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ABSTRACT Green transportation has become our top priority due to the depletion of the earth’s natural
resources and rising pollutant emission levels. Plug-in electric vehicles (PEVs) are seen as a solution to the
problem because they are more cost and environment friendly. Due to rapid industrialization and government
incentives for zero-emission transportation, a significant challenge is also constituted in power grids by the
self-interested nature of PEVs, with the asymmetry of information between the charging power demand and
supply sides. In this paper, we propose an optimal strategy in industrial energy management system, based
on evolutionary computing, to characterize different charging situations. The proposed approach considers
stochastic, off-peak, peak, and electric power research institute charging scenarios for attaining the vehicle-
to-grid capacity in terms of optimal cost and demand. An extensive scheduling of charging cases is studied
in order to avoid power outages or scenarios in which there is a significant supply-demand mismatch.
Furthermore, the proposed scheme model also reduces the greenhouse gases emission from generation side
to build a sustainable generation infrastructure, which maximizes the utility of fuel-based energy production
in the presence of certain nonlinear constraints. The simulation analysis demonstrates that PEVs can be
charged and discharged in a systematic manner. The participation of transferable load through the proposed
methodology can significantly reduce the economic costs, pollutant impacts, efficiency, and security of
power grid operation.

INDEX TERMS Energy emission dispatch (EED), industrial energy management system (IEMS), plug-
in electric vehicle (PEV), plug-in electric vehicle charging coordination (PEVCC), vehicle-to-grid (V2G),
valve-point loading effect (VLE).

I. INTRODUCTION

A. BACKGROUND

The world-wide industrial expansions on global scale gave
birth to the continuous demand of electricity, and scientists
around the globe are finding new tools for the power demand
and supply adjustment to achieve the energy gap demands [1],
[21, [31, [4], [5], [6], [7], [8]. The primary objective of energy
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emission dispatches (EEDs) is to find the best combination of
thermal units to minimise air pollutants and the total cost of
generation of electricity [9], [10], [11], [12], [13], [14], [15],
[16]. The attainment of lowest cost of a reliable energy supply
to a power system can be a really complicated task due to the
increase of complex new load types such as plug-in-electric
vehicles (PEVs) and green energy charging stations, which
depend heavily on grid control [17]. Another important aspect
of the world order is that energy is not the primarily concern.
The increasing carbon and other gaseous oxides emissions of

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

28992 For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 11, 2023


https://orcid.org/0000-0003-1308-8374
https://orcid.org/0000-0002-9908-3971
https://orcid.org/0000-0001-9284-6414
https://orcid.org/0000-0003-3310-1484
https://orcid.org/0000-0002-8528-4457

I. Ahmed et al.: Dynamic Optimal Scheduling Strategy for Multi-Charging Scenarios of PEVs

IEEE Access

power generation utilities are affecting the earth’s atmosphere
dramatically, and emission regulatory authorities are forcing
the power generation companies to limit their emission to an
acceptable level. According to US environmental protection
agency, 50% of emissions of greenhouse gases is caused by
the electricity production and transportation alone [18]. These
agencies are also encouraging industries to switch the users
on green energy with lower or zero emission by providing
tax free rebates and other financial benefits to protect the
environment [19]. In the future, it is expected that PEVs will
dominate all other means of transportation industries due to
zero carbon foot prints and easy maintenance as compared
to combustion engines. The distribution of charging infras-
tructure is unquestionably one of the most essential areas of
studying the mechanics and applications of traditional EVs
recharging, whether for PEVs or exchange recharging tech-
niques. Some recent research focused on developing charging
technologies for EVs, including rapid inductive recharging
(RIR), short mileage capacity, and extended charging periods.
Fathollahi et al. [20], [21] developed a statistical technique
for the positioning and navigation of commercial EVs. Taking
into account variables such as EVs energy potential, fuelling
facility construction costs, power setbacks, and energy hubs’
power dissipation, the proposed method has successfully
mapped the location of IRR infrastructure and the scheduling
of EVs. Majhi et al. [22] developed a combined optimization
technique for identifying an economical approach for the
optimal distribution of RIR infrastructure on a large transport
grid while maintaining a satisfactory SOC. However, due
to the nature of their use, many commercial and domestic
PEVs are charged at frequent intervals. This results in an
abrupt increase in the demand for electricity on the energy
generating hubs. To contemplate this situation, a viable solu-
tion is needed to avoid energy mismatch of energy integrated
systems [23].

B. RELATED WORK

The primary concern of the EEDs is to improve the use of
energy supplies in the power grid [7], [24], [25], [26], [27],
[28], [29], [30]. In the past, several techniques have been
used to reduce the overall cost of fuel-based production units
and for delivering high-quality electricity to customers, while
EEDs are the most cost-effective and best possible options
[31]. In recent years, car manufacturers and federal financial
institutions have preferred the adoption of PEVs because they
have low oxides emission, better torque, energy saving and
easy maintenance [32], [33], [34], [35]. However, a substan-
tial percentage of PEVs will cause massive instability in the
operation of power grids [36], [37]. Due to inherent autonomy
of PEVs, an efficient charging model of all PEVs in a given
urban area is presented in [38] and [39]. After government
legislation of PEVs charging, a voltage control model has
been proposed to reduce power system voltage fluctuations
while ignoring the power losses in the optimization goal
[40], [41]. The charging nature of PEVs as load in grid

VOLUME 11, 2023

network system reflects it as the highly non-convex and non-
differential task.

Electricity and transportation industries are the largest
emitters of greenhouse gases on earth. Primarily, solar and
wind integration in the electricity industry can reduce these
harmful emissions [42]. The emission reductions may be
further aided by grid-enables vehicles (GVs), which are PEVs
with a V2G feature. PEVs have been used as loads, energy
sources, and energy storage in a smart power system with
renewable energy sources [43]. In the past decade, scientists
have considered many PEVs penetrations in the conventional
power grid systems [44]. Abdullah et al. [45] studied the risks
and obstacles that come from charging and discharging PEVs
as well as their potentials as a way to integrate renewable
energy sources. Qiao et al. [46] developed an adaptive struc-
ture of PEVs and wind farms that utilises the charging and
discharging of PEVs to mitigate the wind energy penalty
costs associated with exceeded and underrated wind energy
availability. Behera et al. [47] used fuzzy decision approach,
based on constriction particle swarm to solve the dynamic
EEDs and attained feasible greenhouse gases emission rate by
integrating renewable energy sources and PEVs. Flower pol-
lination meta-heuristic optimization algorithm is used in [48]
to tackle the complex dynamic EEDs subject to traditional
and charging constraints of PEVs. However, the charging
constraint model has considered the conventional capacity
limit on power generation, and practically, the charging of
PEVs is truly stochastic in nature [49], [50], [51].

Hong et al. [52] suggested the power systems concept to
manage the charging behaviour of all PEVs in a single urban
area due to their intrinsically autonomous properties. On the
basis of V2G technology, Wei et al. [53] suggested that PEVs
may be employed as a tiny transportable power plant. They
initially introduced the EEDs model for unit commitment
with PEVs and then utilized particle swarm optimization for
power mismatch constraints. Wu et al. [54] presented an hier-
archical approach for scheduling PEVs as industrial loads.
The model, on the other hand, does not take into account the
limits imposed by the EVs or the spinning reserves.

To elude the problem, Liu et al. [55] analyzed the pricing
model and dispatching scheme for PEVs-storage participa-
tion in the alternate service model and proposed an opti-
mal allocation strategy for PEVs-storage with the goal of
economic dispatch. The study can be found to effectively
improve PEVs reaction to ancillary service market participa-
tion and to increase the hub revenue. Babaei et al. [56] used
data mining approach for the uncertain load management of
PEVs over power network, considering a convex optimiza-
tion model. In [57], the authors solved a combined EEDs
problem by using a back tracking search algorithm. Li et al.
[58] suggested an improved sailfish optimizer for strate-
gic planning scheme to ensure flexibility in the program-
ming of power systems and addressed random wind power
effectively while reducing the operating costs and pollutant
emission.
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Numerous methods have been used as effective optimiza-
tion tools and have become widespread in the search for the
optimal solution to the EEDs problem [59], [60]. However,
the implementation of an appropriate multi-objective eco-
nomic emission dispatch system is still an intensively studied
topic that requires additional effort to balance the power grid
network energy flow in order to support the rapid develop-
ment of PEVs [61], [62], [63], commercial flying drones,
and other dynamic loads of energy storage devices [64], [65],
[66]. The authors in [67] presented a combined grid stability
and cross emissions reduction model for the energy dispatch
by considering PEVs to attain the lowest grid operational
cost. The presented model can reduce the operational cost
and emissions of energy hubs by relocating the transferable
electrical loads, such as PEVs, to time intervals when gen-
eration costs are low. In [68], the challenging dilemma of
electricity grid security due to uncertain load demand was
investigated. The authors have used a reinforcement learning
model to meet the energy demand of PEVs with varying users
in various places while concurrently boosting energy security.

Nonetheless, avoiding local minima is a major challenge
when solving optimization problems with strict constraints.
The researchers in [69] came up with a hybrid optimiza-
tion scheme, namely GSA-PSO, in order to improve the
global search performance. Additionally, some recent works
have presented the state-of-the-art ways to solve the hard
optimal energy dispatch problem while taking PEVs into
consideration [70], [71], [72], [73].

C. RESEARCH OBJECTIVE AND CONTRIBUTION

This work proposes a new paradigm to address the economic
emission model, contemplating unsteady load management
of PEVs. The developed framework provides the optimum
solution of cost and emission while delivering a unified strat-
egy for achieving a more precise and stable dispatch with
the addition of PEVs as additional loads. One of the most
difficult problems in power system control is to schedule the
active powers from all engaged thermal power stations in
such a manner that the generation costs and emissions are
minimized to the maximum possible extent while satisfying
all associated constraints. In addition, the EEDs for a sin-
gle connected load for a fixed time while meeting restric-
tion such as capacity generation limitations is referred to as
static EEDs. The EEDs for a loading condition of 24 hours
while taking ramp constraints into account is referred to as
dynamic EEDs, which is a more appropriate and pragmatic
dispatch requirement. An astute soft computing paradigm
is proposed and applied to solve the dynamic EEDs with
traditional convex and nonlinear constraints such as valve-
point effect, prohibited operating regions, internal network
losses. A new constrained model of PEVs with energy stor-
age and multi-charging mechanism is also incorporated as
an unsteady load. CEED with consideration for PEVs is
an important power system optimization task. This research
assists energy operators and policymakers in developing
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cost-effective generation schedules that take into account the
power demand of charging PEVs. In addition, by establishing
an optimal generation merit order, the strategy will help
reduce the environmental emissions of power plants. The fol-
lowing are, however, the most important contributions made
by this study:

1) Compared to [74] (see also [75], [76], [77], and [78])
for vehicle-to-grid (V2G) system in unbalanced power
distribution systems, a new approach for dynamically
managing the EEDs problem has been developed.
In this case, the approach is based on evolutionary
computing, which seeks out the most optimal solution
to the problem.

