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Abstract— This study proposes a neural-network (NN)-based
adaptive fixed-time control method for a two-degree-of-freedom
(2-DOF) nonlinear helicopter system with input quantization
and output constraints. First, a hysteresis quantizer is employed
to mitigate chattering during signal quantization, and adaptive
variables are utilized to eliminate errors in the quantization
process. Subsequently, the system uncertainties are approximated
using a radial basis function NN. Simultaneously, a logarithmic
barrier Lyapunov function (BLF) is constructed to prevent the
system outputs from violating the constraint boundaries. Based
on a rigorous Lyapunov stability analysis and the fixed-time
stability criterion, the signals of the closed-loop system are proven
to be bounded within a fixed time. Finally, numerical simulations
and experiments verified the feasibility of the proposed method.

Index Terms— Adaptive neural-network (NN) control,
fixed-time, input quantization, output constraints,
two-degree-of-freedom (2-DOF) helicopter.

I. INTRODUCTION

IN RECENT years, there has been a growing interest
in unmanned aerial vehicles due to advancements in

automation, information technology, and unmanned vehicles in
general. In particular, unmanned helicopters are widely utilized
in various fields because of their small size, high reliability,
and hovering capabilities [1]. For example, they are employed

Manuscript received 18 July 2023; revised 13 January 2024;
accepted 9 May 2024. This work was supported in part by the National Key
Research and Development Program of China under Grant 2023YFB4706400;
in part by the National Natural Science Foundation of China under
Grant 62273112 and Grant 62333016; in part by the Guangdong Basic and
Applied Basic Research Foundation under Grant 2023B1515120018 and
Grant 2023B1515120019; in part by the Science and Technology Planning
Project of Guangzhou, China, under Grant 2023A03J0120; in part by the
National Research Foundation of Korea funded by the Ministry of Science
and ICT, South Korea, under Grant IRIS-2023-00207954; and in part
by the Guangzhou University Research Project under Grant RC2023037.
(Corresponding author: Zhijia Zhao.)

Zhijia Zhao and Jiale Wu are with the School of Mechanical and Electri-
cal Engineering, Guangzhou University, Guangzhou 510006, China (e-mail:
zhjzhaoscut@163.com; 2112107005@e.gzhu.edu.cn).

Chaoxu Mu is with the School of Electrical and Information Engineering,
Tianjin University, Tianjin 300072, China (e-mail: cxmu@tju.edu.cn).

Yu Liu is with the School of Automation Science and Engineering,
South China University of Technology, Guangzhou 510640, China (e-mail:
auylau@scut.edu.cn).

Keum-Shik Hong is with the Institute for Future, School of Automa-
tion, Qingdao University, Qingdao 266071, China, and also with the
School of Mechanical Engineering, Pusan National University, Busan 46241,
South Korea (e-mail: kshong@pusan.ac.kr).

Digital Object Identifier 10.1109/TNNLS.2024.3403145

in civil applications such as environmental monitoring [2],
aerial surveying and mapping [3], disaster relief, and power
patrols. In the military domain, unmanned helicopters are used
for target reconnaissance and ground attacks [4]. However,
helicopters are nonlinear systems with interaxis cross-coupling
and complex dynamics, which pose significant challenges
in controller design. Therefore, developing high-performance
flight controllers is necessary to ensure the robustness of
helicopter systems.

To address stability issues in unmanned helicopter control
systems, various control methods have been developed. For
example, Raghappriya and Kanthalakshmi [5] developed a
sliding mode control algorithm to deal with fault issues for
helicopter systems and validated the stability of their method
through simulations. In [6], a simplified robust controller
was introduced to suppress disturbances and ensure improved
tracking performance. Sadala et al. [7] devised a novel sliding
mode control to reduce error oscillations and stabilize system
tracking. The aforementioned studies relied on known system
models. However, in practical applications, helicopter systems
often possess uncertain model parameters. Consequently, when
designing control strategies for helicopter systems, compre-
hensively accounting for system uncertainty is crucial to
accurately reflect the actual operating conditions.

In estimating system uncertainties, neural networks (NNs)
play a significant role owing to their remarkable learning
and nonlinear mapping capabilities [8], [9]. Moreover, the
real-time decision-making ability of NNs enables helicopters
to better adapt to complex and changing flight environ-
ments. In recent years, an increasing number of researchers
have applied NNs to helicopter systems. For example,
Chen et al. [10] designed an NN fault-tolerant control strategy
to address the unknown external disturbances that helicopter
systems encounter and to compensate for actuator faults and
input saturation. In [11], an RBFNN control algorithm with
inverse compensation was developed to enhance the stabil-
ity performance via deterministic learning. A recursive NN
control method was employed in [12] to handle uncertain
dynamic models in the system, achieving intelligent formation
control of unmanned helicopters. In [13], an NN-control-based
approach was designed to constrain errors within a specified
performance range. However, the aforementioned studies have
primarily addressed unc ertainties for helicopters and other
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systems, while ignoring the bandwidth limitation issue in
networked control. This neglect can result in reduced signal
transmission accuracy and impact the stability of the helicopter
system. Quantizing the signals is a possible solution to this
problem, and this motivates us to conduct further research.

