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Adaptive Control of a Flexible Varying-length Beam with a Translating
Base in the 3D Space
Phuong-Tung Pham, Quoc Chi Nguyen* � , Junghan Kwon, and Keum-Shik Hong

Abstract: This paper investigates a control scheme for a variable-length beam attached to a translating base under
an unknown boundary disturbance. The axial beam motion is assumed pre-defined. A hybrid system consisting of
a gantry, a trolley, and an expandible cantilever beam attached to the trolley is considered. Two control forces are
applied to the trolley and the gantry, respectively, to position them and suppress the vibration of the beam. According
to Hamilton’s principle, a nonlinear mathematical model is developed describing the dynamics of the transverse and
lateral oscillations of the beam, trolley, and gantry. Based on this dynamic model, a robust adaptive control law is
developed to handle the closed-loop stability of the axially moving system with unknown disturbances. Stability
analysis using the Lyapunov method proves that the closed-loop system under the proposed control law is uniformly
ultimately bounded. Finally, numerical simulations verify the proposed control laws’ effectiveness.

Keywords: Adaptive control, axially moving system, boundary control, flexible cantilever beam, Lyapunov method,
varying length.

1. INTRODUCTION

Structures consisting of a cantilever attached to a mov-
ing base are widely utilized in various applications such
as Cartesian robots, industrial cranes [1], gantry robots
(Fig. 1), flapping-wing robots [2], and refueling machines.
A cantilever beam of elastic material is naturally flexible
because one end is not hinged. A beam with low weight
has advantages in terms of cost and mobility but becomes
more flexible. With the advantages, elastic beams have re-
ceived significant attention recently. However, in contrast
to a stiff beam with negligible vibration, the vibration of
a flexible beam becomes critical in high-speed operation.
Specifically, in such systems consisting of an elastic beam
affixed to a moving base, the motion of the base can cause
vibrations along the beam. These vibrations are negative
factors affecting the performance of the system. There-
fore, suppressing the residual vibration after maneuvering
is highly desirable. Additionally, in practice, disturbances
such as frame vibration, wind, rail friction, or vibrations
in the uncontrolled beam span (i.e., see the upper part in
Fig. 2) can affect system dynamics. Therefore, this study
targets the boundary control of the variable-length beam
attached to a translating base in the presence of an un-

known disturbance.

A flexible beam is a distributed parameter system.
Therefore, its dynamics are described by partial differ-
ential equations (PDEs) [3-6]. The dynamic behavior of
flexible cantilever beams is a classical problem researched
for several decades. In such a configuration consisting of
an elastic beam attached to a translating/rotating base, the
beam’s dynamics affect the base’s motions and vice versa
[4,5]. Early studies on this topic were published by Kane
et al. [5] and Hanagud and Sarkar [7]. Park et al. [8] in-
vestigated the dynamic characteristics of a flexible beam
mounted to a moving base, including natural frequencies
and mode shapes. Later, Park and Youm [9] conducted an
experimental study to investigate the vibrational behavior
of the beam. The control problem of distributed parame-
ter systems, whose dynamics are described by PDEs, has
been investigated in the literature [10,11]. The boundary
control technique, wherein the control input is exerted on
the PDE through its boundary conditions [12-16], is an
effective method for handling control spillover problems.
The well-posedness issue of flexible cantilever beams was
intriguingly discussed in [17-19]. A dynamic model de-
rived from the extended Hamilton principle is well-posed.
The closed-loop system is also well-posed if a feedback
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(a) (b)

(c)

Fig. 1. Machines consisting of a cantilever beam attached
to a moving base: (a) Liquid handling robot (www.
medicalexpo.com/prod/tecan), (b) gantry manip-
ulator (www.in-diamart.com/proddetail), and (c)
drill and injection robot (https://animalab.eu/drill-
and-injection-robot-with-stereotaxic-frame-1).

Fig. 2. Scheme of a flexible beam attached to a translating
base operating in the 3D space.

control law is derived using a Lyapunov function. Due to
space limitations, the well-posedness issue is skipped in
this paper.

The control problem of an elastic beam attached to a
moving base has also been considered. For beams attached
to a rotating base, Liu et al. [20] addressed the adaptive
neural network control of the beam attached to a rotat-
ing hub. Liu et al. [21] developed a boundary control law

for a flexible robotic manipulator system, modeled as a
varying-length beam attached to a rotating hub. Later, this
system’s asymmetric input–output constraint control was
investigated in [22]. The vibration control of the rotating
beam under external disturbance was also considered in
[23]. For the beam attached to a translating base, Park et
al. [12] proposed an input preshaping method to suppress
the single-mode vibration of the beam, whereas Shah and
Hong [24] designed an input shaping control scheme for
an underwater elastic beam mounted to a moving trolley.
Pham et al. [25] presented an experimental investigation
on the performance of various types of input shaping con-
trol for vibration suppression of a non-uniform beam with
a moving hub. Lin and Chao [26] applied an intelligent
control strategy called adaptive neuro-fuzzy control to
suppress the vibration of a beam-hub system. These stud-
ies assumed that the base moves in one direction, result-
ing in beam vibrations restricted to the 1-D plane. Zhang
et al. [27] designed a control law for a three-dimensional
cable hung from a helicopter under output constraints, and
an input backlash scheme was designed. Shah and Hong
[13] investigated the control problem of a flexible beam
in the 3D space. The authors considered a flexible beam
system in the presence of a hydrodynamic force, wherein
the base moved along a plane. According to the linear
dynamic model of the system, a robust adaptive control
scheme was developed using the Lyapunov design method
to suppress both the transverse and lateral vibrations of the
beam. Pham et al. [28] extended the control technique in
[13] to the nonlinear system and further considered the
longitudinal displacement. Additionally, systems consist-
ing of a flexible string hung from a moving base, similar
to a beam attached to a moving hub, were also considered.

The mentioned studies on beams attached to a translat-
ing base assumed that the length of the beam/string is con-
stant. In gantry manipulators, robotic arms, which can be
treated as flexible beams, can extend or retract during op-
eration. This results in changes in beam length. When the
beam length changes over time, the beam can be treated
as an axially moving beam with a time-varying length.
Axially moving systems are characterized by gyroscopic
and distributed parameter properties [29,30]. One of the
most critical studies on the dynamics of axially moving
strings/beams of variable length is that by Zhu and Ni [31].
The authors developed mathematical models of axially
moving strings/beams with a time-varying length and dis-
cussed the energy of a system during extension and retrac-
tion. They highlighted that the vibration energy of axially
moving systems with variable lengths decreases during
extension and increases during retraction. Several studies
have explored the control of axially moving systems [32].
Fung et al. [33] investigated sliding-mode control for a
flexible cable with time-varying length, In contrast, Kim
and Chung [34] introduced a boundary control law for an
elastic beam deployed by a moving base. Zhu et al. [35]