2) The approach also improves the operation of EEDs
by including unanticipated PEVs loads with a defined
probability distribution of several charging scenarios
over the course of a 24-hour period. While addressing
the inclusion of PEVs in the problem, this approach
also optimises the operation of EEDs, lowering the
overall energy costs and greenhouse gases emission
while meeting limitations such as VLEs, ramp rates and
generation demand, respectively, [79], [80], [81], [82]
and [46].

3) In contrast to the previous EEDs model in [74],
two highly nonlinear real-world constraints, namely,
forbidden operating regions and spinning reserve
of thermal power plants are also inducted in the
model to enhance the practicality of the proposed
system.

4) The proposed iterative algorithm for the combined
energy emission dispatch (CEED) problem in the
presence of high-dimensional, non-protuberant and
uncertain characteristics attains excellent optimiza-
tion performance and less computational cost. It also
demonstrates the better convergence and execution
time when compared to current advanced algorithms
[74] (see also [83] and [84]).

5) Five test systems ranging from small-scale to large-
scales were used to assess versatility of the proposed
algorithm for CEED in various PEVs charging scenar-
ios such as EPRI, peak, off-peak and stochastic [85],
[86], [87].

The objective of this study is to propose a low emission
energy dispatch model for IEMS to minimize the daily oper-
ational cost of energy grids by considering dynamic power
demand for conventional grid loads and PEVs charging load
under various charging scenarios such as EPRI, stochastic,
peak and off-peak. The dynamic CEED problem is a complex
task in IEMS due to its strict system level constraints, and
modeling the problem with PEVs charging scenarios make it
highly multidimensional problem. The penetration of these
charging scenarios in energy grid not only increases the
operational cost of energy production but it also affects the
power and emission profiles of generation and grid stability.
In light of the CEED model characteristics including PEVs
load, an effective intelligent optimization framework can be
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developed that ensures convergence in terms of speed and
accuracy compared to [74] (see also [75], [76], [77], and
[78]). The proposed framework will also ensure the reduction
in operation cost and emissions while effectively satisfying
the CEED constraints and PEVs charging scenarios.

D. ABBREVIATIONS AND ACRONYMS

Nomenclature
E.q Emission dispatch.
Fp Fuel cost dispatch.
Fgc Global cost.
Wy Scaling weights.
CEED Combined energy emission dispatch.
DE Differential evolution.
DEED Dynamic economic emission dispatch.

e-TLBO Elitist teaching-learning-based optimization.

EBWO Efficient black widow  optimization
algorithm.

EED Economic emission dispatch.

ELD Economic load dispatch.

EP Evolutionary programming.

EPA Environmental protection agency.

m-TLBO  Modified teaching-learning-based
optimization.

MAFRL Multi-agent fuzzy reinforcement learning.

PEM Plug-in electric mobility.

PEVCC Plug-in electric vehicle charging
coordination.

PEVs Plug in electric vehicles.

PS Pattern search optimization.

PSO Particle swarm optimization.

PSO-CF Particle swarm optimization constriction
factor.

SA Simulated annealing.

SL-TLBO Self learning  teaching-learning-based
optimization.

SOC State-of-charge.

TLBO Teaching-learning-based optimization.

w-PSO Weighted particle swarm optimization.

Il. SYSTEM MODEL AND PROBLEM FORMULATION

A. CEED PROBLEM FORMULATION

The goal of CEED is to find a balance between power gen-
erating plants cost and gaseous emissions. It is a bi-objective
task that combines the economic and environmental objective
of power delivery into a single optimization problem. The
goal of the CEED remedy is to bring the price of fuel down
to a more affordable level and to reduce fossil fuel-related
emissions for electricity producing units while addressing a
variety of convex and non-convex constraints. Fy; and E,q are
the acronyms for these two objectives. Ultimately, the CEED
issue has been treated as a single problem in the following
manner:

min(Fgc) = Wi(Frg) + (1 — Wy)(Eea). (D
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In (1), Fg. denotes the global cost to be minimize, W, is the
scaling weight having random value between 0 and 1, and
Ffa, Eq are fuel cost dispatch and environmental dispatch
respectively.

1) COST DISPATCH MODELLING

The goal of cost dispatch is to reduce the cost of fossil
fuels used by thermal plants while ensuring that the system
limitations are not violated. The mathematical representation
of cost dispatch model is as follows:

t NU
Fa= > FilPro)
t NU
2
=2 D @ T bPrc FaPi ). (2)

where Py . is the generation power of k”* generator at time
instant 7. ax, by, and ¢ are the cost coefficients of k™ gener-
ators. NU is the number of operating units.

2) VALVE-POINT LOADING EFFECT MODELLING

A thermal plant has special mechanized operation of valve
opening for steam under increase in load condition for syn-
chronization of generated power and load demand. This valve
opening operation introduces sinusoidal ripples on output
cost curve. The expression (2) can be modified for VLE
non-convex constraint as follows:

t NU
Fra = Zr:l zk:l (ax + biPrc + ck Py ;)
+ |ex sin (fi (P min — Pr.2)) | - 3

where e, and f; are the vale-point loading effect coefficients
causing rippling effect on output cost curve.

3) ENVIRONMENTAL DISPATCH MODELLING

The environmental power dispatch objective is to reduce
emissions levels of air contaminants such as nitrogen oxides
(NOx), carbon oxide (COy) and sulphur oxides (SOyx) at pos-
sible optimum level. The total emission of a thermal power
plants can be expressed as a quadratic polynomial as shown
below.

1 NU
Eeq = th] zk:l [((Ax + Bi Py r + CkPﬁgt)]
+ 1k exp(Sx P, 1), 4

where Ay, By, Ck, nx and & are the emission coefficients.

B. CONSTRAINTS MODELLING

Both economic and emission dispatch models possess several
system associated constraints that need to be satisfied in
entire dispatch operation. These are due to machines man-
ufacturing and operational limitations. Mathematical repre-
sentation of these constraints are as follow.

1) GENERATION CAPACITY AND RAMP-RATE LIMITATIONS

To ensure optimal dispatch, each thermal power generator
must maintain an active power output within its own power
limit range, which is typically between its upper and lower
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power capacities. Power units are subject to ramp-up/ramp-
down restrictions to reduce unintended power output oscilla-
tions between two adjacent instances. Mathematically, they
can be represented as follow.

P < Pro< PR,
Pi ¢ — Py -1 < RU,
Pr,r—1 — Pr,x = RD. (5)

2) LOAD DEMAND

Each interval’s total generated power must be sufficient to
meet the energy demand for a specified time period. In this
study, the three types of loads, namely the demand load Pp ¢,
PEVs load Ppgy -, and overall power system losses Pjogses,
for time instance 7 are considered.

N
> Pie=Poot PevetPosese. (6)
3) FORBIDDEN OPERATION REGIONS (FOR)

Thermal power plants also include some mechanical opera-
tions, such as the regulation of steam valves and the vibration
of the turbine shaft. Using these mechanisms, the machines
are able to operate within certain operating limitation regions.
When these regions are violated, serious system contin-
gencies can occur. Mathematically it can be represented as
follows.

min
PN <P < PP,
U
Pl _ <P <P,
U max
Pk,nZEPkSPk s
T=2,...,n2 )

4) SPINNING RESERVE
The symbol Sy, represents the k* spinning reserves (SRs) con-
tribution, Sg s, reflects the full SRs criterion, Si represents
the maximum SRs contribution for k< unit. Mathematically,
SRs can be modeled as

NU
Zk:l Sk = SR full - (®)
Ill. PEVs POWER DEMAND AND CHARGING SCENARIO
PEVs are recognised as the unconventional electric loads
due to their manufacturing hardware circuit complexities,
as compared to the traditional domestic and industrial loads.
The use of synchronous charging for household purposes
with a capacity of 0.02 MW and fast charging for industrial
purposes with a capacity of 0.2 MW (turbochargers) can be
accounted, which are primarily used by PEVs. This will cause
substantial rising spikes in the daily system demand load
curve. By appropriate scheduling of thermal power stations
and PEVs, these cascading effects on the daily demand curve
are preventable. Four different charging cases are examined
and taken from [79] and [88]. The detailed charging mecha-
nisms for PEVs are as follow.
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A. ERPI CHARGING CHARACTERISTICS FOR PEVs

To assess and examine the effect of PEVs owner behaviour
on the energy grids, an EPRI charging profile is selected [79].
EPRI is a non-profit research organization founded in 1972,
and it is one of the leading global organizations supporting
energy production planning and research on power opera-
tion. EPRI compiles a profile of PEVs charging schemes by
taking into account the environmental aspects and assesses
greenhouse gases emission. The charging profile probability
distribution for PEVs by ERPI is provided in Table 1, and it
is found that more then sixty percent of energy is consumed
in seven hours of time slot [89].

TABLE 1. EPRI charging scenarios of EVs.

Time Probabilities
01:00-06:00 0.1 0.1 0.095 | 0.07 0.05 0.03
07:00-12:00 | 0.01 | 0.003 | 0.003 | 0.013 2.1 0.021
13:00-18:00 | 0.021 | 0.021 | 0.021 | 0.01 | 0.005 | 0.005
19:00-24:00 | 0.016 | 0.036 | 0.054 | 0.095 0.1 0.1

B. OFF-PEAK CHARGING CHARACTERISTICS FOR PEVs
Based on the expected consumption of lithium-ion powered
automobiles, this method examines charging instances of off-
peak. The probability-based allocation for each 60 minutes
during the off-peak period is shown in Table 2. This con-
figuration achieves 3 recharge stages of lithium-ion batteries
by providing around 18.5% of the power between 23:00 and
02:00 hours, approximately 9% of the power between 02:00
and 04:00 hours, and any leftover power until 06:00 hours.
This is an ideal situation because, in addition to the eight
hours allowed for charging, electric vehicles are not permitted
to be charged during other hours [90].

TABLE 2. Off-Peak charging scenarios of EVs.

Time Probabilities
01:00-06:00 | 0.185 | 0.185 | 0.09 | 0.09 | 0.04 0.04
07:00-12:00 0 0 0 0 0 0
13:00-18:00 0 0 0 0 0 0
19:00-24:00 0 0 0 0 0.185 | 0.185

C. PEAK CHARGING CHARACTERISTICS FOR PEVs

This profile is continuous recharging of lithium-ion powered
automobiles, having 3 loading rates for the power sources
of electric vehicles during peak hours. Table 3 presents the
probabilistic distribution at peak hour. It is a serious case
comparison to prior situations, since electric vehicles require
energy between 13" and 20" peak hours. The rate of charge
and times for this case are in-line with [91].

D. STOCHASTIC CHARGING CHARACTERISTICS FOR PEVs

The stochastic charging profile of PEVs is used by enabling
charging uncertainties. We consider quick or instant charging
of an immediate vehicle at an irregular time frame of all
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TABLE 3. Peak charging scenarios of EVs.