Quantization is a common form of nonlinear input that
reduces the communication burden and resource consump-
tion by converting continuous signals into discrete forms
[14]. This beneficial characteristic of quantization has gar-
nered widespread interest. For example, Zhao et al. [15]
introduced a hysteresis quantizer into the control input and
employed an adaptive approach to estimate unknown parame-
ters and compensate for quantization errors. Zhang et al. [16]
designed an adaptive feedback control to achieve stable track-
ing of nonlinear systems with input quantization. Furthermore,
Wang et al. [17] presented an adaptive backstepping control
strategy that achieved joint control of input and state quan-
tization in nonlinear systems. Although the aforementioned
studies made considerable progress in input quantization for
nonlinear systems, relatively few studies have addressed output
constraints. In the realm of helicopters, the outputs of the
system can be constrained by external environmental factors,
which in turn can impact the stabilizing performance during
flight.

In recent years, scholars have proposed various control
methods to overcome the challenges posed by output con-
straints. For instance, Yu et al. [18] proposed a tangent-type
barrier Lyapunov function (BLF) to solve the output con-
straint problem and stabilize the control of robot systems.
In [19], a BLF was designed to effectively address the output
constraints, and its effectiveness was verified on a helicopter
experimental platform. Wu et al. [20] proposed a BLF to
guarantee the constraints on vibration amplitude and prove
the boundedness of the system errors. Although the aforemen-
tioned studies on output constraints for nonlinear systems have
made significant progress, only a limited number of studies
have focused on input quantization and output constraints for
two-degree-of-freedom (2-DOF) helicopter systems. Further-
more, in practical applications, helicopter systems typically
need to achieve fast and accurate responses within a finite
time and remain stable thereafter.

Recently, the finite-time control has been increasingly uti-
lized owing to its high control precision and fast convergence
speed [21]. For example, Wei and Li [22] designed a new
adaptive NN control algorithm that utilized finite-time control
to improve the steady-state performance of nonlinear systems.
Li et al. [23] proposed an adaptive control strategy for robot
manipulators to ensure stability within a finite time. However,
the finite-time control relies on the initial value of the system,
which implies that the settling time of the system will vary
for different initial conditions. When the initial state cannot
be determined in advance, it becomes impossible to accurately
estimate the settling time of the system.

To overcome the above limitations, Polyakov first intro-
duced the fixed-time stability theory in [24]. This theory
not only eliminates the dependence of convergence time on
initial conditions but also achieves faster settling rates, which
instead depend only on the control design parameters. This

characteristic has been widely utilized. For example, in [25],
a fixed-time stability control was developed to guarantee the
fast convergence of errors in flexible robot systems and resolve
amplitude constraint issues. In [26], the impact of input quanti-
zation and external disturbances on the system was addressed,
and convergence stability of errors in multimechanical systems
within a fixed time was achieved. Furthermore, Zhang and
Wu [27] designed an adaptive tracking control algorithm using
a symmetric Lyapunov function to ensure that the system
trajectory was stabilized within a fixed time. However, the
aforementioned studies focused only on the individual aspects
of fixed-time stability control (e.g., quantization or constraints
in nonlinear systems) without considering the potential interac-
tion between quantization, constraints, and fixed-time control
in practical applications. Therefore, extending fixed-time con-
trol to incorporate input quantization and output constraints in
a 2-DOF nonlinear helicopter system is crucial.

Driven by the results and limitations of the aforementioned
studies, we aim to investigate a fixed-time adaptive NN control
method with input quantization and output constraints. The
following are the primary contributions of this study.

1) Unlike the quantizer discussed in [26], this study utilizes
a hysteresis quantizer that provides additional quantiza-
tion levels to mitigate chattering effects. Furthermore,
a logarithmic BLF is employed to constrain the output
amplitude of the system.

2) Compared with finite-time control in [22] and [28],
the convergence time of the proposed control method
is determined by the design parameters and is not
affected by the initial state, thereby further improving
the transient system performance.

3) This study integrates input quantization and output con-
straints within a fixed-time framework and proposes
an adaptive NN control scheme. The validity of the
proposed method is demonstrated through theoretical
analysis and experimental validation.

The remaining chapters of this article are organized as
follows. Section II presents the problem formulation and a pre-
liminary study. Section III explains the design of the fixed-time
adaptive NN control and analyzes its stability. Section IV
describes the numerical simulation results. In Section V, com-
parative experiments are conducted to analyze the feasibility
of the proposed control. Finally, Section VI presents the
conclusion of this study.

II. PROBLEM STATEMENT AND PRELIMINARY STUDY

A. Problem Statement

Fig. 1 illustrates a simplified diagram of a 2-DOF heli-
copter. The helicopter is equipped with two propellers. The
horizontally positioned propeller generates a force denoted
by Fp, which is located at a distance rp from the center of
the helicopter, and it controls the pitch motion. The vertically
positioned propeller generates a force denoted as Fy , which is
located at a distance ry from the center of the helicopter, and
it controls the yaw motion.

The Lagrangian mechanics approach is employed to model
the 2-DOF helicopter system, and its dynamic system model
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Fig. 1. Simplified sketch of a 2-DOF helicopter.

is described as [29](
J f + mal2

v

)
θ̈ = K ppV f + K py Vd − maglv cos(θ)

− D f θ̇ − mal2
v ψ̇

2 sin(θ) cos(θ)
(1)(

Jd + mal2
v cos2(θ)

)
ψ̈ = K ypV f + K yy Vd − Dd ψ̇

+ 2mal2
v ψ̇ θ̇ sin(θ) cos(θ) (2)

where ma is the mass; g is the acceleration due to gravity;
θ and ψ are the pitch and yaw angles, respectively; lv is the
distance from the center of mass to the pivot; K pp, K py , K yp,
and K yy are the thrust torque constants; D f and Dd are the
friction coefficients; and J f and Jd are the moments of inertia
pertaining to the pitch and yaw axes, respectively.