www.medicalexpo.com/prod/ tecan
www.medicalexpo.com/prod/ tecan
www.in-diamart.com/proddetail
https://animalab.eu/drill-and-injection-robot-with-stereotaxic-frame-1
https://animalab.eu/drill-and-injection-robot-with-stereotaxic-frame-1
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designed a pointwise control law for the variable-length
beam/string systems considered in [31]. These studies de-
veloped control laws based on the order-reduced mod-
els described by ordinary differential equations (ODEs).
However, control design using the ODE model can result
in spillover problems [29]. Many researchers have con-
ducted studies on control design using a PDE model to
overcome these spillover problems. Kim and Hong [36]
proposed boundary control for an overhead crane with
a varying-length string attached to a translating trolley.
Later, Ngo et al. [37] extended this control scheme to ad-
dress unknown boundary disturbances. In these studies,
the uniform stability of a closed-loop system was proven
using the Lyapunov method. By using this method, the
control problem of a varying-length Timoshenko beam
mounted to translating support was addressed by Pham et
al. [38]. For the vibration suppression of flexible strings
with a time-varying length in the 3D space, Xing et al.
[39] developed a boundary control law for eliminating the
transverse, lateral, and longitudinal vibrations of a string
under an input constraint. Subsequently, Xing and Liu [40]
considered a 3D flexible cable hung from a moving trol-
ley. A boundary control law was proposed for controlling
the system’s position and vibration suppression under in-
put amplitude and rate constraints. Additionally, the Lya-
punov design method was used to determine the control
law and verify the stability of the system.

The robotic arms of Cartesian robots can be modeled
as flexible beams of variable lengths affixed to a translat-
ing base. Additionally, in the case of large-amplitude vi-
bration, dynamic tension cannot be ignored, resulting in
beam vibrations described by nonlinear PDEs. Further-
more, unknown boundaries caused by the influences of
frame vibration, rail friction, or vibrations of the uncon-
trolled beam span (i.e., see Fig. 2) may appear and af-
fect the base dynamics. Therefore, this paper proposes
an adaptive boundary control law for a variable-length
beam attached to a translating base subjected to an un-
known boundary disturbance. A nonlinear dynamic model
of the system is established using the extended Hamil-
ton principle. Accordingly, an adaptive control law with
an adaptation law is designed to handle unknown distur-
bances. Based on the Lyapunov method, the ultimate uni-
form stability of the system under the proposed adaptive
control law is proved. Finally, numerical simulations are
conducted to verify the designed control laws in two cases,
with and without disturbance.

This paper overcomes the limitations of the existing
control strategies for varying-length beams/strings that re-
quire the implementation of control inputs at the free end
of the beam/string [40]. These control strategies may be
applicable in typical scenarios. However, as seen in Figs.
1 and 2, there is no way to apply control forces at the tip
position of the end-effectors of gantry manipulators with-
out hindering the system’s operation. This paper proposes

a control strategy that directly uses the control forces ap-
plied to the base to suppress the vibrations of the beam.
The main contributions of this study are as follows:

1) Develop a novel nonlinear dynamic model of a
variable-length beam attached to a translating base in
the presence of unknown disturbance, where the cou-
pling dynamics of the transverse and lateral vibrations
and the base are considered.

2) Design an adaptive control law for handling an un-
known boundary disturbance. Additionally, the uni-
form stability of the closed-loop system is proved,
and numerical simulations are conducted.

The remainder of this paper is organized as follows: The
dynamic model of the system is presented in Section 2,
and Section 3 develops an adaptive control law. In Section
4, numerical results are provided. Finally, our conclusions
are summarized in Section 5.

2. DYNAMIC MODEL

Fig. 2 presents a flexible cantilever beam of time-
varying length l(t) attached to a trolley of mass M, where
the trolley translationally moves along a gantry of mass
Mg. The cantilever beam is treated as an Euler-Bernoulli
beam with mass density ρ , cross-sectional area A, Young’s
modulus E, and area moments of inertia Iy and Iz. The trol-
ley and gantry are controlled by two forces, fy and fz, re-
spectively. The trolley separates the vertical beam into two
spans: The upper span and the lower span, see Fig. 2. In
most practical systems, only the vibration of the beam’s
lower span is considered. Therefore, this span is referred
to as the controlled span. The influence of the vibration
of the upper span (i.e., the uncontrolled span) on the sys-
tem is manifested by the disturbance d(t) at the trolley.
This disturbance is assumed to be bounded by an unknown
positive constant db (i.e., |d(t)|< db). Additionally, we as-
sume that the beam length l(t) is a predefined time func-
tion. Therefore, the flexible beam can be treated as an ax-
ially moving beam with a time-varying length.

Let y(t) and z(t) denote the position of the trolley and
the gantry, respectively. The vibrations of the beam in the
j-axis and k-axis are defined as the transverse vibration
w(x, t) and the lateral vibration v(x, t), respectively. In this
paper, ẏ, ż, and l̇ denote the total derivatives of y(t),z(t),
and l(t) with respect to t, respectively; the subscripts in
(·)x and (·)t are the partial derivatives of the spatiotem-
poral functions with respect to x and t, respectively; and
D(·)/Dt = (·)t + l̇(·)x denotes the material derivative.

According to the Euler-Bernoulli beam theory, the ki-
netic energy K and the potential energy U are derived as
follows:

K =
1
2

ρA
∫ l

0

[
l̇2 +(ẏ+Dw/Dt)2 +(ż+Dv/Dt)2

]
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+
1
2

mẏ2 +
1
2

Mż2, (1)

U =
1
2

∫ l

0
P(x, t)

(
w2

x + v2
x

)
dx

+
1
8

∫ l

0
EA
(
w2

x + v2
x

)2
dx+

1
2

EIy

∫ l

0
w2

xxdx

+
1
2

EIz

∫ l

0
v2

xxdx, (2)

where m = M +Mg and P(x, t) = ρA(l− x)(g− l̈) is the
axial force [13]. The work done due to the control forces,
disturbance, and structural damping is derived as follows:

δW = ( fy +d)δy+ fzδy− cw

∫ l

0
wtδwdx

− cv

∫ l

0
vtδvdx, (3)

where cw and cv are structural damping coefficients. Ac-
cording to (1)-(3), a dynamic model of the system can be
derived using the extended Hamilton principle as follows:

mÿ+ρAl̇ẏ− cw

∫ l

0
wtdx+EIywxxx(0, t) = fy +d, (4)

Mz̈+ρAl̇ż− cv

∫ l

0
vtdx+EIzvxxx(0, t) = fz, (5)

ρA
(
ÿ+D2w/Dt2)+ cwwt − (Pwx)x

−EA
[
wx
(
w2

x + v2
x

)]
x /2+EIywxxxx = 0, (6)

w(0, t) = wx(0, t) = 0, (7)

EAwx(l, t)
[
w2

x(l, t)+ v2
x(l, t)

]
/2−EIywxxx(l, t) = 0,

wxx(l, t) = 0, (8)

ρA
(
z̈+D2v/Dt2)+ cvvt − (Pvx)x

−EA
[
vx
(
w2

x + v2
x

)]
x /2+EIzvxxxx = 0, (9)

v(0, t) = vx(0, t) = 0, (10)

EAvx(l, t)
[
w2

x(l, t)+ v2
x(l, t)

]
/2−EIzvxxx(l, t) = 0,

vxx(l, t) = 0. (11)

The nonlinear PDE-ODE model in (4)-(11) describes all
the dynamics of the considered system, where the trol-
ley and gantry’s motions are represented by two ODEs in
(4) and (5), respectively, and the two PDEs and boundary
conditions in (6)-(11) describe the transverse and lateral
vibrations of the flexible beam.