Time Probabilities
01:00-06:00 0 0 0 0 0 0
07:00-12:00 0 0 0 0 0 0
13:00-18:00 | 0.185 | 0.185 | 0.185 | 0.185 | 0.09 | 0.09
19:00-24:00 | 0.04 0.04 0 0 0 0

day long in the stochastic charging scenario of PEVs. By a
margin of 5%, the random probability distribution shows the
normal distribution exactly. There are probabilities for the
stochastic charge scenario, presented in Table 4 for every
hour of the schedule. In all periods, the probability distribu-
tion ranges from 1.1 to 9.7 percent for the stochastic charg-
ing profile, where state-of-charge (SOC) changes randomly.
This research proposes a stochastic charging characteristic to
account for PEVs owner behaviour uncertainties. The profiles
are adopted from [79] to demonstrate the performance of
proposed method under uncertain charging scenarios. More
explicit results on uncertain behaviour of drivers can be
seen in the work [92]. It is pertinent to mention here that
the selected stochastic profile is assumed to be Gaussian as
compared to [92].

Figure 1 shows the rates of load demands for each of the
four situations. These models take into account the identical
proportion of demand in balance for load power Pgy ;. The
research problem becomes more complicated and multidi-
mensional by considering the presented scenarios [79].

TABLE 4. Stochastic charging scenarios of EVs.

Time Probabilities
01:00-06:00 | 0.057 | 0.049 | 0.048 | 0.024 | 0.026 | 0.097
07:00-12:00 | 0.087 | 0.048 | 0.011 | 0.032 | 0.021 | 0.057
13:00-18:00 3.8 2.2 0.021 | 0.061 | 0.032 | 0.022
19:00-24:00 | 0.028 | 0.022 | 0.055 | 0.025 | 0.035 | 0.082

02

0.18

EPRI Charging Scenario

———— Off-Peak Charging Scenario
Stochastic Charging Scenario

———— Peak Charging Scenario

0.16
0.14
0.12

0.1
0.08

0.06

0.04 i
002 S e E— | b

Time (Hours)

Charging scenarios probability percentage distribution

FIGURE 1. Distribution curves for various charging scenarios.

IV. METHODOLOGY FOR OPTIMAL SCHEDULING OF
PEVCC

The presented methodology resolves the PEVCC problem by
defining an optimal schedule for energy exchange between
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the batteries of PEVs and the energy grids. Additionally,
an economically viable operation for the EEDs is attained,
and operational limitations are satisfied. The optimal charg-
ing scheduling must minimize the energy costs by avoiding
battery discharge on PEVs and by minimizing power loss in
EDD:s. V. Hayyolalam and A. Pourhaji Kazem [93] proposed
a new evolutionary optimization algorithm based on the mat-
ing rituals of black widow spiders, which has been applied
in many different advanced industrial research problems due
to its convenience of use, adaptivity and speed. The efficient
black widow optimization (EBWO) is influenced by the black
widow spider’s unusual sexual dimorphism. This methodol-
ogy includes a unique stage known as cannibalism. As a result
of this phase, the circle excludes species with poor fitness
which further leads to early convergence. For the purpose
of determining the effectiveness of the proposed method in
finding optimal solutions, the EBWO algorithm is evaluated
on five different test systems. The EBWO algorithm performs
admirably during the exploitation and exploration processes
because it ensures rapid convergence and avoids local opti-
mum issues. Furthermore, it should be noted that EBWO
has the ability to strike a fine line among exploitation and
exploration. In other words, it has the capability of scanning
a large area in search of the best optimal solutions. As a
result, EBWO is an excellent choice for solving a variety of
optimization problems involving a multiple local optima [93].

A. LIFESTYLE STAGES OF BLACK wWiboOwW

Black widows are atrocious arachnids known for their
hourglass-shaped logo on their abdomens, which can be
found all over the world in places that are moderate in tem-
perature. The brief life cycle of balck widow is as follow.

1) BLACK WIDOW SPIDER MATTING PROCESS

Black widow spiders are most dangerous to insects and male
black widows. After mating, females will sometimes devour
their mates. This behaviour is referred to as “‘black mating”
and gives the insect its name. In contrast to other species,
black widows have a generally solitary lifestyle throughout
the year except for this violent mating behavior. By reducing
the attractiveness of females’ webs to rivals, the first male
enters the web. Females devour males during or immediately
after mating and then transfer eggs to their egg blister. Sib-
ling cannibalism is committed by the offspring immediately
after hatching. They do, however, spend some time on their
mother’s webs, where they can eat her. Fit and strong [94] are
guaranteed to live through this cycle. The optimal solution
is the one that achieves the global optimum of the targeted
function.

2) REPRODUCTION AND CANNIBALISM

Sex cannibalism is known to occur among invertebrates,
such as tarantulas, arachnids, and praying mantises. It is
an enthralling natural phenomenon to observe. By adjust-
ing their approach in response to these factors, males are
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able to reduce their risk of being killed. It is one of very
few significant species where the male actively participates
in sexual cannibalism with the female. During mating, the
female usually eats the male in two-thirds of the cases. Non-
consumed males die shortly after mating from their injuries.

3) SELF-DEVOURING IN SIBLINGS

As soon as their eggs are laid, spider lings can begin to hatch.
They can then emerge from the egg blister after about 11 days,
though cooler weather can probably slow their development
and delaying emergence for months. In the egg sac, they
feed on the yolk and moult once after hatching. During the
first few days or weeks of life on the prenatal web, sibling
cannibalism is most common. They are then carried away
by the wind. Cannibalistic behavior is caused by several fac-
tors, the most obvious being contest among predation related
species and the potential for alternative food sources during
periods of low prey availability. Un-selective sibling canni-
balism’s precise effect on parental fitness may have an influ-
ence on the development of parenting practices procreative
strategies. Cannibalism lowers the amount of survivor spider
lings; however, if survivors have improved body condition,
it may also increase parental fitness. It would be expected
that cannibalism rates would rise in proportion to family size
if cannibalism follows the same patterns as other forms of
cannibalism, especially if the potential cannibal is in poor
health. Additionally, in some instances, unfertilized spider
lings consume their mother slowly. In a matter of weeks, she
deteriorates to the point where she can no longer move and is
completely devoured.

B. LOGICAL STEPS FOR EBWO

A re-adjustment of the variables in the traditional EDP opti-
mization problem with PEVs acting as an additional unsteady
load is required in order to solve the optimization prob-
lem successfully. The main structured variable is referred as
widow in EBWO, chromosome in genetic algorithms, and
particle position in swarm optimization. Each problem vari-
able depicts as widow and fitness of each variable depends on
predefined fitness function. EBWO proceeds in the following
sequence of logical steps.

1) INITIAL POPULATION

A widow of 1 x W, dimensional array represents the
solution to a multi-dimensional EEDs optimization problem
considering PEVs as additional load with all associated con-
straints. Furthermore, the following describes the definition
of this array:

Widow = [Q1, O3, ..., OQwvar] . 9)
A floating-point number is used to represent each value asso-
ciated with the variable (Q1, Q2, ........ Owvar).- A widow’s
fitness level is determined by applying the fitness function f
at (01,02, vvvn. .. Ownvar)- The expression for fitness can be
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expressed as follow.

Fitness = f (Widow) = f(Q1, Q2, ..., Owvar)- (10)

The optimization process begins with a starting population
of spiders in order to generate a feasible widow matrix of
size Wpop x Wvar that can be used to solve the optimization
problem. Next, sets of family members are chosen at random
to perform the procreative step of mating, during which the
female black widow consumes the male black widow, and the
process is repeated.

2) PROCREATIVE

Mating occurs in parallel amongst the pairs, just as nature
dictates, with each pair breeding within its own web and
without the interference of the others. In the real world, each
mating produces approximately thousand eggs, but some of
the stronger spider babies survive. For breeding purposes,
an array termed alpha must be formed as long as the widow
array consists random numbers. After that, descendants are
created by employing ¢ and the following equation, in which
m and my are parents and Q1 and Q; are offspring.

m =0 x01+0—-0)x 0,
m =0 x 0+ (1—-0)xQi.

Following this, the babies and their mothers are incorporated
into an array and classified according to fitness value. Now,
depending on the canabolism rate, the best participants are
incorporated into the newly produced population, and all
pairs should adhere to the procedure.

(11)

3) CANNIBALISM
Cannibalism is a mechanism for population control or for
ensuring a participant’s genetic contribution. In the life cycle
of Black Widow spider, we have three types of cannibalism
as follow.
i) First case of sexual cannibalism is when the lady spider
widow consumes her companion male.
ii) Sibling cannibalism in which stronger spider lings con-
sume their weaker siblings.
iii) Spider lings consume their materfamilias.

4) MUTATION

Individuals from the population are randomly selected which
are mutepop individuals. Each of the selected solutions swaps
two variables as depicted in Figure 2, and mutation rate is
used to calculate mutepop. The shared solutions are further
evaluated in accordance with the specified value in Table 1 to
generate the new improved mutated optimal population.

FIGURE 2. Mutation process for survived population.
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5) EBWO CONVERGENCE
Similar to other meta-heuristic approaches, three stopping
conditions are considered as follow.
1) A pre-configured iteration count.
ii) Maintaining a constant fitness value for the best widow
over a number of iterations.
iii) Attaining the prescribed level of precision.

6) PARAMETER CONFIGURATION

The parameters must be adjusted appropriately to enhance
the algorithm’s success in finding gain advantages. Efficient
parameter tuning provides the ability to jump out of any local
optimum with greater chances of success while making a
comparison between exploitation and exploration. It includes
the rate of reproduction (RP), the rate of cannibalism (RC),
and the rate of mutation (RM). The norms for these character-
istics that were chosen for this article are tabulated in Table 5.
RP is the procreating percentage, which indicates the number

TABLE 5. Controlling parameter setting.

Parameter Value
Rate of reproduction (RP) | 0.61
Rate of cannibalism (RC) | 0.42
Rate of mutation (RM) 0.44

of individuals participating in reproduction. RC eliminates
the inadequate individuals from the available population.
Setting the appropriate value for this parameter ensures that
the exploitation stage performs well by transferring search
agents. RM decides the proportion of individuals who par-
ticipate in mutation. Maintaining a more delicate balance

W(pop),RM,RP and RC
Equation (1) to (6)

Equation (9)

Randomly Select m1 and m2

RM, RP and RC Evaluation

Update Popolation

Stoping
Criteraion

Result Achieved

FIGURE 3. Flowchart for dynamic optimal scheduling of PEVCC.

between exploitation and exploration with the precise value
for this parameter is beneficial. This factor can be used to
handle the transition of search agents from the global to
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the local level, as well as to direct them toward the most
optimal solution possible. The diagrammatic representation
in the form of flowchart for PEVCC is depicted in Figure 3
which shows the step-by-step working of EBWO to solve
the optimal scheduling of PEVCC. As a starting point for
the proposed EBWO, a population of spiders, each of which
demonstrates an optimal solution, is leveraged in-line with
the parameter values as indicated in Table 1. As a first phase,
these spiders hook up and attempt to produce a new genera-
tion that will update the population and randomly select two
genes according to the specified procedure of cannibalism
and mutation. Again, the population is updated in line with
the parameter values, and the process continues until the
stopping requirement is fulfilled (that is, all constraints are
satisfied and the global optimal point is found). In this work,
an evolutionary computing-based approach is presented to
solve the complex, nonlinear practical problem in indus-
trial operation of utilities. Compared to [74], the EBWO
approach’s versatility in dealing with wide range of con-
straints has also been demonstrated. Furthermore, the CEED
model is re-designed by induction of two more practical real-
world constraints, namely SRs and FOR. The performance
and reliability of presented approach has been evaluated using
several charging scenarios for PEVs on economic dispatch,
and the results are compared with [74], [79], [80], and [95],
and the references therein.