We define q = [q1, q2]
T, where q1 = [θ, ψ]

T and q2 =

[θ̇ , ψ̇]
T. Considering the uncertainty and input quantization in

the system, the dynamic equations of a 2-DOF helicopter can
be translated into the following state-space model:

q̇1 = q2 (3)
q̇2 = G (q1, q2)+1G (q1, q2)

+ (H (q1, q2)+1H (q1, q2)) Q (u) (4)
y = q1 (5)

where 1G(q1, q2) and 1H(q1, q2) are the system
uncertainties, and G(q1, q2) and H(q1, q2) are given as
follows:

G (q1, q2) =


−maglvcos(θ)−D f θ̇−mal2

v ψ̇
2sin(θ)cos(ψ)

J f + mal2
v

−Dd ψ̇ + 2mal2
v ψ̇ θ̇sin(θ)cos(θ)

Jd + mal2
vcos2(θ)


(6)

H (q1, q2) =


K pp

J f + mal2
v

K py

J f + mal2
v

K yp

Jd + mal2
v cos2(θ)

K yy

Jd + mal2
v cos2(θ)

 .
(7)

Furthermore, y is the system output and u is the controller
input. Unlike the logarithmic quantizer in [26], hysteresis
quantizers are characterized by dwell time before a change
in the system value, which can provide an additional level of
quantization to eliminate chatter. Consequently, the following
hysteresis quantizer is employed [30]:

Q(u(t))=



uksgn(u),
uk

1 + ϵ
< |u| < uk, u̇ < 0, or

uk < |u| ≤
uk

1 − ϵ
, u̇ > 0

uk(1+ϵ)sgn(u), uk < |u| <
uk

1 − ϵ
, u̇ < 0, or

uk

1−ϵ
< |u|≤

uk (1+ϵ)

(1 − ϵ)
, u̇>0

0, 0 ≤ |u| <
umin

1 + ϵ
, u̇ < 0, or

umin

1 + ϵ
≤ u ≤ umin, u̇ > 0

Q
(
u
(
t−
))
, u̇ = 0

(8)

where uk = ζ 1−ιumin with ι = 1, 2, . . .; umin > 0; 0 <

ζ < 1; and ϵ = ((1 − ζ )/(1 + ζ )). The quantized input
Q(u) = [V f , Vd ]

T is in the set � = {0,±uk,±uk(1 + ϵ)}.
The parameter umin determines the size of the dead zone of the
quantizer. To devise an effective control strategy, we partition
the hysteresis quantizer into two distinct parts described as
[31]

Q(u(t)) = u +ϖ(t) (9)

where u denotes the linear part, ϖ(t) is the nonlinear part,
and ϖ(t) = Q(u(t))− u ∈ R2×1.

Substituting (9) into (4) yields

q̇2 = G(q1, q2)+1G(q1, q2)+ H(q1, q2)u + H(q1, q2)ϖ(t)

+1H(q1, q2)(u +ϖ(t))

= G(q1, q2)+ H(q1, q2)u + P(q, u)+ H(q1, q2)ϖ(t)

(10)

where P(q, u) = 1G(q1, q2)+1H(q1, q2)(u +ϖ(t)).
Lemma 1 [22]: The nonlinear part ϖ(t) satisfies the

following inequalities:

ϖ 2(t) ≤ ϵ2u2
∀|u| ≥ umin (11)

ϖ 2(t) ≤ u2
min ∀|u| ≤ umin. (12)

Assumption 1 [32]: For the control gain function
H(q1, q2), there exist unknown positive constants Hm
and HM such that 0 < Hm < |H(q1, q2)| < HM .

Assumption 2 [33]: The desired trajectory qd is a continu-
ously differentiable function, and qd , q̇d , and q̈d are bounded.

Lemma 2 [34]: Suppose that there exists a constant ct > 0.
Then, for any z ∈ R with |z| < |ct |, the following inequality
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holds:

ln
c2

t

c2
t − zT

1 z1
≤

zT
1 z1

c2
t − zT

1 z1
. (13)

Lemma 3 [35]: For any real number a and positive constant
f , the following inequality is obtained:

0 ≤ |a| − atanh
(

a
f

)
≤ 0.2785 f. (14)

B. NN Approximation

The RBFNN has become increasingly popular for its
exceptional ability to accurately estimate unknown nonlinear
functions. In this study, we employ the following RBFNN to
estimate a continuous function hn(Z) : Rl

→ R:

hn (Z) = 2T8(Z) (15)

where Z ∈ Rl is the input vector, and 2 = [θ1, θ2, . . . , θi ]
T

∈

Ri is the weight vector, with i > 1 being the number of neu-
rons. In addition, 8(Z) = [81(Z),82(Z), . . . , 8i (Z)]T is a
Gaussian function vector, represented by 8 j (Z) = exp(−(Z −

δ j )
T(Z −δ j )/ϒ

2
j ), where δ j = [δ j1, δ j2, . . . , δ jl ]

T and ϒ j are
the center and width of the basis function, respectively.