3. CONTROL DESIGN

This section describes the development of boundary
control laws for feedback control using the Lyapunov de-
sign method. The control objectives are to position the
gantry and trolley and simultaneously suppress the vibra-
tion energy of the beam’s controlled span (the lower part).
Accordingly, the two control forces fy and fz applied to
the trolley and gantry are designed to guarantee closed-
loop stability.

The length of the lower cantilever beam (the controlled
span) in this paper is time-varying, but its length changes
in a pre-described manner. The mechanical energy of the
vibrating beam consists of the energies due to the trans-
verse motion, lateral motion, and longitudinal motion of
the beam. But, the energy due to the longitudinal motion
is finite due to its prescribed motion and can be omitted
from the stability analysis of the closed-loop system [36].
The following assumption and lemmas are presented for
analyzing system stability.

Assumption 1: The axial force P(x, t) is bounded as
follows:

0≤ P(x, t)≤ Pmax,

PDmin ≤ DP(x, t)/Dt ≤ PDmax. (12)

Lemma 1 [41]: Let ψ1(x, t) ∈ R and ψ2(x, t) ∈ R be
two functions defined on x ∈ [0, l] and t ∈ [0, ∞). Then,
the following inequalities hold:

ψ1(x, t)ψ2(x, t)≤ ψ
2
1 (x, t)/δ +δψ

2
2 (x, t), ∀δ > 0.

(13)

Lemma 2 [42]: Let ψ(x, t) ∈ R be a function defined
on x ∈ [0, l] and t ∈ [0, ∞) that satisfies the boundary con-
dition ψ(0, t) = ψx(0, t) = 0, ∀t ∈ [0, ∞). Then, the fol-
lowing inequalities hold ∀x ∈ [0, l]:∫ l

0
ψ

2(x, t)dx≤ l2
∫ l

0
ψ

2
x (x, t)dx≤ l4

∫ l

0
ψ

2
xx(x, t)dx,

(14)

ψ
2(x, t)≤ l

∫ l

0
ψ

2
x (x, t)dx≤ l3

∫ l

0
ψ

2
xx(x, t)dx. (15)

Lemma 3 [43]: If ψ(x, t) : [0, l]×R+ → R is uni-
formly bounded, {ψ(x, t)}x∈[0,l] is equicontinuous on
t, and lim

t→∞

∫ t
0 ‖ψ(x,τ)‖2 dτ exists and is finite, then

lim
t→∞
‖ψ(x,τ)‖ = 0, where {ψ(x, t)}x∈[0,l] denotes the

function ψ(x, t) with x ∈ [0, l]; ‖ · ‖ is used to de-
note the norm of an infinite dimensional vector, i.e.,

‖ψ(x, t)‖=
(∫ l

0 ψ2(x, t)dx
)1/2

.
The disturbance is assumed to be a periodic function

bounded by an unknown value db. A robust adaptive
boundary control law is developed to handle an unknown
disturbance, wherein the adaptive law is designed to es-
timate the unknown bound db. The design procedure for
the control law is illustrated in Fig. 3. One can see that
the Lyapunov function is the summation of the system’s
mechanical energy and auxiliary functions.

V =V1 +V2 +V3 +V4 +V5, (16)

where

V1 = ρA
[∫ l

0
(ẏ+Dw/Dt)2 dx
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+
∫ l

0
(ż+Dv/Dt)2 dx

]
/2

+(k1 +1)
∫ l

0

[
P
(
w2

x + v2
x

)
/2

+EA
(
w2

x + v2
x

)2
/4
]
dx

+(k1 +1)EIy

∫ l

0
w2

xxdx/2

+(k1 +1)EIz

∫ l

0
v2

xxdx/2, (17)

V2 = mẏ2/2+ k2e2
y/2+Mż2/2+ k4e2

z/2, (18)

V3 =
1
2

k1ρA
∫ l

0

(
Dw
Dt

)2

dx

+ k1ρA
∫ l

0
ẏ
(

ẏ+
Dw
Dt

)
dx+ k3ẏey

+ρAa1

∫ l

0
w
(

ẏ+
Dw
Dt

)
dx

+a2

∫ l

0
ey

(
ẏ+

Dw
Dt

)
dx, (19)

V4 =
1
2

k1ρA
∫ l

0

(
Dv
Dt

)2

dx

+ k1ρA
∫ l

0
ż
(

ż+
Dv
Dt

)
dx+ k5żez

+ρAb1

∫ l

0
v
(

ż+
Dv
Dt

)
dx

+b2

∫ l

0
ez

(
ż+

Dv
Dt

)
dx, (20)

V5 = ξ2d̃2
b/2. (21)

In (18)-(21), ey = y− yd and ez = z− zd denote the po-
sition errors of the trolley and gantry, respectively. d̃b =
db− d̂b is the estimation error of the disturbance. k1, k2,
k3, k4, k5, a1, a2, b1, b2, and ξ2 are positive coefficients.
Note that V1 is the mechanical energy of the vibrations
of the axially moving beam, V2 represents the mechanical
energy of the trolley and gantry, V3 and V4 are the auxil-
iary functions consisting of the motions in the j-axis and
the k-axis, respectively, and V5 corresponds to the distur-
bance. As indicated above, the longitudinal energy of the
beam was omitted in (17) for simplicity. Otherwise, the
total energy after suppression of the transverse and lateral
vibrations will converge to this energy.

A robust adaptive boundary control law is proposed as
follows:

fy = (m/(m+ k1ρAl)) [−k1 (1−ρAl/m)EIywxxx(0, t)

−
(
k2 + k3k6/(m+ k1ρAl)−ρAl̇k3/m

)
ey

−k6ẏ+(k1 +1)l̇w2
xx(0, t)/(g(t)+ϑy)

]
− sgn(a2ey/(m+ k1ρAl)+ ẏ) d̂b, (22)

fz = (M/(M+ k1ρAl)) [−k1 (1−ρAl/M)EIzvxxx(0, t)

−
(
k4 + k5k7/(M+ k1ρAl)−ρAl̇k5/M

)
ey

Fig. 3. Design procedure for the boundary control law.