V. TEST AND RESULTS

In this section, we apply EBWO to the benchmark test
systems of PEVCC by taking PEVs into account. As the
optimal solutions for test systems are known in literature,
achieving a specified level of accuracy demonstrates the
proposed technique’s superiority over other state-of-the-art
heuristic techniques. The benchmark test systems of PEVCC
that consider PEVs charging under various scenarios make
the model high-dimensional and complicated. The constraints
causing the complexity of the problem have a direct impact
on energy grid stability, daily operational costs, and environ-
mental implications. The reason for choosing EBWO for this
complex optimization problem with contiguous constrained
restrictions is that it has a very superior efficiency in intelli-
gently identifying the global optimal cost with a high degree
of precision and rapid convergence.

Five case studies have been performed to showcase
the effectiveness and feasibility of designed scheme for
real-world power system applications. The EBWO was sim-
ulated for the dynamic CEED responses and the optimised
cost of fuel for charging fleet of plug-in electric vehicles
under various scenarios was compared to advanced heuristic
approaches. The required time analysis was carried out on a
Lenovo notebook equipped with an Intel celeron (R) N2940
CPU running at 1.83GHz and 4.0 GB of RAM, with MAT-
LAB version R2017b. The experimental layout of case stud-
ies is depicted in Figure 4 which consists of three linked
blocks. The first block is problem formulation block where
two highly conflicted objective functions along with the
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system constraints are modeled into single objective function
with the help of scaling weights. The second block represents
the working strategy of EBWO along with algorithm para-
metric values, and it will generate the best optimal values of
given problem by satisfying the all constraints and fed it to
energized load line represented in block three. All dynamic
loads are considered for attaining optimal fuel cost price
and emission under system constraints such as valve-point
loading effect, transmission losses with additional dynamic
load of PEVs charging. The brief system description of case
studies is as follow.

>
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=
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o

Energized Load Line
Dynamic Load Demand
OO0
Industrial ® @ @ @
Load Demand @ @ @ @

PEVs Load for All
Charging

Residential o
Scenarios

FIGURE 4. Experimental layout of the formulated problem, algorithm, and
charging load of PEVs with other loads.

i) Case Study-I: Five units test system with VLEs and
transmission losses without considering charging sce-
nario of PEVs.

ii) Case Study-II: Five units test system with VLEs and
transmission losses by considering four charging sce-
nario of PEVs.

iii) Case Study-III: Five units test system of dynamic emis-
sion dispatch, VLEs and transmission losses by consid-
ering charging scenario of PEVs.

iv) Case Study-IV: CEED model with VLEs and transmis-
sion losses by considering charging scenario of PEVs.

v) Case Study-V: Large-scale system with 15 units of
dynamic economic dispatch by VLEs and transmission
losses.

Five case studies have been conducted to demonstrate the
feasibility of the proposed EBWO algorithm. There is a 5-unit
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EEDs system, constrained by equations (3)-(6), for demand
presented in Appendix B taking into account PEV charging
scenarios. The results of these case studies are compared
to other advanced methods, including PSO, SA, TLBO, EP,
and other hybrid schemes. EBWO outperformed in terms of
achieving the best global optimal with stable convergence,
as demonstrated by the results. In addition, the effective-
ness of the proposed EBWO is not restricted to smaller test
systems, as demonstrated by Case Study V. This case study
focuses on a 15-unit system with rigid system constraints.
The numerical simulations demonstrate that the proposed
EBWO achieves a global optimum solution regardless of a
large search space in a shorter amount of time than other
advanced hybrid methods reported in the literature, including
SL-TLBO, w-PSO, PSO-CF, DE, e-TLBO, m-TLBO, and
MAFRL.

A. CASE STUDY-I

The cost coefficient data for dynamic economic dispatch of
five units is taken from [96]. The EBWO approach is capable
of generating powers of all committed units optimally for
24 hours, as illustrated in Figure 5. The result is compared to
the previously used approaches and is shown in Table 6 and
Figure 6. The statics obtained through EBWO has a lower
fuel dispatch cost than several other techniques such as SA,
PS, EP, PSO, SL-TLBO, and MAFRL [74] reported in the
literature.

Optimal Generations for Case Study-I

w
o
o

n
o
o

—
a
o

-
o
o

o
o

Optimal Output Power in MW

o

Generating Units

FIGURE 5. Best dynamic generation of all committed units for
Case Study-1.

TABLE 6. Fuel dispatch cost ($/day) comparison for Case Study-I.

Approach | Fuel Cost ($/day) | Approach | Fuel Cost ($/day)
SA 4.7356e4 PSO 4.4253e4
PS 4.6530e4 SL-TLBO 4.4119¢4
EP 4.6777¢4 MAFRL 4.3647¢4
- - EBWO 34884

B. CASE STUDY-II
This case study takes into account all charging load pro-
files such as ERPI, off-peak, stochastic and peak for PEVs,
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FIGURE 6. Fuel dispatch cost ($/day) comparison for dynamic ELD
without PEVs for Case Study-I.
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FIGURE 7. Load profiles for charging PEVs in a 5-unit system.
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FIGURE 8. Fuel dispatch cost ($/day) comparison for dynamic ELD with
PEVs for Case Study-II.

as well as a 5-unit system for the dynamic ELD problem. The
5-unit system is used to simulate 3 x 103 multiple kinds of
PEVs to account for the load imposed by PEVs on entire
grid. There are three different types of PEVs: low-hybrid
PEVs with 15 kWh storage capacity, middle-hybrid PEVs
with 25 kWh storage range, and pure hybrid PEVs with
40 kWh storage range. These are proportioned at 45, 25, and
30 percent, respectively, with all PEVs are assumed to have
a 50 percent SOC. The cumulative power demand of PEVs
for charging the batteries under various charging scenarios
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from power delivery grids for 24-hours is computed as follow:
Ppyr =30 x 1000 x (15 x 45% + 25 x 25% + 40 x
30%) x 0.5 = 375 MW. Figure 7 illustrates the charging
load profiles for the PEVs strategy. It is clear from the plot
that the demand for electricity increases all through EPRI
and peak charging, which occurs among 12:00 and 05:00.
During the hours of 06:00-09:00, a new sub-peak can be
observed in the stochastic charging profile as indicated by the
yellow line. Table 7 and Figure 8 show a comparison of the
results obtained using different techniques. When it comes
to charging profiles, the EBWO significantly outperforms all
of the other methods. Additionally, as shown in Figure 8,
EBWO has been compared for the charging duration of all
PEVs, and it has been found that the lowest production cost is
attained during the EPRI charging slot, with 35,219.00 dollars
per day being the lowest. The highest cost of production is
noticed during the off-peak charging slot, with a daily cost of
38,415 dollars. The cost of operation during the peak charg-
ing slot is 37,735.73 dollars per day, which is higher than
the cost of dispatch during the stochastic charging intervals
(37,488.004 dollars per day).

TABLE 7. Fuel cost ($/day) comparison for PEVs and dynamic economic
dispatch Case Study-II.

Approach EPRI Off-Peak
w-PSO 49,004.13 | 48,587.97
PSO-CF | 51,482.18 | 51,231.77
DE 51,457.32 | 51,238.97
TLBO 49,649.47 | 48,884.45
e-TLBO | 49,049.49 | 49,306.12
m-TLBO | 48,974.99 | 47,656.89
SL-TLBO | 46,770.71 | 46,508.86
MAFRL | 46,640.80 | 45,915.95
EBWO 35,219.00 | 38,415.29
Approach Peak Stochastic
w-PSO 50,875.78 | 49,333.11
PSO-CF | 51,682.02 | 49,333.11
DE 51,310.22 | 51,292.57
TLBO 48,775.31 | 51,283.18
e-TLBO | 49,270.68 | 49,292.38
m-TLBO | 48,459.70 | 49,549.59
SL-TLBO | 47,367.17 | 48,970.59
MAFRL | 46,940.24 | 47,158.86
EBWO 37,735.73 | 37,488.004

C. CASE STUDY-1I

Rather than considering economic dispatch, dynamic EEDs is
taken into consideration for this case study. The PEVs charg-
ing scenarios from Figure 7 are used again here, with the same
system restrictions and SOC. With all four charging loads sce-
narios, dynamic environmental dispatch was evaluated, and
comparisons were made with the recently applied approaches
such as weighted particle swarm, constriction factor particle
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swarm, teaching learning-based, dragon fly, elitist teach-
ing learning-based, modified teaching learning-based, self
learning teaching learning-based and multi-agent fuzzy rein-
forcement learning optimizations. Table 8 and Figure 9
demonstrate the results of the comparative analysis. When
using EBWO, it can be seen in Figure 9 that the stochastic
charging profile emits less air pollution (17265.91 1b/Day),
whereas the maximum air pollution (18662.20 1b/Day) is
produced by the peak charging profile.
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FIGURE 9. Emission dispatch (Ib/day) comparison for PEVs and dynamic

economic dispatch Case Study-IIl.

TABLE 8. Emission dispatch (Ib/day) comparison for PEVs and dynamic
emission dispatch Case Study-IIl.

Approach EPRI Off-Peak
w-PSO 19,189.83 | 18,998.30
PSO-CF 20,232.49 | 19,794.18
DE 20,030.88 | 19,658.45
TLBO 19,002.82 | 18,887.37
e-TLBO 19,170.59 | 18,930.36
m-TLBO | 19,112.78 | 18,879.95
SL-TLBO | 18,820.78 | 18,659.24
MAFRL 18,770.84 | 18,524.80
EBWO 17,070.321 | 18,354.06
Approach Peak Stochastic
w-PSO 19,443.99 | 19,112.25
PSO-CF 20,440.12 | 20,183.56
DE 20,493.63 | 20,109.08
TLBO 19,483.80 | 19,195.84
e-TLBO 19,390.75 | 19,154.89
m-TLBO | 19,379.09 | 19,369.38
SL-TLBO | 19,227.18 | 18,963.69
MAFRL 19,050.75 | 18,955.54
EBWO 18,851.50 | 17,874.00

D. CASE STUDY-IV

The CEED model is taken into consideration for this case
study, and the PEVs charging scenarios in the case study
are also considered with the same system constraints and
SOC as in the case study-III. EBWO was used to eval-
uate dynamic CEED for all four charging loads of PEVs
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and to compare them to the previously applied techniques
such as weighted particle swarm, constriction factor particle
swarm, teaching learning-based, dragon fly, elitist teaching
learning-based, modified teaching learning-based, self learn-
ing teaching learning-based and multi-agent fuzzy reinforce-
ment learning. Table 9 and Figure 10 contain the comparison
results. As illustrated in Figure 10, peak charging profile
emits 24,934.20 Ib/day of pollution, while off-peak charging

profile emits 23,178.20 Ib/day.
[b/Day
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FIGURE 10. Emission dispatch (Ib/Day) comparison for PEVs and dynamic
EEDs Case Study-IV.

TABLE 9. Emission cost (Ib/Day) comparison for PEVs and combine
dynamic EED Case Study-IV.