By selecting a sufficient number of neurons, the RBFNN
can smoothly estimate an arbitrary continuous function in the
compact set �z ∈ Rl to any desired accuracy as

h (Z) = 2∗T
8(Z)+ η (Z) (16)

where 2∗ is the optimal weight vector, and η(Z) is the
approximation error that satisfies ∥η(Z)∥ ≤ η̄ with η̄ > 0.
The ideal weight vector 2∗ can be expressed as

2∗
= arg min

2∈Ri

{
sup

Z∈�z

∣∣h (Z)−2T8(Z)
∣∣} . (17)

Remark 1: The structure of the RBFNN, as shown in Fig. 2,
typically consists of three layers: the input, hidden, and output
layers [36]. In the input layer, each node represents a feature
or variable from the input data. This input data is received by
the input layer and transmitted to the hidden layer. Within the
hidden layer, neurons employ radial basis functions to trans-
form and extract features from the input data. Subsequently,
the output layer receives information from the hidden layer
and generates the final output of the network.

C. Fixed-Time

Consider a nonlinear system

ẋ(t) = f (x(t)), x(0) = x0 (18)

where x ∈ Rn and f : R+
× Rn

→ Rn are the system
variables and nonlinear function, respectively. For system (18),
the origin is assumed to act as an equilibrium point.

Definition 1 [37]: The origin of the system (18) is
finite-time stable if it is globally asymptotically stable and
there exists a convergence time function T : Rn

→ R+

such that for any x0 ∈ Rn , the solution x(t, x0) of sys-
tem (18) is defined and x(t, x0) ∈ Rn for t ∈ [0,T(x0)) and
limt→T(x0) x(t, x0) = 0 hold.

Fig. 2. Structure of the RBFNN.

TABLE I
STABLE CONDITION AND CONVERGENCE TIME FOR

FINITE-TIME AND FIXED-TIME

Definition 2 [37]: The origin of the system (18) is
fixed-time stable if it is globally finite-time stable and for
any x(0), the settling time function T(x0) is bounded. That
is, T(x(0)) < Tmax for a constant Tmax > 0.

Lemma 4 [38]: For a positive definite function V (x),
if there exist ζ1 > 0, ζ2 > 0, β > 1, and 0 < γ < 1 satisfy
the following:

V̇ (x) ≤ −ζ1V β (x)− ζ2V γ (x) (19)

then the origin of the system (18) is fixed-time stable.
To estimate the convergence time, we use the following
approximation:

T ≤ Tmax =
1

ζ1 (β − 1)
+

1
ζ2 (1 − γ )

. (20)

Remark 2: Table I lists the stability conditions and conver-
gence times for finite-time and fixed-time. The convergence
time of finite-time control depends on the initial value
V (x(0)). Compared with finite-time control, the convergence
time of fixed-time control is determined solely by the design
parameters and is not affected by the initial states.

Lemma 5 [39]: For c1, c2, . . . , cn ∈ R, and 0 ≤ d ≤ 1, the
following can be obtained:

(|c1| + |c2| + · · · + |cn|)d ≤ |c1|
d

+ |c2|
d

+ · · · + |cn|
d . (21)

Lemma 6 [40]: If Lm > 0, m = 1, 2, . . . , n, it can be
derived that ( n∑

m=1

Lm

)2

≤ n ·

n∑
m=1

L2
m . (22)

Lemma 7 [41]: For any real numbers b and d, the
following can be obtained:

bd ≤
ξ~

~
|b|

~
+

1
κξκ

|d|
κ (23)
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where ξ > 0, ~ > 1, κ > 1, and (~ − 1)(κ − 1) = 1.

III. NN CONTROL DESIGN

We define the tracking error variables as

z1 = q1 − qd (24)
z2 = q2 − α (25)

where qd = [θd , ψd ]
T is the desired trajectory.

Substituting (3) and (25) into the time derivative of z1 yields

ż1 = z2 + α − q̇d (26)

where α is the virtual variable to be designed.
To satisfy the output constraint condition, we design the

BLF candidate as

V1 =
1
2

ln

(
c2

t

c2
t − zT

1 z1

)
(27)

where ct > 0 is a continuous function that constrains the
amplitude of the error, and ct is expressed as

ct = ke−ϱt
+ h (28)

where ϱ, k, and h ≥ 0 are the design parameters.
Differentiating V1 yields

V̇1 =
zT

1 ż1 −
ċt
ct

zT
1 z1

c2
t − zT

1 z1

=
zT

1 (z2 + α − q̇d)−
ċt
ct

zT
1 z1

c2
t − zT

1 z1
. (29)

The virtual variable α is designed as follows:

α = −k11
z1
(
c2

t − zT
1 z1

)
zT

1 z1

(
1
2

ln

(
c2

t

c2
t − zT

1 z1

)) 1
2

− k12
z1
(
c2

t − zT
1 z1

)
zT

1 z1

(
1
2

ln

(
c2

t

c2
t − zT

1 z1

))2

+ q̇d −

(
1
2

+ ϱ

)
z1 (30)

where k11 and k12 are positive constants.
Remark 3: The function z1/(zT

1 z1) in (30) results in chat-
tering. To address this issue, a smoother approximation of the
function is required. Using [25] as inspiration, we suggest the
following method: when zT

1 z1 < ν1 with ν1 > 0 holds, zT
1 z1 is

substituted with ν1. The value of ν1 can be initially set to a
conservative value and then fine-tuned based on feedback from
the system.