−k7ẏ+(k1 +1)l̇v2
xx(0, t)/(h(t)+ϑz)

]
, (23)

where ki, i = 1, 2, ..., 7 are control parameters, d̂b is the
estimated value of db, and

g(t) = ẏ+
k3ey

m+ k1ρAl
, h(t) = ż+

k5ez

M+ k1ρAl
, (24)

ϑy =

{
sgn(l̇g) |g|/2, if g 6= 0,

constant, if g = 0,

ϑz =

{
sgn(l̇h) |h|/2, if h 6= 0,

constant, if h = 0,
(25)

The adaptive law is designed as follows:

˙̂db =−ξ1d̂b +
1
ξ2

(
1+

k1ρAl
m

)∣∣∣∣ a2

m+ k1ρAl
ey + ẏ

∣∣∣∣ ,
(26)

where ξ1 and ξ2 define the adaptive gains.
Under the proposed control law, the following lemmas

and theorem are made.
Lemma 4: The Lyapunov function candidate in (16) is

upper and lower bounded as follows:

0≤ λ1W1 ≤V ≤ λ2W2, (27)
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where λ1 and λ2 are positive parameters and

W 1 =
∫ l

0
(Dw/Dt)2 dx+

∫ l

0
(Dv/Dt)2 dx

+
∫ l

0
w2

xxdx+
∫ l

0
v2

xxdx+ e2
y + e2

z + ẏ2 + ż2,

(28)

W 2 = d̃2
b +

∫ l

0
(Dw/Dt)2 dx+

∫ l

0
(Dv/Dt)2 dx

+
∫ l

0
P
(
w2

x + v2
x

)
dx/2+

∫ l

0

(
w2

x + v2
x

)2
dx/4

+
∫ l

0
w2

xxdx+
∫ l

0
v2

xxdx+ e2
y + e2

z + ẏ2 + ż2.

(29)

Proof: See Appendix A. �
Lemma 5: Under the boundary control laws in (22)-

(23) and adaptive law in (26), the time derivative of the
Lyapunov function candidate in (16) is upper bounded as
follows:

V̇ ≤−λV + ε, (30)

where ε = ξ1ξ2d2
b/2 and λ is a positive parameter.

Proof: See Appendix B. �
According to Lemma 5, the time derivative of Vd can be

evaluated as

V̇ ≤ e−λ tV (0)+ ε(1− e−λ t)/λ3. (31)

The following inequalities are obtained based on Lemma
2 and the inequality in (31):

EIy(k1 +1)w(x, t)2/2≤ l3EIy(k1 +1)
∫ l

0
w2

xxdx/2

≤ l3V (t)≤ l3V (0)e−tλ + l3
ε(1− e−tλ )/λ , (32)

EIz(k1 +1)v(x, t)2/2≤ l3EIz(k1 +1)
∫ l

0
v2

xxdx/2

≤ l3V (t)≤ l3V (0)e−tλ + l3
ε(1− e−tλ )/λ , (33)

k2e2
y(t)/2≤V (t)≤V (0)e−tλ + ε(1− e−tλ )/λ3, (34)

k4e2
z (t)/2≤V (t)≤V (0)e−tλ + ε(1− e−tλ )/λ3, (35)

ξ2d̃2
b(t)/2≤V (t)≤V (0)e−tλ + ε(1− e−tλ )/λ . (36)

The inequalities in (32)-(36) indicate that the transverse
and lateral vibrations of the beam, the position errors of
the trolley and gantry, and estimated error are uniformly
bounded. If the initial conditions are bounded, by using
(32)-(36), we can obtain

lim
t→∞
|w(x, t)| ≤

√
2l3ε/(λEIy(k1 +1)), (37)

lim
t→∞
|v(x, t)| ≤

√
2l3ε/(λEIz(k1 +1)), (38)

lim
t→∞
|ey(t)| ≤

√
2ε/λk2, (39)

lim
t→∞
|ez(t)| ≤

√
2ε/λk4. (40)

As shown in (37)-(40), due to the presence of the distur-
bance, the vibrations of the beam and position errors can-
not converge to zero. However, the solutions of the closed-
loop system, namely w(x, t), v(x, t), ey(t), and ez(t), are
uniformly ultimately bounded. If the design parameters
are selected such that λ , k1, k2, and k4 are large, and ε is
small, then the uniform ultimate boundedness region can
be arbitrarily made small near zero. Additionally, the con-
trol law is bounded. Furthermore, because the estimation
error is bounded, the boundedness of the adaptive law is
ensured. All the above results are summarized in the fol-
lowing theorem.

Theorem 1: Consider a hybrid system described by (4)-
(11) under the boundary control laws in (22) and (23) with
the adaptive law in (26). The solutions of the closed-loop
system, namely w(x, t), v(x, t), ey(t), and ez(t), are uni-
formly ultimately bounded.

Remark 1: If the disturbance is ignored, we further
conclude that the closed-loop system is exponentially sta-
ble in the sense that the transverse vibration w(x, t), lat-
eral vibration v(x, t), and position errors of the trolley and
gantry exponentially converge to zero.

The convergence of the vibration and position errors
can be proven by using Lemma 3. If the disturbance is
zero (d = 0 and db = 0) and the initial value of the Lya-
punov function candidate, V (0), is bounded, the Lyapunov
function can be evaluated as follows:

V (t)≤ e−λ tV (0)< ∞. (41)

Using Lemmas 1 and 4, the following results are obtained.

w2(x, t)≤ l3
∫ l

0
w2

xx(x, t)dx≤ l3W1(t)≤ l3V (t)/λ1

< ∞, (42)

‖w(x, t)‖2 ≤ l4W1(t)≤ l4V (t)/λ1 ≤−l4V̇/λλ1.
(43)

Inequality (42) implies that the w(x, t) is uniformly
bounded, whereas inequality (43) leads to the following
result.

lim
t→∞

∫ t

0
‖w(x, t)‖2 dτ ≤−l4 lim

t→∞
(V (t)−V (0))/λλ1

< ∞. (44)

Furthermore, we also have

d ‖w(x, t)‖2 /dt = 2
∫ l

0
(w(x, t)Dw(x, t)/Dt)dx

≤‖w(x, t)‖2 +‖Dw(x, t)/Dt‖2 < ∞.
(45)

This inequality implies that w(x, t) is equicontinuous in t.
According to Lemma 3, we can conclude that ‖w(x, t)‖→
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0 as t → ∞. Using the same approach, we can prove that
‖v(x, t)‖ → 0 as t → ∞. Additionally, the convergence
of the position errors is also proven based on Barbalat’s
lemma: ‖ey(t)‖, ‖ez(t)‖→ 0 as t→ ∞.

4. SIMULATION RESULTS

This section verifies the effectiveness of the proposed
control law through numerical simulations. Consider the
system described by (4)-(11), where the system parame-
ters are given as follows: M = 8 kg, Mg = 15 kg, ρ = 2,700
kg/m3, A = 3× 10−3 m2, E = 69 GPa, Iy = 10−8 m2,
Iz = 5.63×10−9 m2, cw = cv = 0.01 N·s/m2, and g = 9.8
m/s2. The trolley and gantry move from the initial posi-
tion y(0) = z(0) = 0 to the desired positions at yd = 4 m
and zd = 3 m, respectively. The system is influenced by a
boundary disturbance defined by d(t) = 50sin(5πt). The
system responses are simulated using MATLAB, wherein
the finite difference method is adopted to handle the dif-
ferential equations. The space and time steps are ∆ξ = 0.1
and ∆t = 0.00001, respectively (i.e., ξ = x/l). We exam-
ine two cases for the beam: Extension and retraction. Ad-
ditionally, the control performance of the designed control
law is compared to that of the following laws proposed by
Shah and Hong [13]:

fy(t) =−ky1ey(t)− ky2y(t)− ky3wxxx(0, t),

fz(t) =−kz1ez(t)− kz2z(t)− kz3vxxx(0, t), (46)

where ky1, ky2, ky3, kz1, kz2, and kz3 are control gains. The
control law in [13] was developed for a flexible beam at-
tached to a translating base, where the beam length was
constant, and the axial motion of the beam was ignored.
This control law also uses the two control forces of the
trolley and gantry to position the base and suppress the
transverse and lateral vibrations of the beam.