Approach EPRI Off-Peak
w-PSO 35,785.15 | 34,705.22
PSO-CF | 36,611.46 | 36,601.88
DE 36,534.69 | 36,421.38
TLBO 35,037.04 | 34,959.16
e-TLBO | 35,064.55 | 35,167.21
m-TLBO | 35,300.92 | 35,355.49
SL-TLBO | 33,998.31 | 33,924.62
MAFRL | 33,740.25 | 33,875.60
EBWO 24771.00 | 23178.20
Approach Peak Stochastic
w-PSO 35,514.07 | 36,022.33
PSO-CF | 36,814.66 | 36,632.76
DE 36,657.76 | 36,581.62
TLBO 35,112.58 | 35,269.76
e-TLBO | 35,048.14 | 35,654.87
m-TLBO | 35,162.68 | 34,857.65
SL-TLBO | 34,731.92 | 34,245.83
MAFRL | 34,525.45 | 33,990.87
EBWO 2493420 | 23997.24

E. CASE STUDY-V

To further validate the effectiveness of the proposed
scheme, a large-scale 15-unit EED task with several charg-
ing situations for PEVs is performed over a large time
period. In comparison to the previous studies, this case is
highly multi-dimensional and complicated. The dispatch cost
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coefficient data for thermal generators is taken from [97], and
the total load demand of power is accounted as 60960 MW.
Previous to this case study, a system of five units considered
120 variables that was compact in size. In order to solve
the dynamic EED problem, fifteen units are combined to
form a complex system with 360 variables. Multiple charging
loads for PEVs are taken into account in this case, as well
as a fifteen units system for the dynamic ELD problem. For
the purpose of allowing PEV loads, a simulation of 90,000
various varieties of PEVs with a fifteen units system is con-
sidered. Similar to the five units system, these PEVs are clas-
sified into three distinct groups. The state of charge (SOC)
of the rechargeable batteries for PEVs is assumed to be 50%.
The additional charging load requirement for a twenty-four-
hour period is calculated as follows: Pgy r = 90K x (15 x
45% + 25 x 25% + 40 x 30%) x 0.5 = 1125 mega-watt.
The charging load demand profile of PEVs is depicted in
Figure 11. The plot clearly demonstrates that the demand for
energy rises during peak charging scenario. The results of this
study are compared to other existing techniques in Table 10
and Figure 12.
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FIGURE 11. Load profiles for charging PEVs in a fifteen-unit system.
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FIGURE 12. Fuel dispatch cost ($/day) comparison for PEVs and combine
dynamic EED of 15 units.

While charging under the EPRI scenario, charging during
off-peak hours, and charging under stochastic conditions, the
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TABLE 10. Fuel dispatch cost ($/day) comparison of PEVs for 15-unit
system with combine dynamic EED Case Study-V.

Approach EPRI Off-Peak
w-PSO 783,004.14 | 783,650.51
PSO-CF | 784,391.24 | 784,532.96
DE 784,354.55 | 784,313.52
TLBO 781,644.49 | 783,002.47
e-TLBO | 782,323.93 | 782,320.70
m-TLBO | 781,562.91 | 781,179.19
SL-TLBO | 781,001.23 | 780,862.82
MAFRL | 780,288.72 | 780,544.82

EBWO 767260.08 | 776850.23
Approach Peak Stochastic
w-PSO 783,863.93 | 784,610.33
PSO-CF | 785,851.62 | 785,491.74
DE 785,512.30 | 785,273.31
TLBO 784,004.33 | 783,962.29
e-TLBO | 783,383.72 | 783,280.51
m-TLBO | 782,922.74 | 782,138.87
SL-TLBO | 781,961.91 | 781,459.24

MAFRL | 781,315.65 782,415
EBWO 766050.11 | 767110.42

TABLE 11. Cost and emission coefficients with ramp-rate limitations for
Case Studies I-IV.

UnitNo. | P/ | Pr® | ap | by x| RU
1 10 75 25 2.0 0.0080 | 30
2 20 125 60 1.8 0.0030 | 30
3 30 175 100 2.1 0.0012 | 40
4 40 250 120 2.0 0.0010 | 50
5 50 300 40 1.8 0.0015 | 50
Unit No. Nk 6k Ak Bk Ck RD
1 100 | 0.042 | 80 | -0.805 | 0.0180 | 30
2 140 | 0.040 | 50 | -0.555 | 0.0150 | 30
3 160 | 0.038 | 60 | -1.355 | 0.0105 | 40
4 180 | 0.037 | 45 | -0.600 | 0.0180 | 50
5 200 | 0.035 | 30 | -0.555 | 0.0120 | 50

EBWO outperforms all other methods. Additionally, with
fuel dispatch cost of 767,110.42 dollars per day during the
stochastic charging interval, EBWO has the lowest operat-
ing dispatch cost. The highest cost of the system is noticed
during the off-peak charging interval with a daily cost of
776,850.23 dollars. The dispatch cost of operation during the
EPRI charging interval is 767,260.08 dollars per day, which
is higher than the cost of operation during the peak charging
slot (766,050.11 dollars per day). According to Figure 13,
there are detailed solutions for optimal power generation
under multiple charging scenarios using the EBWO for a
fifteen units complex system. EBWO has not only achieved
the lower operating costs for fuel, but it has also dealt with
complex non-convex system constraints while maintaining
smooth delivery of the PEVs load power demand during the
charging periods.
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TABLE 12. Dynamic load for 24-hours for Case Studies I-IV.

Hour | 1 2 3 4 5 6 7 8 9 10 | 11 12
Load | 410 | 435 | 475 | 530 | 558 | 608 | 626 | 654 | 690 | 704 | 720 | 740
Hour | 13 14 | 15 16 | 17 18 19 20 |21 |22 (23 |24
Load | 704 | 690 | 654 | 580 | 558 | 608 | 654 | 704 | 680 | 605 | 527 | 463

Optimal Generations for Case Study-IV (EPRI Charging Scenario)
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FIGURE 13. Optimal generations of Case study-V for all charging
scenarios.

Comparative investigations of experimental outcomes for
eleven well-known approaches, namely, SA, PS, EP, PSO,
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TABLE 13. Cost and emission coefficients with ramp-rate limitations for
Case Study V.

Unit No. | P77 | P7e® | ay, | by x RU | RD
1 150 | 455 | 671 | 10.1 | 0.000299 | 80 | 120
2 150 | 455 | 574 | 10.2 | 0.000183 | 80 | 120
3 20 | 130 | 374 | 88 | 0.001126 | 130 | 130
4 20 | 130 | 374 | 88 | 0.001126 | 130 | 130
5 150 | 470 | 461 | 10.4 | 0.000205 | 80 | 120
6 135 | 460 | 630 | 10.1 | 0.000301 | 80 | 120
7 135 | 465 | 548 | 9.8 | 0.000364 | 80 | 120
8 60 | 300 | 227 | 11.2 | 0.000338 | 65 | 100
9 25 | 162 | 173 | 11.2 | 0.000807 | 60 | 100

10 25 | 160 | 175 | 10.7 | 0.001203 | 60 | 100
11 20 | 80 | 186 | 10.2 | 0.003586 | 80 | 80
12 20 | 80 | 230 | 9.9 | 0.005513 | 80 | 80
3 25 | 85 | 225 13.1 | 0.000371 | 80 | 80
14 15 | 55 |309 | 1210001929 | 55 | 55
is 15 | 55 | 323|122 0004447 | 55 | 55

SL-TLBO, w-PSO, PSO-CF, DE, e-TLBO, m-TLBO and
MAFRL-EBWO were conducted in distinct case studies,
each with complicated system limitations. Four different
charging scenarios of EPRI, off-peak, peak, and stochastic
were included in Tables 6 to 10. The results show that in each
case study, EBWO has outperformed the other approaches for
better cost values. EBWO has also attained the global optimal
point with faster convergence during the iterative process
regardless of search space.

VI. CONCLUSION AND FUTURE WORK

In this paper, an evolutionary computation-based method,
namely EBWO, has been considered to solve the optimal
charging coordination of PEVs in energy hubs for various
charging strategies, such as EPRI, peak, stochastic, and off-
peak, of PEVs by considering a dynamic load. Each scenario
is confined by complex energy dispatch system limitations
such as generation capacity, load demand, valve-point load-
ing effects, ramp-rate limitations and forbidden operating
regions. Additionally, a more complex multi-objective model
has also been investigated to examine the environmental
effects and emission costs of power plants. Furthermore,
four complex charging scenarios for PEVs by taking into
account the driver behavior and energy grid peak and off-peak
hours are investigated. The proposed scheme determines
the optimal charging schedules, optimal cost and optimal
emissions in order to avoid operational concerns associated
with uncontrolled PEVs charging in IEMS such as grid
security and stability. There was no PEVs energy curtail-
ment in any of the scenarios studied herein with regard to
system load imbalance, and the charging schedules were
able to meet the operational constraints. For the purpose
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TABLE 14. Dynamic load for 24-hours for Case Study V.

Hour | 1 2 3 4 5 6 7 8 9 10 11 12
Load | 2236 | 2215 | 2226 | 2236 | 2298 | 2316 | 2331 | 2443 | 2657 | 2728 | 2783 | 2785
Hour | 13 14 15 16 17 18 19 20 21 22 23 24
Load | 2780 | 2830 | 2953 | 2950 | 2902 | 2803 | 2651 | 2584 | 2432 | 2312 | 2261 | 2254

of calculating the effectiveness of the proposed method,
evaluations were carried out on small-scale 5-generator sys-
tems and large-scale 15-generator systems with a variety of
charging scenarios for PEVs. Simulation results showed that
the proposed EBWO approach can be an alternate technique
for solving both small-scale and large-scale energy/emission
dispatch problems, and it outperforms a number of existing
techniques in terms of cost function optimization and con-
vergence time. Additionally, the proposed EBWO approach
is superior to the other approaches used and has achieved
the global minima for all test functions, whereas PSO, SA,
TLBO, EP and other hybrid schemes may result in local
optimum for high-dimensional space and have low con-
vergence rates during the iterative process. However, this
study does not examine the ecologically friendly energy
sources, such as wind turbines, solar-powered energy cells,
and green-fuel automobiles. This investigation could be
expanded to include machine learning-based recharging pro-
tocols, battery health management solutions, incentive-based
charging frameworks, and sustainable energy-based facili-
ties for charging EVs. Future studies can investigate the
effectiveness of the design for multi-powered networks using
RETScreen® software. A real-time analysis of the financial
management, site feasibility, and risks of integrating renew-
able energy resources into traditional energy hubs can be
provided in upcoming research.

APPENDIX A
See Table 11.

APPENDIX B
See Table 12.

APPENDIX C
See Table 13.

APPENDIX D
See Table 14.

REFERENCES

[1] M. Kermani, E. Shirdare, A. Najafi, B. Adelmanesh, D. L. Carni, and
L. Martirano, “Optimal self-scheduling of a real energy hub considering
local DG units and demand response under uncertainties,” IEEE Trans.
Ind. Appl., vol. 57, no. 4, pp. 33963405, Jul. 2021.

VOLUME 11, 2023

[2] S. Fayyaz, M. K. Sattar, M. Waseem, M. U. Ashraf, A. Ahmad,

H. A. Hussain, and K. Alsubhi, “Solution of combined economic emission

dispatch problem using improved and chaotic population-based polar bear

optimization algorithm,” IEEE Access, vol. 9, pp. 56152-56167, 2021.

