. The next year, this work 
was extended by Zafar and Hong, in which they used the 
same methodology and modified the radius of the threshold 
circle to max{∆HbO,∆HbR}, which was further applied 
to the classification problem of three cognitive tasks for 
BMIs [116]. They revealed a reduction in the time of com-
mand generation to 2.5 s for fNIRS-based BMIs. However, 
a limitation persisted in the form of detecting false dips. 
This limitation was addressed recently in their extended 
work by adding second threshold criteria that can be applied 
for BMIs with an increased number of commands from a 
wider brain region [153]. This was achieved using a dense 
optode configuration of fNIRS channels over the brain. As 
explained in the previous section, the present fNIRS-based 
BMI framework uses HR features only, but after develop-
ments in the initial dip, these features can be extracted in 
time windows of 0 – 2 s or 0 – 2.5 s. Population-level feature 
sets were also used recently to improve the classification 
accuracy of fNIRS-based BMIs [154]. Early command gen-
eration using hybrid modalities with vector phase analysis 
as a classifier showed great improvement in classification 
accuracy compared to conventional classifiers in a window 
of 0–1.5 s [155]. Figure 4 shows the improved fNIRS-based 
BMI model for quicker command generation and brain func-
tion recovery using noninvasive stimulation techniques.
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6.3 � Brain stimulation and mapping

Identification of a precise brain area for stimulation is impor-
tant for brain therapy, and fNIRS has the advantage of iden-
tifying such areas. Research with bundled optode configura-
tions has shown the ability of fNIRS to differentiate brain 
areas for different finger movements [87]. Furthermore, 
brain therapy is an essential factor when brain activity detec-
tion is not workable and in the quest to improve the state of 
the brain. Thus, combining rTMS, tDCS, or manual acu-
puncture with fNIRS can improve the brain therapy process, 
which further enhances brain activity [156, 157]. This may 
lead to improve motor recovery for stroke patients or cogni-
tive function of mild cognitive impairment patients [158, 
159]. A proposed feedback control scheme for brain stimula-
tion and motor/cognitive recovery is shown in Fig. 5. This 
figure shows that the desired brain output can be achieved by 
stimulating the brain using external actuators. In the case of 
the human brain, the actuators can be rTMS-, tDCS- or ultra-
sound-based devices that can stimulate the brain according 
to the sensor data. The sensor or monitoring device can be 
an fNIRS system from which a brain diagnosis can be made.

Along with the above-mentioned methods, the most 
important need for current fNIRS-based BMI systems is to 
apply them to real patients. Additionally, there is a need to 
develop the hardware of either single or dual modality that 
must be portable and comfortable for patients in real-time 
BMI applications [33, 131, 160, 161]. Single-trial classi-
fications can be improved with the help of newly adopted 
graph signal processing and adaptive algorithms [162–164]. 
In addition, further research on the bundled optode scheme 
using fNIRS is required to narrow down the optimal brain 
region for patients [87, 165]. Indeed, EEG signals represent 
attenuated and filtered brain activity, which in turn repre-
sents the population activity produced by many millions of 
neurons. These EEG signals lack fine spatial resolution and 
do not provide precise task-related neuronal signals that can 
be refined by integrating fNIRS for BMI applications.

7 � Conclusion

In this study, we presented an overview of the develop-
ment of a functional near-infrared spectroscopy-based 
Brain–machine interface. We briefly discussed the devel-
opment of fNIRS-based BMIs in terms of preprocessing, 
feature extraction, and classification. The role of fNIRS 
in hybridization and brain therapy was also discussed. 
Although fNIRS-based BMI applications for communication 
and control have been demonstrated in a number of studies, 
there is no commercially available system that can be used 
for the treatment of stroke and locked-in patients. With the 
most recent advancement in brain stimulation and therapy, 
research on fNIRS-based BMI systems is expected to grow. 
All of the relevant research trends predict that fNIRS-based 

Fig. 4   Improved fNIRS-based BMI framework: (i) initial-dip features for quick command generation, and (ii) brain function recovery by applica-
tion of non-invasive stimulation (inspired by Hong et al. [11])

Fig. 5   Feedback control strategy of the brain
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systems may create a breakthrough in the area of brain diag-
nosis for locked-in patients.
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