For the extension case, the beam’s length is extended
from lmin = 1.5 m to lmax = 3 m over 2 sec. Figs. 4 and
5 present the responses of the closed-loop system, where
the disturbance is ignored. From these simulation results,
we can conclude that the proposed control law in (22) and
(23) can position the trolley and gantry and significantly
suppress the vibration of the beam without disturbances.
During the extension process, the proposed control law
minimizes vibrations more effectively than the control law
proposed in [13]. However, the control law in [13] also
exhibits good control performance in this case. The vibra-
tion energy of the beam decreases during extension [28].
In other words, the axial motion of the beam in this case is
a factor suppressing the vibration energy. Therefore, even
though the control law in [13] was designed without con-
sidering the axial motion of the beam, it still effectively
suppresses the vibration. The outstanding advantages of
the proposed control law are highlighted in the retraction
case, where the beam’s length is reduced from lmax = 3 m

(a)

(b)

Fig. 4. Extension case: (a) Trolley position and (b) gantry
position of the system, where the boundary distur-
bance is not considered.

(a)

(b)

Fig. 5. Extension case: (a) Transverse vibration and (b)
lateral vibration, where the boundary disturbance
is not considered.
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(a)

(b)

Fig. 6. Retraction case: (a) Trolley position and (b) gantry
position of the system, where the boundary distur-
bance is not considered.

to lmin = 1.5 m over 2 sec. Because the vibration energy of
the beam increases during retraction [31], the control law
in [13] cannot handle vibrations during retraction (i.e., the
red dashed lines in Figs. 6 and 7). The amplitude of the
oscillations significantly increases during the first 2 sec
(Fig. 7). In contrast, the proposed control law, which is
designed to account for both the base motion and beam
axial motion, can significantly attenuate the vibration of
the beam (i.e., the solid blue line in Figs. 6 and 7). This
result demonstrates that the designed vibration control law
is necessary to guarantee the stability of the system, par-
ticularly in the retraction case.

The robustness of the proposed control law is illustrated
in Figs. 8-13. Figs. 8 and 9 present the base positions and
beam vibrations of the system under a boundary distur-
bance d(t) during extension. The boundary disturbance
significantly affects the transverse vibration (see the sys-
tem’s responses under the control law [12]), whereas its
influence on lateral vibration is insignificant. Figs. 8(a)
and 8(b) reveal that the proposed control law addresses
the disturbance and guarantees the minimization of the
transverse and lateral vibrations of the beam, respectively.
The estimated bound of the disturbance is revealed in Fig.
10. These simulation results demonstrate the effectiveness
of the proposed robust adaptive control method in the ex-

(a)

(b)

Fig. 7. Retraction case: (a) Transverse vibration and (b)
lateral vibration, where the boundary disturbance
is not considered.

(a)

(b)

Fig. 8. Extension case: (a) Trolley position and (b) gantry
position of the system, where the boundary distur-
bance is considered.
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(a)

(b)

Fig. 9. Extension case: (a) Transverse vibration and (b)
lateral vibration, where the boundary disturbance
is considered.

Fig. 10. Extension case: Bound of the disturbance and its
estimate.

tension case. For the retraction case, Figs. 11 and 12 re-
veal that the trolley and gantry can track the desired po-
sitions and that the transverse and lateral vibrations con-
verge to a small neighborhood around zero. In these fig-
ures, the dashed lines illustrate the bound of the signals
calculated by (37)-(40). The convergence of the bound of
disturbances is also shown in Fig. 13. Accordingly, the ef-
fectiveness of the designed boundary control method in
the retraction case is proven.

Fig. 11. Retraction case: Trolley position and gantry po-
sition of the system, where the boundary distur-
bance is considered.

(a)

(b)

Fig. 12. Retraction case: (a) Transverse vibration and (b)
lateral vibration, where the boundary disturbance
is considered.

Fig. 13. Retraction case: Bound of the disturbance and its
estimate.
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5. CONCLUSION

This study addressed the position and vibration control
problem of a variable-length beam attached to a translat-
ing base in the presence of an unknown disturbance. A
dynamic model of a hybrid system consisting of a trol-
ley, gantry, and flexible beam of time-varying length was
developed using the Hamilton principle. To handle the un-
known disturbance, the boundary control law in (22)-(23)
and the adaptation law in (26) were designed based on the
Lyapunov design method. Under this robust adaptive con-
trol law, the closed-loop system is uniformly ultimately
bounded in the existence of the unknown disturbance. Nu-
merical simulations were performed to verify the designed
control law. The superior capabilities of the proposed ro-
bust adaptive control law for positioning control and vi-
bration suppression were apparent in the simulation re-
sults.

The proposed method was developed for a cantilever
beam with no additional mass at the tip; therefore, its ap-
plication is limited in handling the load at the tip. When
a payload at the tip is considered, the dynamics will be
more involved. The proposed method will be extended to
the varying length beam with unknown tip mass. Last but
not least, the experiment will be conducted to verify the
performance of the proposed control law.

APPENDIX A: PROOF OF LEMMA 4

Let γi, i = 1, 2, ..., 6, be positive design parameters. Ac-
cording to Lemmas 1 and 2, terms V3 and V4 can be evalu-
ated as follows:∣∣∣∣∫ l

0
ẏ

Dw
Dt

dx
∣∣∣∣≤ 1

γ1
lẏ2 + γ1

∫ l

0

(
Dw
Dt

)2

dx, (A.1)∣∣∣∣∫ l

0
wẏdx

∣∣∣∣≤ l4

γ2

∫ l

0
w2

xxdx+ γ2lẏ2, (A.2)∣∣∣∣∫ l

0
w

Dw
Dt

dx
∣∣∣∣≤ l4

γ2

∫ l

0
w2

xxdx+ γ2

∫ l

0

(
Dw
Dt

)2

dx,

(A.3)

(k3 +a2l) ẏey ≤ (k3 +a2l) ẏ2 +(k3 +a2l)ey
2, (A.4)∣∣∣∣∫ l

0
ey

Dw
Dt

dx
∣∣∣∣≤ 1

γ3
ley

2 + γ3

∫ l

0

(
Dw
Dt

)2

dx, (A.5)∣∣∣∣∫ l

0
ż

Dv
Dt

dx
∣∣∣∣≤ 1

γ4
lż2 + γ4

∫ l

0

(
Dv
Dt

)2

dx, (A.6)∣∣∣∣∫ l

0
vżdx

∣∣∣∣≤ l4

γ5

∫ l

0
v2

xxdx+ γ5lż2, (A.7)∣∣∣∣∫ l

0
v

Dv
Dt

dx
∣∣∣∣≤ l4

γ5

∫ l

0
v2

xxdx+ γ5

∫ l

0

(
Dv
Dt

)2

dx, (A.8)