1. Ahmed, A. R. Rao, A. Shah, E. Alamzeb, and J. A. Khan, “Performance

of various metaheuristic techniques for economic dispatch problem with

valve point loading effects and multiple fueling options,” Adv. Electr. Eng.,
vol. 2014, Nov. 2014, Art. no. 765053, doi: 10.1155/2014/765053.

[4] M. H. Hassan, S. Kamel, S. Q. Salih, T. Khurshaid, and M. Ebeed,

“Developing chaotic artificial ecosystem-based optimization algorithm
for combined economic emission dispatch,” IEEE Access, vol. 9,
pp. 51146-51165, 2021.

[5S] U.-E. Alvi, “A novel incremental cost consensus approach for distributed

economic dispatch over directed communication topologies in a smart

grid,” Soft Comput., vol. 26, pp. 6685-6700, Jul. 2022.

I. Ahmed, U.-E.-H. Alvi, A. Basit, M. Rehan, and K.-S. Hong, “Multi-

objective whale optimization approach for cost and emissions scheduling

of thermal plants in energy hubs,” Energy Rep., vol. 8, pp. 9158-9174,

Nov. 2022.

[71 M. Rehan, N. Igbal, and K.-S. Hong, “Delay-range-dependent control

of nonlinear time-delay systems under input saturation,” Int. J. Robust

Nonlinear Control, vol. 26, no. 8, pp. 1647-1666, 2016.

1. Ahmed, M. Rehan, A. Basit, S. H. Malik, U.-E.-H. Alvi, and K.-S. Hong,

“Multi-area economic emission dispatch for large-scale multi-fueled

power plants contemplating inter-connected grid tie-lines power flow lim-

itations,” Energy, vol. 261, Dec. 2022, Art. no. 125178.

[91 Y. Guo, C. Chen, and L. Tong, “Pricing multi-interval dispatch under
uncertainty—Part I: Dispatch-following incentives,” IEEE Trans. Power
Syst., vol. 36, no. 5, pp. 3865-3877, Sep. 2021.

[10] C. A.O.D. Freitas, R. C. Limao de Oliveira, D. J. A. D. Silva, J. C. Leite,
and J. D. A. Brito Jr., “Solution to economic—Emission load dispatch by
cultural algorithm combined with local search: Case study,” IEEE Access,
vol. 6, pp. 64023-64040, 2018.

[11] N. A.Khan, G. A. S. Sidhu, and F. Gao, “Optimizing combined emission
economic dispatch for solar integrated power systems,” [EEE Access,
vol. 4, pp. 3340-3348, 2016.

[12] 1. Ahmed, U.-E.-H. Alvi, A. Basit, T. Khursheed, A. Alvi, K.-S. Hong,
and M. Rehan, “A novel hybrid soft computing optimization framework
for dynamic economic dispatch problem of complex non-convex con-
tiguous constrained machines,” PLoS ONE, vol. 17, no. 1, Jan. 2022,
Art. no. €0261709.

[13] B.-J. Park, P-T. Pham, and K.-S. Hong, “Model reference robust adap-
tive control of control element drive mechanism in a nuclear power
plant,” Int. J. Control, Autom. Syst., vol. 18, no. 7, pp. 1651-1661,
Jul. 2020.

[14] C.-S.Kim and K.-S. Hong, “Boundary control of container cranes from the
perspective of controlling an axially moving string system,” Int. J. Control,
Autom. Syst., vol. 7, no. 3, pp. 437-445, Jun. 2009.

[15] M.J. Khan and K.-S. Hong, “Hybrid EEG—{NIRS-based eight-command
decoding for BCI: Application to quadcopter control,” Frontiers Neuro-
robotics, vol. 11, p. 6, Feb. 2017.

[16] I. Ahmed, M. Rehan, K.-S. Hong, and A. Basit, “A consensus-based
approach for economic dispatch considering multiple fueling strategy of
electricity production sector over a smart grid,” in Proc. 13th Asian Control
Conf. (ASCC), May 2022, pp. 1196-1201.

[17] H. Liang, Y. Liu, F. Li, and Y. Shen, “Dynamic economic/emission
dispatch including PEVs for peak shaving and valley filling,”
IEEE Trans. Ind. Electron., vol. 66, no. 4, pp.2880-2890,
Apr. 2019.

[18] B.Hampfand K. L. Rgdseth, “Carbon dioxide emission standards for U.S.
power plants: An efficiency analysis perspective,” Energy Econ., vol. 50,
pp. 140-153, Jul. 2015.

3

—

[6

—

[8

—

29005


http://dx.doi.org/10.1155/2014/765053

IEEE Access

I. Ahmed et al.: Dynamic Optimal Scheduling Strategy for Multi-Charging Scenarios of PEVs

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

M. Asif, M. S. S. Jajja, and C. Searcy, “A review of literature on the
antecedents of electric vehicles promotion: Lessons for value chains
in developing countries,” [EEE Trans. Eng. Manag., early access,
Aug. 10, 2022, doi: 10.1109/TEM.2021.3099070.

A. Fathollahi, S. Y. Derakhshandeh, A. Ghiasian, and M. H. Khooban,
“Utilization of dynamic wireless power transfer technology in multi-
depot, multi-product delivery supply chain,” Sustain. Energy, Grids Netw.,
vol. 32, Dec. 2022, Art. no. 100836.

A. Fathollahi, S. Y. Derakhshandeh, A. Ghiasian, and M. A. S. Masoum,
“Optimal siting and sizing of wireless EV charging infrastructures consid-
ering traffic network and power distribution system,” IEEE Access, vol. 10,
pp. 117105-117117, 2022.

R. C. Majhi, P. Ranjitkar, and M. Sheng, “Optimal allocation of dynamic
wireless charging facility for electric vehicles,” Transp. Res. D, Transp.
Environ., vol. 111, Oct. 2022, Art. no. 103461.

'W. Hong, I. Chakraborty, H. Wang, and G. Tao, “Co-optimization scheme
for the powertrain and exhaust emission control system of hybrid electric
vehicles using future speed prediction,” IEEE Trans. Intell. Vehicles, vol. 6,
no. 3, pp. 533-545, Sep. 2021, doi: 10.1109/TTV.2021.3049296.

A. Akbari-Dibavar, B. Mohammadi-Ivatloo, K. Zare, T. Khalili, and
A. Bidram, “Economic-emission dispatch problem in power systems with
carbon capture power plants,” [EEE Trans. Ind. Appl., vol. 57, no. 4,
pp. 3341-3351, Jul. 2021, doi: 10.1109/TTA.2021.3079329.

M. R. B. D. Santos, A. R. Balbo, E. Goncalves, E. M. Soler,
R. B. N. M. Pinheiro, L. Nepomuceno, and E. C. Baptista, “A proposed
methodology involving progressive bounded constraints and interior-
exterior methods in smoothed economic/environmental dispatch prob-
lems,” IEEE Latin Amer. Trans., vol. 15, no. 8, pp. 1422-1431, Jul. 2017.
N. Gu, H. Wang, J. Zhang, and C. Wu, “Bridging chance-constrained
and robust optimization in an emission-aware economic dispatch with
energy storage,” IEEE Trans. Power Syst., vol. 37, no. 2, pp. 1078-1090,
Mar. 2022, doi: 10.1109/TPWRS.2021.3102412.

K. T. Hong, C. D. Huh, and K.-S. Hong, “Command shaping control for
limiting the transient sway angle of crane systems,” Int. J. Control Autom.
Syst., vol. 1, no. 1, pp. 43—-53, Mar. 2003.

U. H. Shah and K.-S. Hong, “Input shaping control of a nuclear
power plant’s fuel transport system,” Nonlinear Dyn., vol. 77, no. 4,
pp. 1737-1748, Sep. 2014.

K.-S. Hong and P.-T. Pham, “Control of axially moving systems: A
review,” Int. J. Control, Autom. Syst., vol. 17, no. 12, pp. 2983-3008,
Dec. 2019.

I. Ahmed, M. Rehan, N. Igbal, and C. K. Ahn, “A novel event-triggered
consensus approach for generic linear multi-agents under heterogeneous
sector-restricted input nonlinearities,” IEEE Trans. Netw. Sci. Eng., early
access, Jan. 4, 2023, doi: 10.1109/TNSE.2022.3232779.

E. A. Amorim and C. Rocha, “Optimization of wind-thermal economic-
emission dispatch problem using NSGA-III,” IEEE Latin Amer. Trans.,
vol. 18, no. 9, pp. 1555-1562, Sep. 2020.

E. Taherzadeh, H. Radmanesh, and A. Mehrizi-Sani, “A comprehensive
study of the parameters impacting the fuel economy of plug-in hybrid
electric vehicles,” IEEE Trans. Intell. Vehicles, vol. 5, no. 4, pp. 596-615,
Dec. 2020.

M. Dabbaghjamanesh, A. Kavousi-Fard, and J. Zhang, ““Stochastic mod-
eling and integration of plug-in hybrid electric vehicles in reconfigurable
microgrids with deep learning-based forecasting,” IEEE Trans. Intell.
Transp. Syst., vol. 22, no. 7, pp. 4394-4403, Jul. 2020.

R. Huang and K.-S. Hong, “Multi-channel-based differential pathlength
factor estimation for continuous-wave fNIRS,” IEEE Access, vol. 9,
pp. 37386-37396, 2021.

L. H. Nguyen, K.-S. Hong, and S. Park, ‘““Road-frequency adaptive control
for semi-active suspension systems,” Int. J. Control, Autom. Syst., vol. 8,
no. 5, pp. 1029-1038, Oct. 2010.

Y. Zhang, Z. Chen, G. Li, Y. Liu, H. Chen, G. Cunningham, and J. Early,
“Machine learning-based vehicle model construction and validation—
Toward optimal control strategy development for plug-in hybrid electric
vehicles,” IEEE Trans. Transport. Electrific., vol. 8, no. 2, pp. 1590-1603,
Jun. 2022.

Y. Ren, Z. Zhao, C. Zhang, Q. Yang, and K.-S. Hong, “Adaptive neural-
network boundary control for a flexible manipulator with input con-
straints and model uncertainties,” IEEE Trans. Cybern., vol. 51, no. 10,
pp. 47964807, Oct. 2021.

29006

(38]

(39]

[40]

[41]

[42]

(43]

(44]

[45]

[46]

(47]

(48]

[49]

(50]

[51]

(52]

(53]

(54]

[55]

[56]

Y. Cui, Z. Hu, and X. Duan, “Optimal pricing of public electric vehicle
charging stations considering operations of coupled transportation and
power systems,” IEEE Trans. Smart Grid, vol. 12, no. 4, pp. 3278-3288,
Jul. 2021.

K.-J. Yang, K.-S. Hong, and F. Matsuno, ‘“‘Energy-based control of axially
translating beams: Varying tension, varying speed, and disturbance adap-
tation,” IEEE Trans. Control Syst. Technol., vol. 13, no. 6, pp. 1045-1054,
Nov. 2005.