Considering zT
1 z2 ≤ (1/2)zT

1 z1 + (1/2)zT
2 z2 and |(ċt/ct )| ≤

ϱ, the substitution of (30) into (29) results in

V̇1 ≤

1
2 zT

2 z2

c2
t − zT

1 z1
− k11

(
1
2

ln

(
c2

t

c2
t − zT

1 z1

)) 1
2

− k12

(
1
2

ln

(
c2

t

c2
t − zT

1 z1

))2

. (31)

Since P(q, u) in (10) is an unknown nonlinear function,
it can be approximated by an RBFNN as follows:

P (q, u) = 2∗T
8(Z)+ η (Z) (32)

where 2∗ and 8(Z) are the ideal weight vector and basis
function, respectively; Z = [qT

1 , qT
2 , qT

d , q̇T
d ]

T is the activation
signal; and η(Z) is an approximate error satisfying ∥η(Z)∥ ≤

η̄, where η̄ > 0 is a constant.
Hence, (10) can be rewritten as

q̇2 = G + Hu +2∗T
8(Z)+ η (Z)+ δ (33)

where δ = H(q1, q2)ϖ(t). Based on Lemma 1 and
Assumption 2, we can derive that δ is bounded. Therefore,
there exists an unknown positive constant δ̄ that satisfies
∥δ∥ ≤ δ̄. Moreover, we define ˜̄δ =

ˆ̄δ − δ̄.
According to (25) and (33), the derivative of z2 is derived

as follows:

ż2 = q̇2 − α̇

= G + Hu +2∗T
8(Z)+ η + δ − α̇. (34)

We select the following Lyapunov function:

V2 = V1 +
1
2

zT
2 z2. (35)

Based on (34), the derivative of V2 gives

V̇2 = V̇1 + zT
2 ż2

= V̇1 + zT
2

(
G + Hu +2∗T

8(Z)+ η + δ − α̇
)
. (36)

We propose the control law as

u = H−1

(
−G −

1
2 z2

c2
t − zT

1 z1
− 2̂T8(Z)+ α̇ − tanh

(
z2

ρ

)
ˆ̄δ

−
1
2

z2−k21
z2

zT
2 z2

(
1
2

zT
2 z2

) 1
2
−k22

(
1
2

)2

z2zT
2 z2

)
(37)

where k21 and k22 are positive constants.
The adaptive laws for 2̂ and ˆ̄δ are devised as

˙̂
2 = 02

[
8(Z) zT

2 − 2̂2̂T2̂− σ22̂
]

(38)

˙̂
δ̄ = ϕδ̄

[
zT

2 tanh
(

z2

ρ

)
−

ˆ̄δ3
− σδ̄

ˆ̄δ

]
(39)

where 02 > 0 and ϕδ̄ > 0. Furthermore, σ2 and σδ̄ are small
positive parameters.

Remark 4: Similar to Remark 3, the function z2/(zT
2 z2)

in (37) causes chattering. To avoid this, the following approach
is proposed: if the condition zT

2 z2 < ν2 holds, then the value
of zT

2 z2 is replaced by ν2, where ν2 is a positive constant. The
value ν2 can be initially set to a small value and then improved
based on feedback from the system.
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Substituting (37) into (36) yields

V̇2 = −k11

(
1
2

ln

(
c2

t

c2
t − zT

1 z1

)) 1
2

− k21

(
1
2

zT
2 z2

) 1
2

+ zT
2η

− k12

(
1
2

ln

(
c2

t

c2
t − zT

1 z1

))2

− k22

(
1
2

zT
2 z2

)2

+ zT
2 δ

− zT
2 2̃

T8(Z)−
1
2

zT
2 z2 − zT

2 tanh
(

z2

ρ

)
ˆ̄δ (40)

where 2̃ = 2̂ − 2∗. Considering the effect of 2̃ and ˜̄δ on
system stability, the Lyapunov function candidate is designed
as

V3 = V2 + tr
{

1
2
2̃T0−1

2 2̃

}
+

1
2ϕδ̄

˜̄δ2. (41)

Its time derivative is expressed as

V̇3 = V̇2 + tr
{
2̃T0−1

2
˙̂
2
}

+
1
ϕδ̄

˜̄δ
˙̂
δ̄

= −k11

(
1
2

ln

(
c2

t

c2
t − zT

1 z1

)) 1
2

− k21

(
1
2

zT
2 z2

) 1
2

+ zT
2η

− k12

(
1
2

ln

(
c2

t

c2
t − zT

1 z1

))2

− k22

(
1
2

zT
2 z2

)2

+ zT
2 δ

− zT
2 tanh

(
z2

ρ

)
ˆ̄δ +

˜̄δzT
2 tanh

(
z2

ρ

)
−

1
2

zT
2 z2

− σ2tr
{
2̃T2̂

}
− tr

{
2̃T2̂2̂T2̂

}
− σδ̄

˜̄δ ˆ̄δ −
˜̄δ ˆ̄δ3 (42)

where zT
2η ≤ (1/2)zT

2 z2 + (1/2)η̄2. From Lemma 7, we obtain

−σ2tr
{
2̃T2̂

}
≤ −σ2

(
2̃T2̃

) 1
2
+
σ2

2

(
2∗T

2∗
+1
)