(k3 +b2l) żez ≤ (k3 +b2l) ż2 +(k3 +b2l)e2
z , (A.9)∣∣∣∣∫ l

0
ez

Dv
Dt

dx
∣∣∣∣≤ 1

γ6
le2

z + γ6

∫ l

0

(
Dv
Dt

)2

dx. (A.10)

By using (42) to (A.5), the bounds for V are obtained as
follows:

V ≥ [k1ρA/2− k1ρAγ1−a1ρAγ2−a2γ3]

×
∫ l

0
(Dw/Dt)2 dx

+[k1ρA/2− k1ρAγ4−b1ρAγ5−b2γ6]

×
∫ l

0
(Dv/Dt)2 dx

+
[
(k1 +1)EIy/2−2a1ρAl4/γ2

]∫ l

0
w2

xxdx

+
[
(k1 +1)EIz/2−2b1ρAl4/γ4

]∫ l

0
v2

xxdx

+[k2/2− (k3 +a2l +a2l/γ3)]e2
y

+[m/2+k1ρAl−k1ρAl/γ1−a1ρAγ2l−k3−a2l]ẏ2

+[k4/2− (k5 +b2l +b2l/γ6)]e2
z

+(M/2+k1ρAl−k1ρAl/γ4−b1ρAγ5l−k5−b2l) ż2

≥ λ1

[∫ l

0
(Dw/Dt)2 dx+

∫ l

0
(Dv/Dt)2 dx+

∫ l

0
w2

xxdx

+
∫ l

0
v2

xxdx+ e2
y + ẏ2 + e2

z + ż2
]

= λ1W1, (A.11)

V ≤(ρA(1+ k1/2+ k1γ1 +a1γ2)+a2γ3)

×
∫ l

0
(Dw/Dt)2 dx

+(ρA(1+ k1/2+ k1γ4 +b1γ5)+b2γ6)

×
∫ l

0
(Dv/Dt)2 dx

+(k1 +1)
∫ l

0

[
P
(
wx

2 + vx
2)dx/2

+
(
wx

2 + vx
2)2

dx/4
]
dx

+
[
(k1 +1)EIy/2+2a1ρAl4/γ2

]∫ l

0
w2

xxdx

+
[
(k1 +1)EIz/2+2b1ρAl4/γ5

]∫ l

0
v2

xxdx

+(k3 +a2l +a2l/γ3 + k2/2)e2
y

+(k1ρAl(1+1/γ1)+a1ρAγ2l + k3 +a2l

+m/2+ρAl)ẏ2

+(k5 +b2l +b2l/γ6 + k4/2)e2
z

+(k1ρAl(1+1/γ4)+b1ρAγ5l + k5 +b2l

+M/2+ρAl)ż2

≤ λ2

[
d̃b

2 +
∫ l

0
(Dw/Dt)2 dx+

∫ l

0
(Dv/Dt)2 dx

+
∫ l

0
P
(
w2

x + v2
x

)
dx/2+

∫ l

0

(
w2

x + v2
x

)2
dx/4

+
∫ l

0
w2

xxdx+
∫ l

0
v2

xxdx+ e2
y + e2

z + ẏ2 + ż2
]
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=λ2W2, (A.12)

where

λ1 = min
{

k1ρA/2− k1ρAγ1−a1ρAγ2−a2γ3,

k1ρA/2− k1ρAγ4−b1ρAγ5−b2γ6,

(k1 +1)EIy/2−2a1ρAl4/γ2,

(k1 +1)EIz/2−2b1ρAl4/γ4,

k2/2− (k3 +a2l +a2l/γ3),

m/2+ρAlk1(1−1/γ1)−a1ρAγ2l− k3−a2l,

k4/2− (k5 +b2l +b2l/γ6),

M/2+k1ρAl−k1ρAl/γ4−b1ρAγ5l−k5−b2l
}
,

(A.13)

λ2 = max
{

ρA(1+ k1/2+ k1γ1 +a1γ2)+a2γ3,

ρA(1+ k1/2+ k1γ4 +b1γ5)+b2γ6,

EA(k1 +1),(k1 +1),

(k1 +1)EIy/2+2a1ρAl4/γ2,

(k1 +1)EIz/2+2b1ρAl4/γ5,

k3 +a2l +a2l/γ3 + k2/2,

ρAl (k1 + k1/γ1 +a1γ2 +1)+ k3 +a2l +m/2,

k5 +b2l +b2l/γ6 + k4/2,

ρAl (k1 + k1/γ4 +b1γ5 +1)+ k5 +b2l +M/2
}
.

(A.14)

If the control parameters ki (i = 1, 2, ..., 5) and design
parameters a1, a2, b1, b2, and γi (i= 1, 2, ..., 6) are selected
such that

λ1 > 0, (A.15)

then 0 ≤ λ1W1 ≤ V ≤ λ2W2. Therefore, Lemma 4 is
proven. �

APPENDIX B: PROOF OF LEMMA 5

Because the flexible beam is an axially moving beam of
time-varying length, the time rates of its vibration energy
V1, and the two auxiliary functions V3 and V4 should be
determined based on the Reynolds transport theorem for
a translating medium with variable length [17]. The time
rate of V1 is derived as follows:

V̇1 = ρA
∫ l

0
(ẏ+Dw/Dt)

(
ÿ+D2w/Dt2)dx

+ρA
∫ l

0
(ż+Dv/Dt)

(
z̈+D2v/Dt2)dx

+(k1 +1)
[∫ l

0
(DP/Dt)

(
w2

x + v2
x

)
dx/2

+
∫ l

0
Pwx (Dwx/Dt)dx+

∫ l

0
Pvx (Dvx/Dt)dx

+
∫ l

0
EA
(
w2

x/2+ v2
x/2
)

wx (Dwx/Dt)dx

+
∫ l

0
EA
(
w2

x/2+ v2
x/2
)

vx (Dvx/Dt)dx

+EIy

∫ l

0
wxx (Dwxx/Dt)dx

+EIz

∫ l

0
vxx (Dvxx/Dt)dx

]
. (B.1)

By integrating by parts for the last two terms and consid-
ering the fact that (Dw/Dt)x = (ẏ+Dw/Dt)x, (A.11) can
be rearranged as follows:

V̇1 = ρA
∫ l

0
(ẏ+Dw/Dt)(ÿ+D2w/Dt2)dx

+ρA
∫ l

0
(ż+Dv/Dt)(z̈+D2v/Dt2)dx

+(k1 +1)
∫ l

0
[Pwx +EAwx(w2

x + v2
x)/2

−EIywxxx](ẏ+Dw/Dt)xdx+(k1 +1)
∫ l

0
[Pvx

+EAvx(w2
x + v2

x)/2−EIzvxxx](ż+Dv/Dt)xdx

+(k1 +1)
∫ l

0
(DP/Dt)(w2

x + v2
x)dx/2

− (k1 +1)EIy l̇wxx(0, t)2− (k1 +1)EIz l̇vxx(0, t)2.
(B.2)