A. A. Zishan, M. M. Haji, and O. Ardakanian, “Adaptive congestion
control for electric vehicle charging in the smart grid,” IEEE Trans. Smart
Grid, vol. 12, no. 3, pp. 2439-2449, May 2021.

Z.J.Lee, G. Lee, T. Lee, C. Jin, R. Lee, Z. Low, D. Chang, C. Ortega, and
S. H. Low, “Adaptive charging networks: A framework for smart electric
vehicle charging,” IEEE Trans. Smart Grid, vol. 12, no. 5, pp. 4339-4350,
Sep. 2021.

I. Ahmed, M. Rehan, A. Basit, and K.-S. Hong, “Greenhouse gases emis-
sion reduction for electric power generation sector by efficient dispatching
of thermal plants integrated with renewable systems,” Sci. Rep., vol. 12,
no. 1, pp. 1-21, Jul. 2022.

M. Obrecht, R. Singh, and T. Zorman, “Conceptualizing a new circular
economy feature—Storing renewable electricity in batteries beyond EV
end-of-life: The case of Slovenia,” Int. J. Productiv. Perform. Manage.,
vol. 71, no. 3, pp. 896-911, Feb. 2022.

Y. O. Assolami, A. Gaouda, and R. El-shatshat, “Impact on voltage quality
and transformer aging of residential prosumer ownership of plug-in electric
vehicles: Assessment and solutions,” IEEE Trans. Transport. Electrific.,
vol. 8, no. 1, pp. 492-509, Mar. 2022, doi: 10.1109/TTE.2021.3089460.
H. M. Abdullah, A. Gastli, and L. Ben-Brahim, “Reinforcement learning
based EV charging management systems—A review,” IEEE Access, vol. 9,
pp. 4150641531, 2021.

B. Qiao and J. Liu, “Multi-objective dynamic economic emission dispatch
based on electric vehicles and wind power integrated system using differen-
tial evolution algorithm,” Renew. Energy, vol. 154, pp. 316-336, Jul. 2020.
S. Behera, S. Behera, and A. K. Barisal, “Dynamic combined economic
emission dispatch integrating plug-in electric vehicles and renewable
energy sources,” Int. J. Ambient Energy, vol. 43, no. 1, pp. 4683—4700,
2021.

N. Parsa, B. Bahmani-Firouzi, and T. Niknam, “A social-economic-
technical framework for reinforcing the automated distribution systems
considering optimal switching and plug-in hybrid electric vehicles,”
Energy, vol. 220, Apr. 2021, Art. no. 119703.

X. Zhou, S. Zou, P. Wang, and Z. Ma, “ADMM-based coordination
of electric vehicles in constrained distribution networks considering fast
charging and degradation,” IEEE Trans. Intell. Transp. Syst., vol. 22, no. 1,
pp. 565-578, Jan. 2021.

'W. Gan, M. Shahidehpour, J. Guo, W. Yao, A. Paaso, L. Zhang, and J. Wen,
“Two-stage planning of network-constrained hybrid energy supply stations
for electric and natural gas vehicles,” IEEE Trans. Smart Grid, vol. 12,
no. 3, pp. 2013-2026, May 2021.

H. Li, Z. Wan, and H. He, “Constrained EV charging scheduling based on
safe deep reinforcement learning,” IEEE Trans. Smart Grid, vol. 11, no. 3,
pp. 2427-2439, May 2020.

T. Hong, J. Cao, C. Fang, and D. Li, ““6G based intelligent charging man-
agement for autonomous electric vehicles,” IEEE Trans. Intell. Transp.
Syst., early access, Jun. 10, 2022, doi: 10.1109/TITS.2022.3177586.

H. Wei, Y. Zhang, Y. Wang, W. Hua, R. Jing, and Y. Zhou, ‘“Plan-
ning integrated energy systems coupling V2G as a flexible stor-
age,” Energy, vol. 239, Jan. 2022, Art. no. 122215. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0360544221024634

Y. Wu, Z. Wang, Y. Huangfu, A. Ravey, D. Chrenko, and F. Gao, “‘Hier-
archical operation of electric vehicle charging station in smart grid inte-
gration applications—An overview,” Int. J. Electr. Power Energy Syst.,
vol. 139, Jul. 2022, Art. no. 108005.

D. Liu, L. Wang, M. Liu, H. Jia, H. Li, and W. Wang, “Optimal energy
storage allocation strategy by coordinating electric vehicles participat-
ing in auxiliary service market,” IEEE Access, vol. 9, pp. 95597-95607,
2021.

M. Babaei, A. Abazari, M. M. Soleymani, M. Ghafouri, S. M. Muyeen,
and M. T. H. Beheshti, “A data-mining based optimal demand response
program for smart home with energy storages and electric vehicles,”
J. Energy Storage, vol. 36, Apr. 2021, Art. no. 102407.

VOLUME 11, 2023


http://dx.doi.org/10.1109/TEM.2021.3099070
http://dx.doi.org/10.1109/TIV.2021.3049296
http://dx.doi.org/10.1109/TIA.2021.3079329
http://dx.doi.org/10.1109/TPWRS.2021.3102412
http://dx.doi.org/10.1109/TNSE.2022.3232779
http://dx.doi.org/10.1109/TTE.2021.3089460
http://dx.doi.org/10.1109/TITS.2022.3177586

I. Ahmed et al.: Dynamic Optimal Scheduling Strategy for Multi-Charging Scenarios of PEVs

IEEE Access

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

X. Xu, Z. Hu, Q. Su, Z. Xiong, and M. Liu, “Multi-objective learning
backtracking search algorithm for economic emission dispatch problem,”
Soft Comput., vol. 25, no. 3, pp. 2433-2452, Feb. 2021.

L.-L. Li, Q. Shen, M.-L. Tseng, and S. Luo, “Power system hybrid
dynamic economic emission dispatch with wind energy based on improved
sailfish algorithm,” J. Cleaner Prod., vol. 316, Sep. 2021, Art. no. 128318,
doi: 10.1016/j.jclepro.2021.128318.

N. Naval and J. M. Yusta, “Optimal short-term water-energy dispatch
for pumping stations with grid-connected photovoltaic self-generation,”
J. Cleaner Prod., vol. 316, Sep. 2021, Art. no. 128386.

S. Kaur, Y. S. Brar, and J. S. Dhillon, “Real-time short-term hydro-
thermal-wind-solar power scheduling using meta-heuristic optimization
technique,” Int. J. Renew. Energy Dev., vol. 10, no. 3, 2021.

F. Berthold, A. Ravey, B. Blunier, D. Bouquain, S. Williamson, and
A. Miraoui, “Design and development of a smart control strategy for plug-
in hybrid vehicles including vehicle-to-home functionality,” IEEE Trans.
Transport. Electrific., vol. 1, no. 2, pp. 168-177, Aug. 2015.

T. Chen, X. Zhang, J. Wang, J. Li, C. Wu, M. Hu, and H. Bian, ““A review on
electric vehicle charging infrastructure development in the U.K.,” J. Mod-
ern Power Syst. Clean Energy, vol. 8, no. 2, pp. 193-205, 2020.

M. Bertoluzzo and G. Buja, “‘Development of electric propulsion systems
for light electric vehicles,” IEEE Trans. Ind. Informat., vol. 7, no. 3,
pp. 428-435, Aug. 2011.

D. Said and H. T. Mouftah, “A novel electric vehicles charging/discharging
management protocol based on queuing model,” IEEE Trans. Intell. Vehi-
cles, vol. 5, no. 1, pp. 100-111, Mar. 2020.

J. Antoun, M. E. Kabir, R. Atallah, B. Moussa, M. Ghafouri, and C. Assi,
“Assisting residential distribution grids in overcoming large-scale EV pre-
conditioning load,” IEEE Syst. J., vol. 16, no. 3, pp. 4345-4355, Sep. 2022.
Y. Xiang, Y. Wang, S. Xia, and F. Teng, ““Charging load pattern extraction
for residential electric vehicles: A training-free nonintrusive method,”
IEEE Trans. Ind. Informat., vol. 17, no. 10, pp. 7028-7039, Oct. 2021.

Y. Long, Y. Li, Y. Wang, Y. Cao, L. Jiang, Y. Zhou, Y. Deng, and
Y. Nakanishi, “Low-carbon economic dispatch considering integrated
demand response and multistep carbon trading for multi-energy micro-
grid,” Sci. Rep., vol. 12, no. 1, pp. 1-13, Apr. 2022.

M. Algahtani and M. Hu, “Dynamic energy scheduling and routing of
multiple electric vehicles using deep reinforcement learning,” Energy,
vol. 244, Apr. 2022, Art. no. 122626.

X. Zhang, Z. Wang, and Z. Lu, “Multi-objective load dispatch for micro-
grid with electric vehicles using modified gravitational search and par-
ticle swarm optimization algorithm,” Appl. Energy, vol. 306, Jan. 2022,
Art. no. 118018.

Q. Nie, L. Zhang, Z. Tong, G. Dai, and J. Chai, “Cost compensation
method for PEVs participating in dynamic economic dispatch based on
carbon trading mechanism,” Energy, vol. 239, Jan. 2022, Art. no. 121704.
J.Wu, Y. Liu, X. Chen, C. Wang, and W. Li, “Data-driven adjustable robust
day-ahead economic dispatch strategy considering uncertainties of wind
power generation and electric vehicles,” Int. J. Electr. Power Energy Syst.,
vol. 138, Jun. 2022, Art. no. 107898.

Y.-P. Xu, R.-H. Liu, L.-Y. Tang, H. Wu, and C. She, “Risk-averse multi-
objective optimization of multi-energy microgrids integrated with power-
to-hydrogen technology, electric vehicles and data center under a hybrid
robust-stochastic technique,” Sustain. Cities Soc., vol. 79, Apr. 2022,
Art. no. 103699.

A. K. Pamosoaji, M. Piao, and K.-S. Hong, “PSO-based minimum-time
motion planning for multiple vehicles under acceleration and velocity
limitations,” Int. J. Control, Autom. Syst., vol. 17, no. 10, pp. 2610-2623,
Oct. 2019.

N. K. Navin, “A multiagent fuzzy reinforcement learning approach for
economic power dispatch considering multiple plug-in electric vehicle
loads,” Arabian J. Sci. Eng., vol. 46, no. 2, pp. 1431-1449, Feb. 2021,

L. Ge, Y. Li, J. Yan, Y. Wang, and N. Zhang, ‘““Short-term load prediction
of integrated energy system with wavelet neural network model based on
improved particle swarm optimization and chaos optimization algorithm,”
J. Mod. Power Syst. Clean Energy, vol. 9, no. 6, pp. 1490-1499, Nov. 2021,
doi: 10.35833/MPCE.2020.000647.

K. Haghdar, “Optimal DC source influence on selective harmonic elimina-
tion in multilevel inverters using teaching—learning-based optimization,”
IEEE Trans. Ind. Electron., vol. 67, no. 2, pp. 942-949, Feb. 2020.

VOLUME 11, 2023

(77

(78]

(791

(80]

(81]

(82]

(83]

(84]

(85]

(86]

(87]

(88]

(89]

(90]

[91]

[92]

(93]

(94]

[95]

[96]

(971

M. Sato, Y. Fukuyama, T. lizaka, and T. Matsui, “Total optimization of
energy networks in a smart city by multi-swarm differential evolutionary
particle swarm optimization,” IEEE Trans. Sustain. Energy, vol. 10, no. 4,
pp. 21862200, Oct. 2019.