(43)

−tr
{
2̃T2̂2̂T2̂

}
= −

∥∥2̃∥∥4
−
∥∥2∗

∥∥2
(∥∥2̃∥∥2

+ 2̃T2∗

)
− 3

∥∥2̃∥∥2
2̃T2∗

− 2
∥∥2̃T2∗

∥∥2

≤ −

(
1 −

9
4
κ

4
3

1 −
1

4κ4
2

)∥∥2̃∥∥4
+
∥∥2∗

∥∥2

+

(
3

4κ4
1

+
3
4
κ

4
3

2

)∥∥2∗
∥∥4

− 2
∥∥2∗

∥∥2
(
2̃T2̃

) 1
2 (44)

where κ1 > 0 and κ2 > 0. Furthermore, we use similar
derivations for σδ̄

˜̄δ ˆ̄δ and ˜̄δ ˆ̄δ3.
Considering the inequalities as follows:

zT
2 δ ≤ δ̄

2∑
r=1

∣∣z2r
∣∣ (45)

zT
2 tanh

(
z2

ρ

)
=

2∑
r=1

(
z2r tanh

(
z2r

ρ

))
. (46)

Applying Lemma 3, we obtain
2∑

r=1

∣∣z2r
∣∣− 2∑

r=1

(
z2r tanh

(
z2r

ρ

))
≤ 0.557ρ. (47)

According to the inequalities (43), (44), and (47), then (42)
can be rewritten as

V̇3 ≤ −k11

(
1
2

ln

(
c2

t

c2
t − zT

1 z1

)) 1
2

− k21

(
1
2

zT
2 z2

) 1
2

− k12

(
1
2

ln

(
c2

t

c2
t − zT

1 z1

))2

− k22

(
1
2

zT
2 z2

)2

− k13

(
2̃T2̃

) 1
2

− k23
∥∥2̃∥∥4

− k14

(
˜̄δ2
) 1

2
− k24

∥∥ ˜̄δ
∥∥4

+

(
3

4κ4
1

+
3
4
κ

4
3

2

)∥∥2∗
∥∥4

+

(
1 +

σ2

2

) ∥∥2∗
∥∥2

+
σ2

2

+

(
3

4κ4
3

+
3
4
κ

4
3

4

)∥∥δ̄∥∥4
+

(
1 +

σδ̄

2

) ∥∥δ̄∥∥2
+
σδ̄

2
+

1
2
η̄

(48)

where κ3, κ4 > 0, k13, k23, k14, and k24 are defined as

k13 = min


√

2
(

2
∥∥2∗

∥∥2
+ σ2

)
√

λmax

(
0−1
2

)
 (49)

k23 = min


4
(

1 −
9
4κ

4
3

1 −
1

4κ4
2

)
(

λmax

(
0−1
2

))2

 (50)

k14 = min


√

2
(

2
∥∥δ̄∥∥2

+ σδ̄

)
√(
ϕ−1
δ̄

)
 (51)

k24 = min


4
(

1 −
9
4κ

4
3

3 −
1

4κ4
4

)
(
ϕ−1
δ̄

)2

 . (52)

Then, we can obtain

V̇3 ≤ −µ1V
1
2

3 −
µ2

4
V 2

3 + C (53)

where

µ1 = min {k11, k21, k13, k14} (54)
µ2 = min {k12, k22, k23, k24} (55)

C =

(
3

4κ4
1

+
3
4
κ

4
3

2

)∥∥2∗
∥∥4

+

(
1 +

σ2

2

) ∥∥2∗
∥∥2

+
σ2

2

+

(
3

4κ4
3

+
3
4
κ

4
3

4

)∥∥δ̄∥∥4
+

(
1 +

σδ̄

2

) ∥∥δ̄∥∥2
+
σδ̄

2
+

1
2
η̄.

(56)

Theorem 1: Considering the 2-DOF helicopter system
described by (3) and (4) with input quantization and output
constraints, the fixed-time adaptive NN control law (37) and
the updating laws (38) and (39) can be applied. Suppose
the original state (q(0), q̇(0), 2̂, ˆ̄δ) are bounded, then the
closed-loop system signals z1, z2, 2̃, and ˜̄δ will converge into
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compact sets �z1 , �z2 , �2̃, and � ˜̄δ
within a fixed time. The

convergence time T can be approximated by

T ≤ Tmax =
2
µ1

+
4

(1 − ε) µ2
(57)

where 0 < ε < 1 is a constant, and the compact sets �z1 , �z2 ,
�2̃, and � ˜̄δ

are defined as

�z1 =

{
z1 : ∥z1∥ ≤

√
c2

t

(
1 −

1
eG

)}
(58)

�z2 =

{
z2 : ∥z2∥ ≤

√
G
}

(59)

�2̃ =

2̃ :
∥∥2̃∥∥ ≤

√√√√ G

λmin

(
0−1
2

)
 (60)

� ˜̄δ
=

{
˜̄δ :
∥∥ ˜̄δ
∥∥ ≤

√
ϕδ̄G

}
(61)

where G = 2((4C)/(εµ2))
1/2.

Remark 5: In recent fixed-time control methods [42], [43],
the fixed-time stability analysis was performed by assuming
the boundedness of the weight vector, which lacks a theoretical
foundation. In this study, we design a new adaptive update
law for the weight vector and rigorously demonstrate its
boundedness through stability analysis.