Substituting the dynamic model of the beam in (6) and (9)
into (A.12) and using the boundary conditions in (8) and
(11) yields

V̇1 = − cw

∫ l

0
w2

t dx− cw l̇
∫ l

0
wtwxdx− ẏcw

∫ l

0
wtdx

+ ẏEIywxxx(0, t)− cv

∫ l

0
v2

t dx− cv l̇
∫ l

0
vtvxdx

− żcv

∫ l

0
vtdx+ żEIzvxxx(0, t)

+ k1

∫ l

0
[Pwx +EAwx(w2

x + v2
x)/2−EIywxxx]

× (ẏ+Dw/Dt)xdx

+ k1

∫ l

0
[Pvx +EAvx(w2

x + v2
x)/2−EIzvxxx]

× (ż+Dv/Dt)xdx

+(k1 +1)
∫ l

0
(DP/Dt)(w2

x + v2
x)dx/2

− (k1 +1)EIy l̇w2
xx(0, t)− (k1 +1)EIz l̇v2

xx(0, t).
(B.3)

By using the dynamic model of the trolley and gantry,
(A.13) can be rewritten as

V̇1 = −cw

∫ l

0
w2

t dx−cw l̇
∫ l

0
wtwxdx+ẏ fy−mẏÿ−ρAl̇ẏ2

−cv

∫ l

0
v2

t dx−cv l̇
∫ l

0
vtvxdx+ż fz−Mżz̈−ρAl̇ż2
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+ k1

∫ l

0
[Pwx +EAwx(w2

x + v2
x)/2

−EIywxxx](ẏ+Dw/Dt)xdx+ k1

∫ l

0
[Pvx

+EAvx(w2
x + v2

x)/2−EIzvxxx](ż+Dv/Dt)xdx

+(k1 +1)
∫ l

0
(DP/Dt)(w2

x + v2
x)dx/2

− (k1 +1)EIy l̇w2
xx(0, t)− (k1 +1)EIz l̇v2

xx(0, t)

+ ẏd. (B.4)

The time rate of V2 can be calculated using the time deriva-
tive as follows:

V̇2 = mẏÿ+ k2eyẏ+Mżz̈+ k4ezż. (B.5)

The time rate of V3 is derived as follows:

V̇3 = k1ρA
∫ l

0
(ẏ+Dw/Dt)(ÿ+D2w/Dt2)dx+k1ρAlẏÿ

+(k1ρAl̇ + k3 +a2l)ẏ2 + k3ÿey

+ρAa1

∫ l

0
(Dw/Dt)2dx

+ρAa1

∫ l

0
w(ÿ+D2w/Dt2)dx

+a2 l̇eyẏ+(ρAa1 +a2)
∫ l

0
ẏ(Dw/Dt)dx

+a2

∫ l

0
ey(ÿ+D2w/Dt2)dx. (B.6)

By substituting the equation of motion corresponding
to the transverse vibration in (6) into (B.1) and integrating
by parts, (B.1) can be rewritten as follows:

V̇3 = − k1ẏcw

∫ l

0
wtdx− k1cw

∫ l

0
w2

t dx

− k1cw l̇
∫ l

0
wtwxdx+ k1

∫ l

0
[(ẏ+Dw/Dt)(Pwx

+EAwx(w2
x + v2

x)/2−EIywxxx)x]dx+ k3ÿey

+ k1ρAlẏÿ+(k1ρAl̇ + k3 +a2l)ẏ2

+ρAa1

∫ l

0
(Dw/Dt)2dx− cwa1

∫ l

0
wwtdx

−a1

∫ l

0
Pw2

xdx−a1EA
∫ l

0
w2

x(w
2
x + v2

x)dx/4

+a2 l̇eyẏ−a1EIy

∫ l

0
w2

xxdx

+(ρAa1 +a2)
∫ l

0
ẏ(Dw/Dt)dx

− cwa2

∫ l

0
eywtdx/ρA+a2eyEIywxxx(0, t)/ρA.

(B.7)

Similarly, the time rate of V4 is obtained as follows:

V̇4 = − k1żcv

∫ l

0
vtdx− k1cv

∫ l

0
v2

t dx

− k1cv l̇
∫ l

0
vtvxdx+ k1

∫ l

0
[(ż+Dv/Dt)(Pvx

+EAvx(w2
x + v2

x)/2−EIzvxxx)x]dx

+ k1ρAlżz̈+(k1ρAl̇ + k5 +b2l)ż2

+ k5z̈ez +ρAb1

∫ l

0
(Dv/Dt)2dx

− cvb1

∫ l

0
vvtdx−b1

∫ l

0
Pv2

xdx

−b1EA
∫ l

0
v2

x(w
2
x + v2

x)dx/4+b2 l̇ezż

−b1EIz

∫ l

0
v2

xxdx

+(ρAb1 +b2)
∫ l

0
ż(Dv/Dt)dx

− cvb2

∫ l

0
ezvtdx/ρA+b2ezEIzvxxx(0, t)/ρA.

(B.8)

From (A.14), (A.15), (B.2), and (B.3), and the dynamic
model corresponding to the trolley and gantry, the time
derivative of V can be derived as follows:

V̇ = V̇w +V̇v +V̇wv, (B.9)

where

V̇w = k3eyd/m+(k1ρAl/m+1)ẏd

− (k1 +1)cw

∫ l

0
w2

t dx/2

− [(k1 +1)cw/2−ρAa1]
∫ l

0
(Dw/Dt)2dx

−a1EIy

∫ l

0
w2

xxdx

+ k1EIy(1−ρAl/m)ẏwxxx(0, t)

+(k2− k3ρAl̇/m)eyẏ+(1+ k1ρAl/m)ẏ fy

+(k1ρAl̇ + k3 +a2l−ρAl̇− k1(ρA)2ll̇/m)ẏ2

+EIy(a2ey/ρA− k3/m)eywxxx(0, t)

+ k3ey f y/m− (k1 +1)EIy l̇w2
xx(0, t)

+ k1cw(ρAl/m−1)
∫ l

0
ẏwtdx

+(ρAa1 +a2)
∫ l

0
ẏ(Dw/Dt)dx

− cwa1

∫ l

0
wwtdx

+ cw(k3/m−a2/ρA)
∫ l

0
eywtdx+a2 l̇eyẏ

+(k1 +1)
∫ l

0
(cw l̇2 +DP/Dt)w2

xdx/2+ξ2d̃b
˙̃db,

(B.10)

V̇v =−(k1 +1)cv

∫ l

0
v2

t dx/2−b1EIz

∫ l

0
v2

xxdx
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− [(k1 +1)cv/2−ρAb1]
∫ l

0
(Dv/Dt)2dx

+ k1EIz(1−ρAl/M)żvxxx(0, t)

+(k4− k5ρAl̇/M)ezż

+(k1ρAl̇ + k5 +b2l−ρAl̇− k1(ρA)2ll̇/M)ż2

+(1+ k1ρAl/M)ż fz + k5ez f z/M

+EIz(b2/ρA− k5/M)ezvxxx(0, t)

− (k1 +1)EIz l̇v2
xx(0, t)

+ k1cv(ρAl/M−1)
∫ l

0
żvtdx

+(ρAb1 +b2)
∫ l

0
ż(Dv/Dt)dx− cvb1

∫ l

0
vvtdx

+ cv(k5/M−b2/ρA)
∫ l

0
ezvtdx+b2 l̇ezż

+(k1 +1)
∫ l

0
(cv l̇2 +DP/Dt)v2

xdx/2, (B.11)

V̇wv =−a1

∫ l

0
Pw2

xdx−a1EA
∫ l

0
w2

x(w
2
x + v2

x)dx/4

−b1

∫ l

0
Pv2

xdx−b1EA
∫ l

0
v2

x(wx
2 + v2

x)dx/4.