H. Dong, Q. Gong, and M. Zhu, “Optimal energy management of auto-
mated grids considering the social and technical objectives with elec-
tric vehicles,” Int. J. Electr. Power Energy Syst., vol. 130, Sep. 2021,
Art. no. 106910.

Z.Yang, K. Li, Q. Niu, Y. Xue, and A. Foley, ““A self-learning TLBO based
dynamic economic/environmental dispatch considering multiple plug-in
electric vehicle loads,” J. Modern Power Syst. Clean Energy, vol. 2, no. 4,
pp. 298-307, Dec. 2014.

Z.-L. Gaing, “Constrained dynamic economic dispatch solution using par-
ticle swarm optimization,” in Proc. IEEE Power Eng. Soc. Gen. Meeting,
Jun. 2004, pp. 153-158.

C. K. Panigrahi, P. K. Chattopadhyay, R. N. Chakrabarti, and M. Basu,
“Simulated annealing technique for dynamic economic dispatch,” Electr.
Power Compon. Syst., vol. 34, no. 5, pp. 577-586, 2006.

R. Rai, A. Das, and K. G. Dhal, “Nature-inspired optimization algorithms
and their significance in multi-thresholding image segmentation: An inclu-
sive review,” Evolving Syst., vol. 13, no. 6, pp. 889-945, Dec. 2022, doi:
10.1007/512530-022-09425-5.

C. A. C. Coello and E. M. Montes, “Constraint-handling in genetic algo-
rithms through the use of dominance-based tournament selection,” Adv.
Eng. Informat., vol. 16, no. 3, pp. 193-203, 2002.

M. Mahdavi, M. Fesanghary, and E. Damangir, “An improved harmony
search algorithm for solving optimization problems,” Appl. Math. Com-
put., vol. 188, no. 2, pp. 1567-1579, May 2007.

A. Y. Saber and G. K. Venayagamoorthy, “Resource scheduling under
uncertainty in a smart grid with renewables and plug-in vehicles,” IEEE
Syst. J., vol. 6, no. 1, pp. 103-109, Mar. 2012.

S. Vandael, B. Claessens, M. Hommelberg, T. Holvoet, and G. Deconinck,
“A scalable three-step approach for demand side management of plug-
in hybrid vehicles,” IEEE Trans. Smart Grid, vol. 4, no. 2, pp. 720-728,
Jun. 2013.

M. Alizadeh, A. Scaglione, J. Davies, and K. S. Kurani, “A scalable
stochastic model for the electricity demand of electric and plug-in hybrid
vehicles,” IEEE Trans. Smart Grid, vol. 5, no. 2, pp. 848-860, Mar. 2014.
H. Ma, Z. Yang, P. You, and M. Fei, “Multi-objective biogeography-
based optimization for dynamic economic emission load dispatch consid-
ering plug-in electric vehicles charging,” Energy, vol. 135, pp. 101-111,
Sep. 2017.

L. Yang, B. Yu, B. Yang, H. Chen, G. Malima, and Y.-M. Wei, “Life
cycle environmental assessment of electric and internal combustion engine
vehicles in China,” J. Cleaner Prod., vol. 285, Feb. 2021, Art. no. 124899.
U. Datta, N. Saiprasad, A. Kalam, J. Shi, and A. Zayegh, “A price-
regulated electric vehicle charge-discharge strategy for G2 V, V2H, and
V2G,” Int. J. Energy Res., vol. 43, no. 2, pp. 1032-1042, Feb. 2019.
L.Hu,J. Dong, and Z. Lin, “Modeling charging behavior of battery electric
vehicle drivers: A cumulative prospect theory based approach,” Transp.
Res. C, Emerg. Technol., vol. 102, pp. 474—489, May 2019.

M. J. Mirzaei, A. Kazemi, and O. Homaee, “A probabilistic approach
to determine optimal capacity and location of electric vehicles parking
lots in distribution networks,” IEEE Trans. Ind. Informat., vol. 12, no. 5,
pp. 1963-1972, Oct. 2016.

V. Hayyolalam and A. A. P. Kazem, ““Black widow optimization algorithm:
A novel meta-heuristic approach for solving engineering optimization
problems,” Eng. Appl. Artif. Intell., vol. 87, Jan. 2020, Art. no. 103249.
R. Golobinek, M. Gregori¢, and S. Kralj-Fiser, “Body size, not personality,
explains both male mating success and sexual cannibalism in a widow
spider,” Biology, vol. 10, no. 3, p. 189, Mar. 2021.

Z.-L. Gaing and T.-C. Ou, “Dynamic economic dispatch solution using
fast evolutionary programming with swarm direction,” in Proc. 4th IEEE
Conf. Ind. Electron. Appl., May 2009, pp. 1538—1544.

M. Basu, “Dynamic economic emission dispatch using evolutionary pro-
gramming and fuzzy satisfying method,” Int. J. Emerg. Electric Power
Syst., vol. 8, no. 4, pp. 1-15, Oct. 2007, doi: 10.2202/1553-779X.1146.
S. Hemamalini and S. P. Simon, “Dynamic economic dispatch using
artificial bee colony algorithm for units with valve-point effect,” Eur.
Trans. Electr. Power, vol. 21, no. 1, pp. 70-81, Jan. 2011.

29007


http://dx.doi.org/10.1016/j.jclepro.2021.128318
http://dx.doi.org/10.35833/MPCE.2020.000647
http://dx.doi.org/10.1007/s12530-022-09425-5
http://dx.doi.org/10.2202/1553-779X.1146

IEEE Access

1. Ahmed et al.: Dynamic Optimal Scheduling Strategy for Multi-Charging Scenarios of PEVs

IJAZ AHMED received the B.S. degree in elec-
trical engineering from the Federal Urdu Univer-
sity of Arts, Sciences and Technology (FUUAST),
Islamabad, in 2010, and the M.S. degree in elec-
trical engineering (power systems) from Bahria
University, Islamabad, in 2014. He is currently
pursuing the Ph.D. degree with the Depart-
ment of Electrical Engineering, Pakistan Institute
of Engineering and Applied Sciences (PIEAS),
Islamabad. His research interests include consen-
sus control of multiagent systems, artificial intelligence, group consensus,
networked control systems, cyber security, modeling of sustainable power
systems, machine learning, integration of renewable energy sources, and
energy storage and consumption in the electricity market.

MUHAMMAD REHAN (Member, IEEE) recei-
ved the M.Sc. degree in electronics from Quaid-
i-Azam University (QAU), Islamabad, the M.S.
degree in systems engineering from Pakistan
Institute of Engineering and Applied Sciences
(PIEAS), Islamabad, and the Ph.D. degree (Hons.)
from the Department of Cogno-Mechatronics
Engineering, Pusan National University, Busan,
South Korea, in 2012. He is currently an Asso-
- ciate Professor with the Department of Electrical
Engineering, PIEAS. His research interests include robust control, nonlinear,
adaptive control, antiwindup design, modeling and control of biosystems,
control of multiagents, and distributed optimization over networks. He has
been selected as the Young Associate in the discipline of Engineering by
the Pakistan Academy of Sciences in a nationwide competition. He received
the Research Productivity Award for the years 2011-2012, 2015-2016, and
2016-2017 from the Pakistan Council of Science and Technology. He has
been selected for the Best Young Research Scholar Award (Pure Engineer-
ing) and received the Best Paper Award in the Sth Outstanding Research
Awards by HEC in a nationwide competition. Recently, he has been selected
in the list of the top 2% of scientists in the world for the year 2019, prepared
by Stanford University. He is an Associate Editor of International Journal of
Control Automation and Systems and Results in Control and Optimization.

ABDUL BASIT received the B.E. degree (Hons.)
in avionics engineering from the National Uni-
versity of Sciences and Technology (NUST),
Islamabad, in 2009, and the M.S. degree in avion-
ics engineering (signal and image processing)
from Air University, Islamabad, in 2017. He is cur-
rently pursuing the Ph.D. degree with the Depart-
ment of Electrical Engineering, Pakistan Institute
of Engineering and Applied Sciences (PIEAS),
Islamabad. His research interests include wire-
less sensor networks, distributed filtering, event-triggered communications,
robust estimation, array signal processing, radar signal processing, embed-
ded systems, machine learning, and power systems analysis.

29008

MUHAMMAD TUFAIL received the M.Sc.
degree in electronics from the University of
Peshawar, Peshawar, Pakistan, in 1997, the M.Sc.
degree in systems engineering from Quaid-i-Azam
University (QAU), Islamabad, Pakistan, in 1999,
and the Ph.D. degree in electronics engineering
from Tohoku University, Sendai, Japan, in 2006.
He is currently a Full Professor with the Depart-
" ment of Electrical Engineering, Pakistan Institute

of Engineering and Applied Sciences (PIEAS),
Islamabad. His research interests include blind source separation, array
signal processing, control systems, and active noise control.

KEUM-SHIK HONG (Fellow, IEEE) received the
B.S. degree in mechanical design and production
engineering from Seoul National University,
in 1979, the M.S. degree in mechanical engi-
neering from Columbia University, NY, in 1987,
and the M.S. degree in applied mathematics and
the Ph.D. degree in mechanical engineering from
the University of Illinois at Urbana—Champaign
é; (UIUC), in 1991. He joined the School of
» Mechanical Engineering, Pusan National Univer-
sity (PNU), in 1993. His Integrated Dynamics and Control Engineering
Laboratory was designated as the National Research Laboratory by the
Ministry of Science and Technology, South Korea, in 2003. In 2009, under
the auspices of the World Class University Program of the Ministry of
Education, Science and Technology (MEST), South Korea, he established
the Department of Cogno-Mechatronics Engineering at PNU. His current
research interests include brain—computer interface, nonlinear systems the-
ory, adaptive control, distributed parameter systems, autonomous vehicles,
and innovative control applications in brain engineering. He was the Presi-
dent of the Institute of Control, Robotics and Systems (ICROS), South Korea,
and is the President of the Asian Control Association. He is a fellow of the
Korean Academy of Science and Technology and ICROS. He is a member
of the National Academy of Engineering of Korea and many other societies.
He has received many awards, including the Best Paper Award from the
KFSTS of Korea in 1999, the F. Harashima Mechatronics Award in 2003,
the IJCAS Scientific Activity Award in 2004, the Automatica Certificate
of Outstanding Service in 2006, the Presidential Award of Korea in 2007,
the ICROS Achievement Award in 2009, the IICAS Contribution Award in
2010, the Premier Professor Award in 2011, the JMST Contribution Award
in 2011, the IJCAS Contribution Award in 2011, and the IEEE Academic
Award of ICROS in 2016. He was the Organizing Chair of the ICROS-SICE
International Joint Conference 2009, Fukuoka, Japan. He was an Associate
Editor of Automatica, from 2000 to 2006, and the Editor-in-Chief of the
Journal of Mechanical Science and Technology, from 2008 to 2011. He is
the Editor-in-Chief of the International Journal of Control, Automation, and
Systems.

VOLUME 11, 2023