IV. NUMERICAL SIMULATION AND COMPARISONS

This section describes two sets of MATLAB numerical
simulations conducted to model the attitude tracking of heli-
copters. First, the proposed control is compared with the
commonly used proportional differential (PD) control and
the finite-time control in [44], verifying the feasibility of
the proposed control. Subsequently, the tracking performances
under different initial conditions are compared to verify the
fixed-time stability of the proposed control method. The simu-
lation parameters of the 2-DOF helicopter system are provided
in Table II.

We define the continuous-time reference trajectory as the
command for helicopter trajectory tracking. The desired tra-
jectory is chosen as qd = [(π/18)sin(t), (π/12)sin(t)]T, and
the initial conditions of the helicopter are given as q1 =

[0.01, 0.01]
T and q2 = [0.01, 0.01]

T. The voltage supplied
to the dc motor in the helicopter model is ±24 V.

A. Comparison of the Proposed Control, PD Control, and
the Finite-Time Control in [44]

1) Proposed Control: For the proposed NN-based adaptive
fixed-time control, 64 nodes are used with centers uniformly
distributed on [−1, 1] × [−1, 1] × [−1, 1] × [−1, 1] ×

[−1, 1] × [−1, 1] × [−1, 1] × [−1, 1]. The initial weights are
set as 2̂(0) = 0, and the variance is set to 16. In addition, the
control parameters are chosen as k11 = 2, k12 = 2, k21 = 8,
k22 = 5, ν1 = 0.05, ν2 = 0.1, ϱ = 1, and ρ = 0.45.
The updating law parameters are selected as 02 = 15I64×64,
ϕδ̄ = 2I2×2, σ2 = 0.01, and σδ̄ = 0.01. The quantization
parameters are set as umin = 0.02 and ϵ = 0.1. To achieve the
output constraints of the system, the constraint parameters are
chosen as ct = 0.02 and ċt = 0.

TABLE II
SYSTEM PARAMETER

Fig. 3. Simulation results of the proposed and PD controls: (a) tracking
result of θ , (b) tracking result of ψ , (c) tracking error z11, (d) tracking error
z12, (e) control inputs u1 and u2, and (f) quantized inputs Q(u1) and Q(u2).

2) PD Control: We design the PD controller as

uPD = −K p (q1 − qd)− Kd ż1 (62)

where K p and Kd denote the proportional and differential
gains, respectively. Through proper selection of control param-
eters, we choose K p = diag[36, 36] and Kd = diag[40, 40].

The simulation results comparing the proposed and PD
controls are shown in Fig. 3. Fig. 3(a) and (b) depicts the
tracking performance of the pitch and yaw angles, respectively.
Evidently, the proposed control method can track the desired
trajectory better than the PD control, while also ensuring that
the constraint boundaries are not violated. Fig. 3(c) and (d)
depicts the trajectory errors of the attitude angles. The results
demonstrate that the proposed method can consistently achieve
smaller errors compared to the PD control and can effectively
maintain the errors within the specified constraint bounds.
Fig. 3(e) shows the control inputs, and Fig. 3(f) shows the
quantized inputs. The proposed control strategy possesses a
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Fig. 4. Simulation results of the proposed and finite-time controls in [44]:
(a) tracking result of θ , (b) tracking result of ψ , (c) tracking error z11,
(d) tracking error z12, (e) control inputs u1 and u2, and (f) quantized inputs
Q(u1) and Q(u2).

better input response compared to PD control, as evidenced by
the fact that the quantized signals exhibit reduced fluctuations.

3) Finite-Time Control in [44]: To further demonstrate the
superiority of the proposed method, we also compare the adap-
tive finite-time neural tracking control in [44] with the
proposed control. The design parameters are designed as k1 =

k2 = 4.
The simulation results comparing the proposed and

finite-time controls are depicted in Fig. 4. Fig. 4(a) and (b)
depicts the tracking performance of the pitch and yaw angles,
respectively. The results indicate that the proposed control
has better tracking performance than the adaptive finite-time
control. Fig. 4(c) and (d) describes the tracking errors of
attitude angles. Obviously, compared to the finite-time control,
the proposed method exhibits fewer oscillations at the begin-
ning of the system. Fig. 4(e) and (f) represents the control
inputs and quantized inputs, respectively. The results show
that the proposed control offers superior input responses and
the quantized signals have smaller fluctuations. These further
validate the superiority of the proposed control.

B. Comparison of Different Initial Conditions

To verify that the convergence time of the proposed
fixed-time control is independent of the initial state, we con-
sider different values of q = 0.06, q = 0.14, q = 0.22, and
q = 0.30. The control parameters are chosen as k11 = 2,
k12 = 2, k21 = 4, and k22 = 4. By selecting these diverse

Fig. 5. Simulation results of different initial conditions: (a) tracking result
of θ , (b) tracking result of ψ , (c) tracking error z11, (d) tracking error z12,
(e) control inputs u1 and u2, and (f) quantized inputs Q(u1) and Q(u2).

initial conditions, we conduct a comparative analysis of the
control efficacy, and the corresponding simulation results are
depicted in Fig. 5. Fig. 5(a) and (b) shows the tracking
responses of the attitude angles. The results show that the
proposed fixed-time control exhibits good tracking perfor-
mance for different initial values. The error responses are
depicted in Fig. 5(c) and (d). Clearly, the tracking errors
rapidly converge to a small range centered around zero in
fixed time. Fig. 5(e) and (f) depicts the input voltages and
quantized input signals. From the results, we can conclude
that the system input can maintain excellent performance with
diverse initial conditions.