(B.12)

We now evaluate V̇w, V̇v, and V̇wv. Let δi (i = 1, 2, ..., 10)
be the positive design parameters. By applying Lemmas 1
and 2 to the terms in (B.5), V̇w can be evaluated as follows:

V̇w ≤ − cw[−δ1k1(1−ρAl/m)−δ3a1

−δ4|k3/m−a2/ρA|+(k1 +1)/2]
∫ l

0
w2

t dx

− [(k1 +1)cw/2−ρAa1

−δ2(ρAa1 +a2)]
∫ l

0
(Dw/Dt)2dx

− [a1EIy−a1cwl4/δ3

− (k1 +1)(cw l̇2 +PDmax)l2/2]
∫ l

0
w2

xxdx

+(1+ k1ρAl/m)ẏ fy

+ k1EIy(1−ρAl/m)ẏwxxx(0, t)

+(k2− k3ρAl̇/m)eyẏ

+[k1ρAl̇ + k3 +a2l−ρAl̇

+(ρAa1 +a2)l/δ2 + k1cw(1−ρAl/m)l/δ1

+a2|l̇|δ5− k1(ρA)2ll̇/m]ẏ2

+[cw|k3/m−a2/ρA|l/δ4

+a2|l̇|/δ5]e2
y + k3ey f y/m

− (k1 +1)EIy l̇w2
xx(0, t)

+EIy(a2ey/ρA− k3/m)eywxxx(0, t)

+ k3eyd/m+(k1ρAl/m+1)ẏd +ξ2d̃b
˙̂db.

(B.13)

Under the boundary control law in (22) and adaptation law

in (26), (B.8) can be rewritten as follows:

V̇w ≤ − cw[(k1 +1)/2−δ1k1(1−ρAl/m)−δ3a1

−δ4|k3/m−a2/ρA|]
∫ l

0
w2

t dx− [(k1 +1)cw/2

−ρAa1−δ2(ρAa1 +a2)]
∫ l

0
(Dw/Dt)2dx

− [a1EIy−a1cwl4/δ3

− (k1 +1)(cw l̇2 +PDmax)l2/2]
∫ l

0
w2

xxdx− [k6

− k3−a2l − k1(ρAl̇ + cwl/δ1)(1−ρAl/m)

+ρAl̇−a2|l̇|δ5− (ρAa1 +a2)l/δ2]ẏ2

− [−cw|k3−ma2|l/δ4mρA(k3/(m+ k1ρAl))

× (k2 + k3k6/(m+ k1ρAl)−ρAl̇k3/m)

−a2|l̇|/δ5]e2
y +EIy[(a2/ρA− k3/m)

− k1k3(1−ρAl/m)/(m+ k1ρAl)]eywxxx(0, t)

− (k1 +1)EIy|gl̇|l̇w2
xx(0, t)/(2|g|+ sgn(l̇g)g)

+ξ1ξ 2d2
b/2−ξ 1ξ 2d̃2

b/2−ξ 1ξ 2d̂2
b/2. (B.14)

V̇v can be evaluated similarly. Additionally, we have

V̇wv ≤ −2min(a1,b1)
∫ l

0
P
(
w2

x + v2
x

)
dx/2

−min(a1,b1)
∫ l

0
EA
(
w2

x + v2
x

)2
dx/4. (B.15)

Noted that l̇wxx(0, t)2|gl̇|/(2|g| + sgn(l̇g)g) ≥ 0 and
l̇vxx(0, t)2|hl̇|/(2|h|+ sgn(l̇h)h) ≥ 0. According to (B.9)
and (B.10), if the control and design parameters are se-
lected to satisfy(

a2

ρA
− k3

m

)
− k1k3

m+ k1ρAl

(
1− ρAl

m

)
= 0, (B.16)(

b2

ρA
− k5

M

)
− k1k5

M+ k1ρAl

(
1− ρAl

M

)
= 0, (B.17)

(k1 +1)
2

−δ1k1

(
1− ρAl

m

)
−δ3a1

−δ4

∣∣∣∣k3

m
− a2

ρA

∣∣∣∣≥ 0, (B.18)

(k1 +1)
2

−δ6k1

(
1− ρAl

M

)
−δ8b1

+δ9

∣∣∣∣ k5

M
− b2

ρA

∣∣∣∣≥ 0, (B.19)

then V̇ can be evaluated as follows:

V̇ ≤−λ3W2 + ε, (B.20)

where ε = ξ1ξ2d2
b/2≥ 0 and

λ3 = min
{
(k1 +1)cw/2−ρAa1−δ2 (ρAa1 +a2) ,
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2min(a1,b1) ,

(k1 +1)cv/2−ρAb1−δ7(ρAb1 +b2),

ξ1ξ2/2,

a1EIy−a1cwl4/δ3−(k1+1)(cw l̇2+PDmax)l2/2,

b1EIz−cvb1l4/δ8−(k1+1)(cv l̇2+PDmax)l2/2,

k6− k1(ρAl̇ + cwl/δ1)(1−ρAl/m)− k3−a2l

+ρAl̇− (ρAa1 +a2)l/δ2−a2|l̇|δ5,

k7− k1(ρAl̇ + cvl/δ6)(1−ρAl/M)− k5−b2l

+ρAl̇− (ρAb1 +b2)l/δ7−b2|l̇|δ10,

k3

m+ k1ρAl

(
k2 +

k3k6

m+ k1ρAl
−ρAl̇k3/m

)
− (cw|k3−ma2|l/δ4mρA+a2|l̇|/δ5),

k5

M+ k1ρAl

(
k4 +

k5k7

M+ k1ρAl
−ρAl̇k5/M

)
− (cv|k5−Mb2|l/δ9MρA+b2|l̇|/δ10)

}
. (B.21)

The control gains and design parameters are selected to
satisfy the following condition:

λ3 ≥ 0. (B.22)

By using Lemma 4 and (B.15), V̇ can be evaluated as
follows: V̇ ≤ −λV + ε , where λ = λ3/λ2. Accordingly,
Lemma 5 is proven.
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