Based on an analysis of the simulation data between the
proposed, PD, and finite-time control methods, as well as the
comparison of different initial conditions, we have validated
the feasibility and superiority of the proposed control and
demonstrated its superiority in terms of transient performance.

V. EXPERIMENTAL RESULTS AND PERFORMANCE
VALIDATIONS

In this section, to further compare and analyze the effec-
tiveness of the proposed control algorithm, we describe the
comparative validation experiments conducted on Quanser’s
2-DOF helicopter experimental platform. The experimental
platform is presented in Fig. 6. Initially, the proposed control
algorithm is evaluated using an experiment without output
constraints. Then, the proposed strategy is compared with the
finite-time control in [44] for further evaluation.
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Fig. 6. Experiment platform for 2-DOF helicopter.

Fig. 7. Experiment results of the proposed control: (a) tracking result of θ ,
(b) tracking result of ψ , (c) tracking errors z11 and z12, and (d) input voltages
V f and Vd .

We select the desired trajectory for the experiment as
qd = [(π/18)sin(t), (π/12)sin(t)]T, the initial conditions of
the helicopter are given as q1 = [0, 0]

T and q2 = [0, 0]
T. The

control parameters are chosen as k11 = 4, k12 = 4, k21 = 10,
k22 = 6. The other parameters are selected as discussed in
Section IV.

A. Experiments of the Proposed Control

Fig. 7 depicts the experimental results of the proposed
control. Fig. 7(a) and (b) depicts the response trajectories
for the pitch and yaw angles, respectively. The figures show
that both attitude angles can rapidly and accurately follow the
desired trajectory. Fig. 7(c) shows that the error responses of
the system remain small and consistently within the specified
constrained range. Fig. 7(d) depicts the input voltages, which
exhibit a favorable performance trajectory. Therefore, these
results confirm that the proposed control method has excellent
control performance.

B. Experiments of the Proposed Control Without Output
Constraints

For further validation, we conduct an experiment without
output constraints to compare with the proposed control. The

Fig. 8. Experiment results of the proposed control without output constraints:
(a) tracking result of θ , (b) tracking result of ψ , (c) tracking errors z11 and
z12, and (d) input voltages V f and Vd .

experimental results are illustrated in Fig. 8. Fig. 8(a) and (b)
represents the evolutions of the output angles of the system,
indicating that the attitude angles effectively track the target
trajectory. Fig. 8(c) depicts the errors of the system, and
it reveals that without output constraints, the system errors
violate the constraint range and exhibit significant oscillations.
Fig. 8(d) presents the input performance. It is evident that
the amplitude response of the input voltage fell short of the
expected results.

Consequently, the proposed control effectively ensures that
the system errors remain within the boundaries of the output
constraints. However, in the absence of output constraints, the
tracking errors of the system oscillate significantly and fail
to maintain errors within the acceptable limits. Moreover, the
exhibited input performance is unsatisfactory.

C. Experiments of the Finite-Time Control in [44]

To further validate the superiority of the proposed con-
trol, we apply a typical finite-time-based control strategy
from [44] to a 2-DOF helicopter test platform. The control
parameters are chosen as k11 = k12 = 10. The experimental
results of the finite-time control method are shown in Fig. 9.
Fig. 9(a) and (b) represents the trajectory responses of the
helicopter attitude angles. Fig. 9(c) depicts the trajectory
errors. Fig. 9(d) represents the input voltages.

As illustrated in Fig. 9, we can observe that the finite-time
control achieves tracking of the desired trajectory, with
the system error evolving within the constraint range.
However, by comparing the results shown in Fig. 10,
we can conclude that the proposed control outperforms
the finite-time control. The proposed control exhibits less
volatility in the system errors, highlighting its superior-
ity in transient performance. In addition, it demonstrates
smaller input oscillations and more satisfactory perfor-
mance, thus validating the effectiveness of the proposed
approach.
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Fig. 9. Experiment results of the finite-time control in [44]: (a) tracking
result of θ , (b) tracking result of ψ , (c) tracking errors z11 and z12, and
(d) input voltages V f and Vd .

Fig. 10. Experimental comparison results between the proposed control and
finite-time control: (a) comparison of errors z11 and z12 and (b) comparison
of input voltages V f and Vd .

VI. CONCLUSION

In this study, an NN-based adaptive fixed-time control was
proposed for a 2-DOF helicopter system with input quantiza-
tion and output constraints. First, a hysteresis quantizer was
introduced to alleviate the chattering effect in the signal quan-
tization process, and the error caused by the quantization was
eliminated through adaptive variables. The RBFNN was then
utilized to approximate the uncertainty of the system. Simul-
taneously, a logarithmic BLF was employed to ensure that
the errors remained within the constraint range. Subsequently,
through Lyapunov stability analysis and the fixed-time stability
criterion, the boundedness and fixed-time convergence of the
closed-loop system were guaranteed. Finally, the feasibility
of the proposed control was validated through simulations
and experiments. In future work, the results obtained in this
study will be applied to 4-DOF drones, and the issue of
output constraints occurring in a limited time interval will be
explored.
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